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Abstract

This thesis concerns the development of theoretical and computational methods for multi-
probe systems and their application to nanostructured graphene. Recent experimental
advances emphasize the usefulness of multi-probe techniques when analyzing the elec-
trical properties of nanoscale samples. The multi-probe setup, however, is conceptually
di�erent from the standard calculation setups which either disregard the e�ects of the
probes altogether or use probes connected at the edge of a �nite device region. In the
multi-probe setup, on the other hand, the device region is in�nite and extends all around
the local probes. This necessitates a reformulation of the conventional calculation methods
allowing for the description of non-periodic structures embedded within in�nite samples.

The two-dimensional material graphene, is a highly interesting system for multi-probe
characterization as graphene is purely surface and exhibits a wide range of highly intrigu-
ing electronic properties. Using a dual probe setup, we demonstrate the application of
the developed formalism to a number of di�erent graphene-based systems. The conduc-
tance between the two probes in either scanning or spectroscopy mode, shows quantum
interference patterns around impurities or crystalline edges. These interferences can be
used to reveal important information about the scattering processes taking place. The
thesis furthermore discusses nanostructuring such as perforations or local gating. We
show how single states or modes and their interplay gives rise to resonances in the dual
probe conductance and can be associated with vortex-like current patterns either guiding
or suppressing the current.

We further address the e�ect of strain in graphene when subjected to mechanical de-
formations giving rise to so-called pseudomagnetic �elds. Here we investigate strained
graphene bubbles (\pseudomagnetic dots") directly from tight binding, e�ectively going
beyond the Dirac approximation. In this way, we study the local density of states of dif-
ferent pseudomagnetic dots in real space and show Friedel-type oscillations caused by the
�nite size of the dots, sublattice polarization and Landau quantization. Additionally, we
use the dual probe conductance to demonstrate the current guiding ability of the pseu-
domagnetic �elds leading to preferential scattering directions responsible for the observed
pseudomagnetic focusing and anti-focusing e�ects.
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Resum�e - Danish

Denne afhandling omhandler udvikling af teori og beregningsmetoder til multi-probe sys-
temer and disses anvendelse for nanostruktureret graf�en. Nye eksperimentelle teknikker
har demonstreret brugen af multi-probe teknikker til karakterisering af materialer p�a
nanoskala. Metoder til at beskrive multi-probe systemer er imidlertidig grundl�ggende
forskellige fra standard beregningsm�ssige metoder, der som oftest enten negligere e�ekten
af proberne eller benytter prober som kobler til kanten et endeligt system. Multi-probe
systemer vil p�a den anden side have uendelige udstr�kning omkring de lokale prober.
Dette n�dvendigg�r en omformulering af konventionelle beregningsmetoder som g�r det
muligt at beskrive ikke-periodiske strukturer i et uendeligt system

Todimensionale materialer som graf�en er et yderst interessant system at karakteris-
erer ved hj�lp af multi-probe metoder da graf�en udelukkende er overade og besidder
en lang r�kke interessante elektriske egenskaber. Vi demonstrerer anvendelsen af de ud-
viklede metoder for en r�kke forskellige graf�en systemer ved at bruge en dobbelt-probe
opstilling. Konduktansen mellem de to prober i enten scanning eller spektroskopi tilstand,
viser kvante interferensm�nstre omkring urenheder og krystallinske kanter. Disse interfer-
enser kan bruges til at analyserer sprednings processerne som �nder sted. Afhandlingen
diskuterer desuden nanostrukturering s�asom perforeringer eller lokale elektriske felter. Vi
viser hvordan enkelte tilstande eller modes og deres interaktion giver anledning til reso-
nanser i dobbelt-probe konduktansen og er forbundet med vortex m�nstre i str�mmen der
enten leder eller blokerer.

Endvidere beskriver vi e�ekten af mekanisk deformation af graf�en, der giver anledning
til s�akaldte pseduomagnet felter. Vi unders�ger graf�en deformationer med en "Tight-
binding"-model der g�ar ud over Dirac approksimationen. P�a denne m�ade analyserer vi
den lokale tilstandst�thed af forskellige pseudomagnetiske deformationer og viser e�ekter
s�asom undergitter polarisering, Landau kvantisering og Friedel svingninger for�arsaget af
den endelige st�rrelse af deformationerne. Derudover bruger vi dobbelt-probe konduk-
tansen til at vise hvordan det pseudomagnetiske felt kan lede str�mmens retning og skabe
pr�ferentielle spredningsretninger der udm�nter sig i fokusering eller anti-fokusering af
str�mmen.
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CHAPTER1
Introduction

\What could we do with layered structures with just the right
layers? What would the properties of materials be if we could
really arrange the atoms the way we want them?"

| Richard Feynman, (1918-1988)

Since Richard Feynman's highly praised lecture in 1959 [1] the quest of nanotechnology has
been a continuous miniaturization. The more than 50 year old speculation of materials con-
taining an exact number of layers is no longer a visionary thought but an experimental fact
[2]. In fact, the two dimensional carbon material, graphene, contains only a single layer and
the electron waves propagate through this single layer, which makes them accessible to various
scanning probe methods. So what does happen when we can manipulate an individual layer
on the nanoscale? And how can we detect the properties on a similar nanoscale?

1.1 Graphene

Carbon is a very versatile element and depending on the hybridization of the individual
bonds, we can experience cabon based materials in a variety of forms in all dimensions.
This ranges from the large class of hydrocarbons which compose the majority of the
biological materials providing the energy for the modern technological society to pure
carbon materials like diamonds or graphite, both of which are widely used throughout
the industry. The variety is not limited to macroscale materials because we �nd carbon
nanomaterials in all dimensions like fullerene molecules (0D), carbon nanotubes (1D),
graphene (2D) and nano-diamonds (3D), see Fig. 1.1. This versatility, with each form
exhibiting di�erent chemical and physical properties, makes carbon nanostructures an
important component in the �eld of nanoscience and nanotechnology. In this thesis, we
focus on the remarkable properties of the two-dimensional form,graphene.

