High-throughput epitope identification for snakebite antivenom

Engmark, Mikael; De Masi, Federico; Laustsen, Andreas Hougaard; Gutiérrez, José María; Lomonte, Bruno; Andersen, Mikael Rørdam; Lund, Ole

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
High-throughput epitope identification for snakebite antivenom

Mikael Engmark1, Federico De Masi1, Andreas Hougaard Lauersen2, José María Gutiérrez3, Bruno Lomonte3, Mikael Rordam Andersen1, and Ole Lund1

(1) Department of Systems Biology, Technical University of Denmark
(2) Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen
(3) Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica

Correspondence: mikael@sysbio.dtu.dk

Introduction

Insight into the epitopic recognition pattern for polyclonal antivenoms is a strong tool for accurate prediction of antivenom cross-reactivity and provides a basis for design of novel antivenoms. In this work, a high-throughput approach was applied to characterize linear epitopes in 966 individual toxins from pit vipers (Crotalidae) using the ICP Crotalidae antivenom. Due to an abundance of snake venom metalloproteinases and phospholipase A\textsubscript{2} in the venoms used for production of the investigated antivenom, this study focuses on these toxin families.

Objectives

- Identify epitopes in toxins used in immunization
- Characterize tolerated amino acid substitutions in identified epitopes
- Predict cross-reactivity of antivenom

Epitopes locate to surface regions

To identify epitopes the observed peptide specific signal intensities were mapped back to the amino acid sequence of each pit viper toxin. Using two or more overlapping 15-mer peptides with median signals above 20 AU, epitope core sequences were localized and subsequently mapped to crystal structures or homology models. As examples, P-I metalloproteinase- and lyso49-phospholipase A\textsubscript{2} from Bothrops asper (venom used in antivenom production) are presented here.

Studying linear epitopes using peptide microarrays

In silico generation of peptide library

Antibody binding and detection

Effect on cross-recognition

The m-helical red epitope in the B. asper metalloproteinase is found to be highly conserved among pit viper metalloproteinases. Based on multiple sequence alignment of pit viper toxins sharing at least seven of the eight 15-mer peptides harboring the epitope, we find that flanking residues outside of the core epitope have small effect on antivenom recognition. Expanding the analysis to the 42 toxins that share at least five of the epitope residues, binding is still observed in all of the corresponding eight 15-mer peptides, although the microarray signals are reduced up to seven times (data not shown).

These results suggest that ICP Crotalidae polyvalent antivenom might offer protection from the investigated metalloproteinases, including the toxins from the Asian Crotalidae species if these in vitro experiments translate to the in vivo situation.

Conclusions

- Custom-designed high density peptide microarray technology enables parallel automated identification of epitopes in hundreds of toxins.
- Integrating multiple sequence alignment allows investigation of the effect of epitope variation on antivenom recognition.
- Cross-reactivity of antivenom is correlated to the degree of conservation in toxin epitopes and flanking residues.

Acknowledgement

The peptide microarray experiments were performed at Syn pert−N, Copenhagen. We would like to thank Claus Schier, Christian Ajbek Hansen, and Jens Kringelum for experimental setup and support. We further thank the Novo Nordisk Foundation for financial support (grant number: NNF13OC0005613).

References