Spectroscopy in high-temperature industrial processes on Earth

Fateev, Alexander

Publication date: 2015

Document Version
Peer reviewed version

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Spectroscopy of Exoplanets

July 24th – 26th 2015

Senior Scientists Alexander Fateev

DTU Chemical Engineering
Department of Chemical and Biochemical Engineering
Spectroscopy in industrial processes | Outline

- Background
- Large scale measurements
- Example/Case 1: NH3
- Example/Case 2: SO2/SO3
- Example/Case 3/UV: C6H6O and C10H8
- Conclusions
Needs | **Large Scale Measurements**

- Boilers,
- Flames (oil, gas, bio-masses),
- Engines (ships, jets),
- Field campaigns (explosions)

VIS image grade flame (waste)

IR image wood dust flame (video fuel mixing)
Complexity

Complexity:
- get results first
- trustful system
- 1500°C is not uncommon

Expensive:
- access possibilities
- man power
- time

Campaign at Blok 7 Fynsværket (Denmark)
Data analysis:
- on-line
- at home

Source of reference data:
- measurements in a cell with pre-mixed gases
- databases (IR/UV)

NO measurements in exhaust duct of a large ship engine
Can we use BYTe at 500C for practical apps?

- in general a good agreement
- some difficulties with strong line intensities
- some frequency shifts in line positions

More work to do at even higher T (>500C)

More details:
Emma J. Barton et al
“High-resolution absorption measurements of NH₃ at high temperatures: 500 - 2100 cm⁻¹”
(submitted to JQSRT)
Application case 1 | In Situ measurements on Pyroneer (6MW) gasifier

NH3: Q: Why to do measurements? A: NH3 contributes to NOx formation

Gas extraction (150C):

20-06-2014 (17:00-19:30): NH3=(0.4 ± 0.02)%, H2O=(35 ± 0.6)%, CO2=(14 ± 0.45)%, CO=(10 ± 0.21)%
24-06-2014 (15:00-17:00): NH3=(0.42 ± 0.02)%, H2O=(36 ± 0.6)%, CO2=(13.5 ± 0.45)%, CO=(10.3 ± 0.21)%

In situ (547C):

24-06-2014 (20:00-21:00): NH3=(0.55 ± 0.05)% , H2O=(36 ± 1)%
Application case 2 | SO2/SO3/NH3 in a hot flue gas

SO2/SO3/NH3: Q: Why to do measurements?
A: NOx reduction at SCR/NSCR units, NH3 slip/costs, corrosion/fouling
Example 2 | **SO3: measurements at 25C and 400C**

- Simple to generate, but difficult to measure/quantify
- No databases (SO2/SO3) are available at T>100C

Good news:
- Excellent agreement with PNNL data at 25C
- No need to use high-resolution at high T
Example 2 | **SO2/SO3 cross sections (0.5cm⁻¹)**

PhD (Dan Underwood) with UCL:
- SO₂ and SO₃ line lists
- ready by the end 2015
- 2ⁿᵈ Power plant measurement campaign, fall 2015
Example 3/UV

Phenol/Naphthalene UV absorption cross-sections temperature effects

- Not too many reference data available even at low T (about 23°C)
- An excellent agreement with published data at low T
- Significant changes in the fine structure of the cross-section spectra with T

Naphthalene abs cross-sections: from 23C to 500C
Phenol abs cross-sections: from 23C to 500C
Application case 3/UV | In Situ measurements on LT-CFB (100kW) gasifier

Phenol/Naphthalene: Q: Why to do measurements?
A: Phenol/Naphthalene – major trace gases from PAH’s in low temperature gasification

Few new challenges:
- Very strong UV light attenuation
- Very broad continuum-like abs structures
- Very small L for in situ measurements

DOAS approach: SO2 UV absorption as an example
Application case 3/UV | In Situ measurements on LT-CFB (100kW) gasifier

Comparison of the measurements

<table>
<thead>
<tr>
<th>Method</th>
<th>Time</th>
<th>Temperature</th>
<th>Phenol</th>
<th>Naphthalene</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC-MS</td>
<td>30 min</td>
<td>15°C</td>
<td>215 ppm</td>
<td>16 ppm</td>
</tr>
<tr>
<td>Extraction</td>
<td>3 min</td>
<td>150°C</td>
<td>360 ppm</td>
<td>31 ppm</td>
</tr>
<tr>
<td>In-situ</td>
<td>3 min</td>
<td>306°C</td>
<td>7700 ppm</td>
<td>1000 ppm</td>
</tr>
</tbody>
</table>
Conclusions | Now

In general
- You can find a lot inspirations for the work on the Earth
- Different research areas can have the same origin
- Scientists can make industry guys happy

In particular:
- Excellent experimental tools are available for (VUV) UV-FIR optical measurements
- Temperature range can be also negative (e.g. gases at low T)
- New data.lines for NH3/SO2/SO3
- New data for phenol/naphthalene
- Try always In Situ and avoid any Ex Situ (extraction) measurements
Conclusions | Future

• Inspiration comes from industry (small, middle large, ...)
• Possible spin offs: innovation (patents)
• New gas components: CH3Cl, KCl etc. (together with UCL)
• Combine several methods to obtain multi-parameters
• ...

• Contact: Alexander Fateev
 alfa@kt.dtu.dk
 +45 23652906
• To Energinet.dk: projects No. 2013-12027, 2011-1-10622, 2010-1-10422

• To MST.dk

• To DONG Energy and Vattenfall

• To UCL (Prof. Jonathan Tennyson’s group)
Thank you for your attention