Like most good ideas, it all started with a pencil. Using the famous scotch tape
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Figure 1.1: Carbon materials with macroscale structures like (a) graphite and (b) diamonds and
the lower dimensional structures like (c) fullerenes (C60), (d) carbon nanotubes and (e) graphene.
Picture adapted form [3].

method, graphene can be derived from the graphite in our pencils by simply peeling of
a single layer. Graphene has been presented as the miracle material of the twenty-�rst
century. The one-atom-thick carbon material combines a number of highly attractive
properties never seen before in one material: extreme mechanical strength, exceptionally
high electronic and thermal conductivity, impermeability to gases, optical transparency
etc.. [4, 5]

Theoretically graphene has been studied for many years [6, 7] and thought of as the fun-
damental building block of carbon structures like graphite, fullerenes or carbon nanotubes.
After the experimental realization in 2004 [8], however, it became clear that graphene is
also a material in itself. Fundamental for many of the striking features of graphene, is
the relativistic-like linear energy spectrum making quasiparticles in graphene behave like
massless fermions. This gives rise to relativistic e�ects like the half integer Quantum Hall
e�ect [9, 10] and the Klein tunneling e�ect which lets electrons with normal incidence pass
through in�nitely large potential barriers with a probability of one [11]. We do not review
all the remarkable properties of graphene and their origin as several extensive reviews
[12, 13], roadmaps [4, 14] and a couple of text books [15, 16] exist describing the general
properties of graphene. On the other hand, a few properties relevant for this work should
be mentioned here.

The �rst is the exceptional electronic quality of graphene allowing electrons to travel
long distances without scattering, hence making quantum interference e�ects visible [17{
20]. Second, is the similarity between photons and electrons in graphene [21, 22] which
inspires the pursuit of devices analogous of optical devices. This includes nanopatterning or
gating to create an electron analogue photonic crystals [23], waveguides [24, 25] and optical
cavities [22, 26]. Third, is the remarkable connection between mechanical deformation of
graphene and its electronic, optical and phononic properties [27, 28]. For example, it has
been shown that strain allows for the formation of local gauge �elds mimicking the e�ect
of a strong magnetic �eld [29]. Fourth, due to the massless carriers and little scattering,
quantum e�ects in graphene have been shown to be very robust and can even survive at
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room temperature [30].

Even though this thesis focuses on graphene, we should also briey mention the other
two dimensional materials [2, 31, 32]. Although graphene was the �rst truly two dimen-
sional crystal isolated, a variety of 2D materials have been realized covering properties from
insulators to semi- and superconductors [33]. In this way, we do not consider graphene
as a single unique material, but rather as a spectacular example of a whole class of 2D
materials with di�erent properties and compositions [34]. Moreover, the ability to control
the number and composition of layers could signi�cantly modify the properties of the new
layered materials.

1.2 Dual probe setups

A vital part of the miniaturization process is the ability to see and measure at the
nanoscale. Fundamental studies of nanomaterials can only continue through a contin-
ued downscaling of characterization techniques [35].

Since its development, the Scanning Tunneling Microscope (STM) [36, 37] has been the
most important tool to investigate the electronic structure of nanoscale surfaces. Nanome-
ter scale STM measurements, yielding both local density of states (LDOS) and topographic
details, are extensively used to study graphene both theoretically [38{46] and experimen-
tally [47{52]. A conventional STM has a single probe, therefore, its main function is to
image the structure of a sample and it cannot be used to measure the lateral transport.
However, a double probe setup with STM-like probes allows for measuring the lateral
transport by utilizing the two probes as contact electrodes [53]. This type of STM or sim-
ilar probes that only couple very locally to the sample is seen in contrast to the commonly
used invasive macroscopic probes.

During the past decade multi-probe systems have been developed to avoid the need
of �xed macroscopic contacts and enable nanoscale transport measurements [35, 53{56].
Multi-probe measurements have been used to characterize several systems: nanowires
[58, 59], carbon nanotubes [60], graphene nanoribbons [61], anisotropic transport [57],
grain boundaries both in graphene [62, 63] and other materials [64], and monolayer and
bilayer graphene of varying quality [65{69]. Multi-probe systems are useful to study
di�erent length-scales as the probe pitch is changed from the commercially available� m-
scale [55] to the state-of-the-art multi-probe STM techniques [59, 61, 65, 70] allowing for
tip separations down to a couple of hundred nanometers, see Fig. 1.2.

As we move towards actual nanoscale transport, di�erent physical principles come
into play. The large probe pitch is still well described by classical electrostatic theory
[71], but when the probe pitch is smaller than the phase coherence length, we enter the
mesoscopic regime governed by quantum mechanics [72] where classical theory is predicted
to break down. There are needs for theoretical and computational methods including
quantum mechanical e�ects to describe such dual-STM probe systems on the nanoscale
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Figure 1.2: A scanning electron microscopy image of a four STM-probe setup on a graphene
nanoribbon. The picture is courtesy of J. Baringhaus.

and what system properties that can be analyzed using this type of setup. Developing
such a theoretical framework and describing the dual probe setup in the coherent transport
regime is the overall goal of this thesis.

