High-throughput epitope identification for snakebite antivenom

Engmark, Mikael; De Masi, Federico; Laustsen, Andreas Hougaard; Gutiérrez, José María; Lomonte, Bruno; Andersen, Mikael Rørdam; Lund, Ole

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
High-throughput epitope identification for snakebite antivenom

Mikael Engmark¹, Federico De Masi¹, Andreas Hougaard Laustsen⁶, José María Gutiérrez⁶, Bruno Lomonte³, Mikael Rørdam Andersen¹, and Ole Lund¹

(1) Department of Systems Biology, Technical University of Denmark
(2) Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen
(3) Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica

Correspondence: miken@bio.dtu.dk

Introduction

Insight into the epitopic recognition pattern for polyclonal antivenoms is a strong tool for accurate prediction of antivenom cross-reactivity and provides a basis for design of novel antivenoms. In this work, a high-throughput approach was applied to characterize linear epitopes in 966 individual toxins from pit vipers (Crotalidae) using the ICP Crotalidae antivenom. Due to an abundance of snake venom metalloproteinases and phospholipase A2 in the venoms used for production of the investigated antivenom, this study focuses on these toxin families.

Objectives

- Identify epitopes in toxins used in immunization
- Characterize tolerated amino acid substitutions in identified epitopes
- Predict cross-reactivity of antivenom

Epitopes locate to surface regions

To identify epitopes the observed peptide-specific signal intensities were mapped back to the amino acid sequence of each pit viper toxin. Using two or more overlapping 15-mer peptides with median signals above 20 AU, epitope core sequences were localized and subsequently mapped to crystal structures or homology models. As examples, P-I metalloproteinase and Lys49-phospholipase A2 from Bothrops asper (venom used in antivenom production) are presented here.

Epitopes

<table>
<thead>
<tr>
<th>Peptide Sequence</th>
<th>AU</th>
<th>Mean AU</th>
</tr>
</thead>
<tbody>
<tr>
<td>YVELVIVADHGMFTKYNGNLNTI</td>
<td>188.3</td>
<td>249.0</td>
</tr>
<tr>
<td>YVELVIVADHGMFTKYNGNLNTI</td>
<td>191.3</td>
<td>249.0</td>
</tr>
<tr>
<td>YVELVIVADHGMFTKYNGNLNTI</td>
<td>174.2</td>
<td>249.0</td>
</tr>
<tr>
<td>YVELVIVADHGMFTKYNGNLNTI</td>
<td>164.4</td>
<td>249.0</td>
</tr>
<tr>
<td>YVELVIVADHGMFTKYNGNLNTI</td>
<td>156.8</td>
<td>249.0</td>
</tr>
</tbody>
</table>

The epitope core sequences are highlighted in blue except for the high-signal epitope in Bothrops asper P-I metalloproteinase that is highlighted in red. All epitopes are found to be exposed on the protein surface. The structure of the metalloproteinase (PDB: 2W13) was obtained from the Protein Data Bank (pdb:111), and the homology model of the phospholipase A2 was built using CPHmodels based on a crystal structure of the lys49-phospholipase from B. jararaca (PDB: 4KF3) with 87.7% identity.

Acknowledgement

The peptide microarray experiments were performed at Schaffer-N. Copenhagen. We would like to thank Claus Schaffer, Christian Njorj Hansen, and Jens Ronge for experimental setup and support. We further thank the Novo Nordisk Foundation for financial support (grant number: NNF15OC0016131).

References