\There's plenty room at the bottom."
| Richard Feynman, (1918-1988)
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1.3 Outline of the thesis

We address the fundamental miniaturization question ofdual probesin the phase coher-
ent regime and how these can be used to study nanoscale transport properties. In this
context graphene is an excellent candidate to investigate. In contrast to subsurface two-
dimensional electron systems, where the environment is less accessible to nanoscale surface
probes, the electrons propagate at the surface of graphene giving the unique opportunity
to probe the electronic behavior using scanning probe methods. In this way, the thesis
�rst focuses on the development of the necessary theoretical framework to study dual
probe setups while including the e�ect of quantum mechanics. Secondly, we apply these
methods to graphene systems containing simple defects and nanostructures such as local
gating and strain engineering. The remainder of the thesis is organized as follows:

Chapter 2 (Paper I, II, III):
We develop a theoretical framework to treat multi-probe setups and nanostructures in a
graphene system. As the STM-like probes are required to be �nite, local and placed on
an in�nite sample, we have to modify the standard Green's function approach to capture
these important characteristics. We present two approaches: The �rst is based on an
integral Green's function approach to the pristine system. Due to its analytical origin
it is computationally e�ective, however, it does not scale to treat larger nanostructures.
The second approach, although more computationally expensive, is able to treat large
disordered or nanostructured regions. This method, denoted thepatched Green's function
method, relies on a self-energy approach to describe the in�nite part of the system.

Chapter 3 (Paper I,II):
The theoretical framework based on theintegral Green's function method is used to treat
the two fundamental modes of a dual-STM setup: the scanning and the spectroscopy
mode. We exemplify both methods using pristine graphene and simple defects such as
adatoms or vacancies, observing e�ects like conductance anisotropy between armchair and
zigzag directions as well as quantum interference around defects and crystalline edges.

Chapter 4 (Paper II, III, unpublished):
Turning to more complicated nanostructures using thepatched Green's function method, we
show how the dual probe setup can be used to describe transport e�ects for perforations
and local gating of the graphene sheet. The perforation shows Fano-like resonances in
the dual probe transmission, caused by localized states at the zigzag components of the
edges. Here the current forms vortices e�ectively increasing the size of the perforation.
Furthermore we demonstrate how a circularly gated region exhibits features like focusing
and resonant scattering creating quasi bound states. We show that these resonances can
turn forward scattering on and o� e�ectively suppressing the Klein tunneling e�ect at
certain energies.

Chapter 5 (Paper III, IV , V , VI ):
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We study inhomogeneous strain �elds which give rise to pseudomagnetic �elds. A con-
stant pseudomagnetic �eld is created by a triaxial strain pro�le and we observe pseudo
Landau quantization due to this �eld. Moreover, we investigate pseudo-Landau levels in
rotationally symmetric strain �elds with clamped edges. In these systems, the pseudo-
Landau levels mixes with strong Friedel-type oscillations caused by the size quantization
from the edges. These competing e�ects make a clear identi�cation of pseudo-Landau
levels di�cult at best. Moreover, we use the dual probe setup to analyze the current ow
in various types of local strain �elds (\pseudomagnetic dots") demonstrating e�ects like
current focusing or splitting, preferential direction scattering, increased backscattering and
snake-like currents. Finally, we extend the analysis to arrays of pseudomagnetic dots and
consider the e�ect on the conductivity of large scale samples using the Kubo-Greenwood
formalism.

Chapter 6 (unpublished):
We consider possible extensions of the theoretical framework to treat systems outside the
phase coherent regime. This requires the introduction of disorder or dephasing mecha-
nisms. We propose an approach based on the coherent potential approximation to obtain
an e�ective medium including disorder e�ects. To calculate the transmission through this
e�ective medium, we present a vertex correction scheme and show how this can be used
in case of a standard two terminal setup for a graphene nanoribbon.

Chapter 7:
We evaluate the progress made in the thesis and summarize the main results. In addition,
we discuss possible extensions and some possible next steps for investigations made in the
thesis.



CHAPTER2
Theoretical multi-probe models using

quantum mechanics

In this chapter we aim to develop a theoretical framework for multi-probe setups which is able
to include quantum e�ects. Firstly, we notice that geometry plays an important role in the
case of STM-like probes as, in contrast to the standard calculation setup, a local probe does
not only couple to the sample at the edge. Furthermore, the relative positions of the probes
are important. These characteristics need to be captured by a theoretical model. We therefore
disregard formalisms that calculate the native material properties without including the e�ects
of the probes and their positions. Instead, we choose a Landauer-B•utikker formalism as it
allows us to include the geometrical factors.

We will not derive the framework of non-equilibrium Green's functions (NEGF) or the
Landauer-B•utikker formalism, instead we refer to textbooks as Datta [72] or Haug & Jauho
[73] for thorough treatment or to the short introduction in Ref. [74]. Instead, this chapter
focuses on how to utilize the NEGF framework to make numerical calculations for systems
containing multiple local probes.

The chapter opens with a discussion of the challenges in comparison to the standard two
terminal (\Lead-Device-Lead") approach. Next, we present two methods able to deal with
these speci�c challenges. The �rst approach is particularly e�cient when only a limited amount
of disorder is present. The second approach, although computationally more expensive, is able
to deal with arbitrary size of defects and is therefore the more general of the two methods.

2.1 Problems faced by theoretical modeling

In the Landauer-B•uttiker formalism the current ow between two electrodes is expressed
in terms of the probability that an electron can pass from one electrode through the
conductor and into the second electrode. In this way, the zero temperature conductance is
connected to the transmissionT asG = 2e2

h T . Using the non-equilibrium Green's function
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formalism [72{75] the transmission probability can be calculated as

T = Tr
�
Gy

D � RGD � L
�
; (2.1)

where Tr
�

�
�

is the trace over all states in the device region,GD is the Green's function
(GF) for the device Hamiltonian and � L=R is the imaginary part of the lead self-energy
describing the scattering into the left and right lead.

Figure 2.1: Generic two probe system which couples the left (L) and right (R) leads to an
intermediate device region (D).

In the standard NEGF framework transport is considered through a lead-device-lead
setup as shown in Fig. 2.1. Here a voltage drop is applied between the left (L) and right
(R) leads causing a current to ow through the central device region (D). In this setup, the
device Hamiltonian is �nite in the transport direction, but can be repeated periodically
in the transverse direction using a Bloch scheme. Although the device is �nite in the
transport direction, the leads are typically taken as semi-in�nite chains of repeated cells,
which in turn can be constructed using recursive schemes [76]. The device Hamiltonian is
de�ned on a local basis set meaning that each basis orbital has a �nite range. This can
be in a form of a phenomenological tight binding Hamiltonian or obtained using Density
Functional Theory (DFT) with a local atomic orbital basis set [75]. In both cases, the GF
for the device region can be calculated using so-called recursive Green's function methods
(RGF) [77]. Although variants of the method can be used for arbitrary geometries and
multiple leads, [78{80] the method remains limited to �nite-width or periodic systems.

Now we turn to the dual-STM setup shown schematically in Fig. 2.2. Here the device
region becomes the entire two-dimensional sheet making the device Hamiltonian in�nite.
Moreover, the local probes exclude periodicity making the Hamiltonian including the STM-
like probes non-periodic. However, the standard setup in Fig. 2.1 requires semi-in�nite
leads in the transport direction and periodicity in the transverse direction in order to
describe a two-dimensional system. As the standard approach is not directly applicable,
this chapter presents two alternative methods to treat the dual probe setup with an in�nite
and non-periodic device region.

Method 1 exploits the fact that we only need a limited part of the full real space
GF to calculate the transmission between di�erent local probes. The real space GF for
a pristine in�nite system can often be calculated using a combination of analytical and
integral methods which we will show in the case of graphene. Afterwards, using a Dyson
equation approach to add any real space perturbations, we obtain exactly the full GF
elements needed for transport calculations.
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Figure 2.2: Generic dual probe system with �nite probes coupling to an in�nite system.

Method 2 uses a self-energy approach to reduce the in�nite Hamiltonian to a �nite
one while including the in�nite degree of freedom through a �nite self-energy. The idea
is similar to the one used for the leads in the standard setup discussed above. We show
how to construct a self-energy in order to take into account the in�nite part of the system
(dark gray in Fig. 2.2). With the inclusion of this self-energy, the device Hamiltonian
can afterwards be treated by an e�cient recursive scheme which is also presented. This
approach can treat the local electronic and transport properties of very large systems
embedded within an in�nite two-dimensional sheet, something that has not previously
been possible.

2.2 Method 1: Integral Green's function method

The �rst approach to treat an in�nite two dimensional system with local probes relies on
an evaluation of the pristine real space GF. Such a GF can often be calculated for pristine
systems using a combination of analytical and integral methods making this approach
computationally e�ective as long as the system does not deviate too much from pristine.
Throughout this thesis we will focus on graphene, but the method is extendable to all other
two dimensional materials where the real space GF for the pristine material is obtainable
in a similar manner.

Considering a dual-STM setup (see Fig. 2.3) with two probes placed atr 1 and r 2, the
transmission in Eq. (2.1) becomes

T12 = Tr
�
Gy(r 1; r 2)� 2(r 2)G(r 2; r 1)� 1(r 1)

�
; (2.2)

where G(r 1; r 2) is Green's function connectingr 1 and r 2 and � 1=2 is the imaginary part
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Figure 2.3: Setup sketch including the leads modelled as one dimensional chains with a hopping
tc between the sites. The surface Green's functionsgs are indicated together with the coupling
 1=2 between the lead and the graphene sample. The speci�c probe models will be elaborated in
Section 2.4.

of the lead self-energies, �1=2(E ) = i
�
� 1=2 � � y

1=2

�
. The exact form of the self-energies,

� 1=2, is postponed until Section 2.4.

We note from Eq. (2.2) that we only need the GF elements between the sites coupling
to the probes. Hence, even though the device is in�nite, we only need a �nite number of
real space GF elements for the system. In the next section we will discuss how to obtain
the pristine real space GF of an in�nite graphene sheet which we will denoteG0. To go
from a pristine system to include defects, probes or other perturbations, we use the Dyson
equation:

G = G 0 + G 0V G =
�
1 � G 0V

� � 1G 0; (2.3)

where V is the matrix representation of the perturbation. Any local perturbation ( e.g.,
adatoms, vacancies, coupling to leads) can be included using this technique. Accurate
parametrizations for many of these perturbations can be obtained using density functional
theory [15, 81].

We note that the dimension of the V -matrix is determined by the number of the
modi�ed sites. Thus, for N modi�ed sites one needs to solve aN � N system, and the
computational cost thus follows the number of defect and contact sites, rather than the
sample size which is usual for RGF methods.

All perturbations to the pristine lattice are added in real space, as opposed to de-
scribing them with additional terms in the reciprocal space Hamiltonians. This ensures
that modi�cations are added only locally and are not repeated via periodic boundary
conditions. The approach is well suited to situations where the majority of the sample is
pristine, as unmodi�ed graphene is computationally `free'.
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2.2.1 Real space graphene Green's function

In this section, we want to determine the real space GF for pristine graphene. In graphene,
the four valence electrons are conveniently modeled by the tight bindingsp2-orbital model.
The sp2 hybridization (or � -orbitals) in the plane are responsible for the bonding and
electrons in these orbitals occupy lower energies than the remaining out-of-plane� -orbital
[15]. Therefore, we can accurately describe transport properties by a nearest neighbor
orthonormal tight binding Hamiltonian with zero onsite energy

H =
X

<i;j>

t ĉy
i ĉj + h:c; (2.4)

where the sum < i; j > runs over all nearest neighbour pairs and the carbon-carbon
hopping integral is t � � 2:7 eV. The graphene hexagonal lattice can be split into two
triangular sublattices, which we denote A and B, where neighboring sites reside on opposite
sublattices connected with vectors, see Fig. 2.4.

� 1 = a0
�

�

p
3

2
; �

1
2

�
; � 2 = a0

�
p

3
2

; �
1
2

�
; � 3 = a0

�
0; 1

�
; (2.5)

where a0 = 0 :142 nm is the carbon-carbon distance. Using Bloch functions, the Hamilto-
nian can be rewritten in reciprocal space as [12, 82]

H k = t
�

0 f (k )
f � (k ) 0

�
; (2.6)

where the matrix form arises from sublattice indexing within a 2 atom unit cell and we have
used the de�nition f (k ) = 1 + e ik �a1 + e ik �a2 , with the lattice vectors a1 = a0(�

p
3; 3)=2

Figure 2.4: Graphene lattice with two superimposed triangular sublattices A (blue) and B (red)
with unit vectors a1, a2 and nearest neighbor vectors� 1, � 2 and � 3. The yellow area indicates the
unit cell containing two atoms.
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and a2 = a0(
p

3; 3)=2. With this de�nition of the unit vectors we have the armchair
direction along the y-axis (and zigzag along the x-axis).

The eigenenergies and eigenstates of the system are easily obtained from this form
of the Hamiltonian, and transforming back to real space allows us to write the desired
Green's function between sitesi and j as [83, 84]

G0
ij (z) =

1

 BZ

Z
d2k

N ij (z; k )eik �(r j � r i )

z2 � t2jf (k )j2
; (2.7)

where z = E + i0 + is the energy, 
 BZ is the area of the �rst Brillouin zone. The position
of the unit cell containing site i is denoted by r i = mi a1 + ni a2, with mi and ni being
integers.

Finally we use the de�nition N ij (z; k ) = z, when i and j are on the same sublattice and
N ij (z; k ) = tf (k ) if i is on the A sublattice and j is on the B sublattice and N ij (z; k ) =
tf � (k ) when i is on B and j on A.

N (z;k ) =
�

z tf (k )
tf � (k ) z

�
: (2.8)

To simplify the notation we introduce the dimensionless k-vectors

kA = 3kya0=2; (2.9a)

kZ =
p

3kxa0=2; (2.9b)

such that f (kA ; kZ ) = 1 + 2 cos
�
kZ

�
eikA , and write the separation vector in terms of the

lattice vectors

r = r j � r i = ma1 + na2: (2.10)

Inserting this into Eq. (2.7) gives

G0
ij (z; r ) =

1
2� 2

Z
dkA

Z
dkZ N ij (z; kA ; kZ )

�
eikA (m+ n)+i kZ (m� n)

z2 � t2
�
1 + 4 cos2(kZ ) + 4 cos(kA ) cos(kZ )

� : (2.11)

where the integration is over the BZ zone. Eq. (2.11) can be solved using a two-dimensional
numerical integration, but as we require Eq. (2.11) for each Green's function element
individually, we wish to increase the performance by doing one integration analytically
using complex contour techniques. The choice of �rst integration variable is important
and below we treat the two di�erent choices { namely armchair (kA ) and zigzag(kZ ).



Chapter 2. Theoretical multi-probe models using quantum mechanics 15

Armchair direction

Following the approach of Ref. [84], we usekA as the complex variable and consider the
integral

I A =
Z �

� �
dkA

N ij (z; kA ; kZ )eikA (m+ n)+i kZ (m� n)

z2 � t2
�
1 + 4 cos2(kZ ) + 4 cos(kA ) cos(kZ )

� : (2.12)

The pole, q, of the denominator is given by

q = cos� 1
� z2

t2 � 1 � 4 cos2
�
kZ

�

4 cos
�
kZ

�
�
: (2.13)

Contours in the positive half plane correspond to the situationm + n � 0 and the sign of
the pole must be selected carefully to ensure that it lies within the integration contour,
i.e. Im( q) > 0.

The residue of a function f (z) = g(z)
h(z) at a pole z0 is given by Res(f (z)) z= z0 = g(z0 )

h0(z0 ) ,
where h0(z) is the derivative of h. The residue of the integrand in Eq. (2.12) becomes

Res
�
I A

�
=

N ij (z; q; kZ )eiq(m+ n)+i kZ (m� n)

4t2 sin(q) cos(kz)
(2.14)

Using the residue theorem we �nally reduce Eq. (2.11) to

G0
ij (z; r ) =

i
4�t 2

Z �
2

� �
2

dkZ
N ij (z; q; kZ )eiq(m+ n)+i kZ (m� n)

cos
�
kZ

�
sin

�
q
� ; (2.15)

with q given by Eq. (2.13).

Zigzag direction

Following the same approach as for the armchair direction we use a di�erent Brillouin
zone and consider the integral

I Z =
Z �

� �
dkZ

N ij (z; kA ; kZ )eikA (m+ n)+i kZ (m� n)

z2 � t2
�
1 + 4 cos2(kZ ) + 4 cos(kA ) cos(kZ )

� : (2.16)

We again go to the complex plane and use the residue theorem. This time there are two
poles in the denominator,

cos(q) = �
1
2

�
cos(kA ) �

r
z2

t2 � sin2(kA )
�

; (2.17)
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Each pole must have its overall sign chosen to ensure it lies within the contour. The
residue for these poles can be calculated in a similar manner as for the armchair direction:

Res
�
I Z

�
=

1
4t2

X

q

N ij (z; kA ; q)eikA (m+ n)+i q(m� n)

sin(2q) + sin( q) cos(kA )
(2.18)

Using the residue theorem reduces the total integral Eq. (2.11)

G0
ij (z; r ) =

i
4�t 2

X

q

Z �
2

� �
2

dkA
N ij (z; q; kZ )eikA (m+ n)+i q(m� n)

sin(2q) + sin( q) cos(kA )
; (2.19)

with q given by Eq. (2.17).

Even though Eq. (2.15) and Eq. (2.19) give identical results for the GF, the zigzag
direction (Eq. (2.19)) proves most stable in the numerical evaluations of the �nal integral.
Furthermore, the above expressions can be generalized to include, for example, second
nearest neighbor terms [85] and uniaxial strains [86].

2.2.2 Stationary phase approximation

Above we have shown how the �rst integral in the GF calculation could be done using
complex contour methods. The results in Eqs. (2.15) and (2.19) only contain a one dimen-
sional integral which in general needs to be evaluated numerically. However, in certain
cases we can make approximations to solve for a closed analytical form of the GF [84].

We note that the remaining integrand of both Eqs. (2.15) and (2.19) contains an
exponential factor of the form eik �r , where r = ma1 + na2. Therefore the integrand will
oscillate rapidly if the distance between the two sites is great enough. This observation is
key to performing the remaining integration in the limit of large separations, as the rapid
oscillations do not contribute signi�cantly towards the �nal value of the integral [84].

If we consider an integral of the general form

I (x) =
Z

dyf (y)ei � (y)x : (2.20)

The integrand oscillates with a varying phase � (y) and for large values of x the parts
having di�erent phase will tend to cancel when performing the integration over y. The
region with the largest contribution will therefore correspond to y values where� (y) is
constant. This leads to the so-called Stationary Phase Approximation (SPA) where we
replace the integrand of Eq. (2.20) with a Taylor expansion around the stationary points
y0. The stationary points are determined by

d�
dy

�
�
�
�
y0

= 0 ; (2.21)
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such that the phase term becomes

� (y) �
X

y0

�
� (y0) +

1
2

d2�
d2y

�
�
�
�
y0

(y � y0)2 + � � �
�

: (2.22)

Note that the �rst order Taylor expansion term is zero per de�nition of the stationary
point.

If we now furthermore assume that the function f (y) is slowly varying about each
stationary point then a stationary point will contribute to the integral with the value

I y0 (x) =
Z

dyf (y0)ei
�

� (y0 )+ � 00(y0 )( y� y0 )2
�

x

= f (y0)ei � (y0 )x
Z

dyei � 00(y0 )( y� y0 )2x

= f (y0)ei � (y0 )x

s
2i�

� 00(y0)x
: (2.23)

Below we use Eq. (2.23) to consider the GF for graphene between sites on the same
sublattice separated in either the armchair or zigzag direction.

Armchair direction

First we consider the GF between two sites on the same sublattice and separated by
a vector in the armchair direction. For armchair separation we havem = n and from
Eq. (2.15) we obtain

G0
ij (z; r ) =

iz
4�t 2

Z �
2

� �
2

dkZ
eiq(m+ n)

cos
�
kZ

�
sin

�
q
� (2.24)

The special choice of separation and contour integration direction has led to the simple
functional form of Eq. (2.24). Comparing with Eq. (2.20) we note that the phase term
is simply given by the pole of the contour integral Eq. (2.13). Inserting Eq. (2.13) into
dq

dkZ

�
�
�
�
k0

Z

the solution for the stationary points becomes

k0
Z = 0 ; � cos� 1

� p
t2 � z2

2t

�
(2.25)

Although both solutions are valid, only one of them yields a real value of the poleq for a
given energy. If q is complex the integrand in Eq. (2.24) vanishes for large separationsi.e.
large values ofm + n. In consequence, we only consider the solution giving rise to realq
values for a given energy

k0
Z =

8
<

:
� cos� 1

� p
t2 � z2

2t

�
; if jzj < jt j

0; if jzj > jt j:
(2.26)
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For the casejzj = �j t j we must consider both contributions.

The wavevectorq can now be expanded in a Taylor series around the relevant stationary
point k0

Z . Keeping only terms up to second order we get from Eq. (2.22)

q(kZ ) � q(k0
Z ) +

1
2

d2q
d2kZ

�
�
�
�
k0

Z

(kZ � k0
Z )2 = Q(z) + W(z)(kZ � k0

Z )2; (2.27)

where

Q(z) =

8
>><

>>:

� cos� 1
�

�
q

1 � z2

t2

�
; if jzj < jt j;

� cos� 1
�

z2 � 5t2

4t2

�
; if jzj > jt j;

(2.28)

and

W(z) =

8
<

:

� z2+3 t2

2z
p

t2 � z2 ; if jzj < jt j;

� z2+3 t2

2
p

(t2 � z2 )( z2 � 9t2 )
; if jzj > jt j:

(2.29)

The sign of Q(z) must be chosen as earlier to ensure that it lies within the integration
contour. Additionally the correct sign of W(q) must be determined by its correspondence
to the curvature of q at the stationary points.

Substituting Eq. (2.27) into Eq. (2.24) using the expression Eq. (2.23) yields the Green's
function

G0
ij (z; r ) =

iz
4�t 2

X

k0
Z

eiQ(z)( m+ n)

cos(k0
Z ) sin(Q(z))

Z �
2

� �
2

dkZ eiW (z)( kZ � k0
Z )2 (m+ n)

=
iz

4�t 2

X

k0
Z

s
i�

W(z)(m + n)
eiQ(z)( m+ n)

cos(k0
Z ) sin(Q(z))

; (2.30)

where the choice ofk0
Z is determined by the considered energy regime. Using de�nitions

of Q and W we simplify the expression and, after some algebra, forz > 0 we arrive at

Gspa;ac
ij (z; r ) =

r
2
i�

1
p

m + n
1

q
(z2 + 3 t2)

p
t2 � z2

�

(
� i

p
zeiQ(z)( m+ n) if jzj < jt j;
z

(z2 � 9t2 )1=4 eiQ(z)( m+ n) if jzj > jt j:
(2.31)

Fig. 2.5 shows the real and imaginary parts of the GF for the casem+ n = 40 calculated
both using the analytical expression Eq. (2.31) and a numerical evaluation of the integral
Eq. (2.15). We note an excellent agreement between the two methods over the entire
energy interval considered. We furthermore test the validity of the analytical expression
by calculating jG0 � GSP A j=jG0j as a function of separation distance for speci�c energies,
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see Fig. 2.6. The deviation between the numerical and analytical decreases with increasing
distance between the two sites. In addition, the analytical expression is more accurate for
higher energies, but even for small energies the deviation is less than 5% for distances
above 40a0 and decreases rapidly with increased separation.

Figure 2.5: Real (Left) and imaginary (Right) part of the Green's function calculated using both
the analytical expression, Eq. (2.31), and the numerical evaluation of the Green's function integral
in Eq. (2.15) for the armchair separation m + n = 40.

Figure 2.6: The percentage di�erence between the analytical SPA expression and the numerical
integral as a function of separation distance along the armchair direction.
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Zigzag direction

Next, we consider the GF between two sites on the same sublattice, but separated along
the zigzag direction. For zigzag separationsm = � n and using Eq. (2.19) we obtain

G0
ij (z; r ) =

iz
4�t 2

X

q

Z �
2

� �
2

dkA
eiq(m� n)

sin(2q) + sin( q) cos(kA )
; (2.32)

Now using the same approach as for the armchair direction above we determine the sta-

tionary points from the condition dq
dkA

�
�
�
�
k0

A

,

k0
A = 0 : (2.33)

The stationary points in the zigzag direction are independent of energy. Expanding the
wavevector q, Eq. (2.13), in a Taylor series around the stationary points while keeping
only terms up to second order we get

q(kA ) � q(k0
A ) +

1
2

d2q
d2kA

�
�
�
�
k0

A

(kA � k0
A )2 = Q(z) + W(z)(kA � k0

A )2; (2.34)

where

Q+ (z) = � cos� 1
�

�
t + z

2t

�
; (2.35a)

Q� (z) = � cos� 1
�

� t + z
2t

�
; (2.35b)

and

W + (z) = �
t

2z
t + z

p
(3t + z)( t � z)

; (2.36a)

W � (z) = �
t

2z
t � z

p
(3t � z)( t + z)

; (2.36b)

Using the Taylor expansion and the general integral solution Eq. (2.23) we get after some
algebraic manipulations

Gspa;zz
ij (z; r ) =

iz
4�t 2

X

� = �

s
i�

W � (m � n)
eiQ � (z)( m� n)

sin(2Q� (z)) + sin( Q� (z)) cos(k0
A )

;

=

s
1

2i� (m � n)

� r
z

jt j(t + z)
eiQ+ (z)( m� n)

((3t + z)( t � z))1=4

+
r

z
jt j(t � z)

eiQ � (z)( m� n)

((3t � z)( t + z))1=4

�
: (2.37)

Similarly to the armchair direction, Fig. 2.7 shows both the real and imaginary parts of the
GF calculated using both a numerical evaluation of Eq. (2.19) and the analytical expression
Eq. (2.37). We note a very good agreement between the two approaches, validating the
analytical expression for the GF along the zigzag direction at large distances.
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Figure 2.7: Real (Left) and imaginary (Right) part of the Green's function calculated using both
the analytical expression, Eq. (2.37), and the numerical evaluation of the Green's function integral
in Eq. (2.19) for the zigzag separationm + n = 40.

Simple SPA form

The analytic expressions in Eqs. (2.31) and (2.37) are valid throughout the entire energy
range compared to analytical expressions for the GF relying on the Dirac approximation
which are only valid at small energies. The advantage of the SPA expressions is obvious
when considering energy scales outside the linear dispersion regime but the approach is
also useful when considering distance-dependent properties. This is seen when expressing
Eqs. (2.31) and (2.37) in a more concise form [84],

Gspa
ij (z) =

A(z)eiQ(z)�
p

dij
; (2.38)

wheredij is the distance between two sites andA and Q are given by Eqs. (2.37) and (2.31)
for z > 0 we collect the simple form and corresponding coe�cients at the end of this section.

In Eq. (2.38) the energy and distance dependent features of the GF are clearly identi-
�ed. So even in the case where the coe�cientA is not particularly simple, the expression
above can be used to draw qualitative arguments. Combined with the ability to clearly
isolate the distance dependence in the GF allows us to perform a more transparent inves-
tigation of the properties of graphene.

The simple form in Eq. (2.38) will be especially useful to explain the qualitative e�ects
when considering local probes and interference patterns arising from defect scattering
in Chapter 3. It is speci�cally suited for this as the distance between the probes and
defects exceeds tens of nanometers and therefore resides in the regime where the SPA
approximation is a very close match to the numerically evaluated GF.
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2.2.3 Summary of method 1

Integral Green's function method

We treat a multiprobe setup where the device re-
gion is in�nite. Using a combination of analytical
and integral methods to obtain the pristine GF's
for an in�nite system (see below), we can add de-
fects and probes locally within the in�nite system.

The transmission is calculated using the standard formula

T12 = Tr
�
Gy(r 1; r 2)� 2(r 2)G(r 2; r 1)� 1(r 1)

�
; (2.39)

and defects are added using a Dyson equation

G =
�
1 � G 0V

� � 1G 0: (2.40)

Pristine Green's function for graphene: armchair

G0
ij (z; r ) =

i
4�t 2

Z �
2

� �
2

dkZ
N ij (z; q; kZ )eiq(m+ n)+i kZ (m� n)

cos
�
kZ

�
sin

�
q
� ; (2.41)

cos(q) =
z2

t2 � 1 � 4 cos2
�
kZ

�

4 cos
�
kZ

� ; (2.42)

Pristine Green's function for graphene: zigzag

G0
ij (z; r ) =

i
4�t 2

X

q

Z �
2

� �
2

dkA
N ij (z; q; kZ )eikA (m+ n)+i q(m� n)

sin(2q) + sin( q) cos(kA )
(2.43)

cos(q) = �
1
2

�
cos(kA ) �

r
z2

t2 � sin2(kA )
�

: (2.44)
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Stationary phase approximation(SPA): armchair

The Green's function of graphene can be approximated using the SPA for the arm-
chair direction

Gspa
ij (z) =

A(z)eiQ(z)dij

p
dij

(2.45a)

where dij is the distance between two sites.

Coe�cients

Q(z) = � cos� 1
�

�

r

1 �
z2

t2

�
(2.45b)

A(z) = �
1 + i
p

�

p
z

q
(z2 + 3 t2)

p
t2 � z2

= � (1 + i) jA (z)j (2.45c)

Stationary phase approximation (SPA): zigzag

The Green's function of graphene can be approximated using the SPA for the zigzag
directions yielding a sum of two terms

Gspa
ij (z) =

X

� = �

A � (z)eiQ � (z)dij

p
dij

(2.46a)

where dij is the distance between two sites.

Coe�cients

Q+ (z) = � cos� 1
�

� t � z
2t

�
(2.46b)

Q� (z) = � cos� 1
�

� t + z
2t

�
(2.46c)

A + (z) = �
1 + i
p

4�

r
z

jt j(t + z)
1

�
(3t + z)( t � z)

� 1=4
= � (1 + i) jA + (z)j (2.46d)

A � (z) = �
1 + i
p

4�

r
z

jt j(t � z)
1

�
(3t � z)( t + z)

� 1=4
= � (1 + i) jA � (z)j (2.46e)
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2.3 Solution 2: Patched Green's function method

The second approach to treat an in�nite two dimensional sheet is based on the construction
of a self-energy term that takes into account the extended parts of the system and is
published in Paper III [87]. The self-energy describes the extended parts of the system
in between �nite device `patches'. The device patches are described by a Hamiltonian,
H D , which may include disorder, deformations, mean �eld terms, (non)uniform magnetic
�elds or leads etc. . We therefore consider the computational setup schematically shown
in the left panel of Fig. 2.8, where a device region is embedded within an extended two
dimensional system by applying a self energy term, �B . To treat this setup, we need two
things: �rst, we need to construct � B and, secondly, we need an e�cient way to describe
the device region while taking � B into account. Furthermore, the treatment of the device
should be able to consider arbitrary geometries, including mutually disconnected patches
within the extended system, as shown in the right panel of Fig. 2.8.

We describe the method in three steps:

1: Derivation of the boundary self energy term, � B , in terms of the pristine lattice
GFs.

2: Calculation of the real-space GF needed in the self energy calculation. We use
graphene as an example.

3: Implementation of an adaptive RGF method to build the device region(s) e�ciently
while including the self energy term(s) � B .

Figure 2.8: The left panel shows a schematic of a computational setup containing a �nite device
`patch' , described byH D , embedded within an extended system described by the self energy� B .
The right panel shows a computational setup containing several device `patches' of interest.
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2.3.1 Boundary self energy

To construct the boundary self energy describing the extended region in Fig. 2.8, we
consider the simple graphene example in Fig. 2.9a. Here a central device region, indicated
by the dashed square, is embedded into an extended sheet. In this example both the
extended area and the device region are assumed to be graphene-based, but the following
arguments are general to any two dimensional material. We consider a division of the
system into two parts: sites in the device (D) or sites in the extended sheet region.
Furthermore, we subdivide the extended sheet into boundary sites (B) which are indicated
by blue in Fig. 2.9 and have a non-zero Hamiltonian element coupling them to the device
region, or `sheet' sites which do not couple to the device region. Within a nearest-neighbour
tight-binding Hamiltonian, the boundary sites in Fig. 2.9a are shown by blue symbols and
have non-zero couplings to the device sites indicated by red symbols. We can now write
the Hamiltonian for the entire system, in block matrix form, as

H =

0

@
H D;D VD;B 0

VB;D H B;B VB; sheet

0 Vsheet;B H sheet

1

A ; (2.47)

where the \light" shaded part of Eq. (2.47) represents an in�nite Hamiltonian. The con-
nections between device and sheet, (i.e. between the red and blue symbol sites in Fig. 2.9)
are contained in the o�-diagonal blocks VD;B and VB;D .

We aim to replace the in�nite Hamiltonian H with a �nite e�ective Hamiltonian,
H e� = H D;D + � B , which takes into account the extended sheet using a self energy

Figure 2.9: a) Shows the desired device region, indicated by the dashed square, embedded within
an extended system. Red symbols are the edge of the device and blue symbols indicate sites in the
surrounding sheet that couples to the device. We obtain the disconnected system discussed in the
text by removing the couplings that cross the dashed line. b) Shows the corresponding pristine
system. Again the disconnected system is obtained by removing couplings along the dashed line.
c) Illustrates how the e�ect of the extended sheet on the device region is taken into account by the
self energy, see Eq. (2.50).
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term � B . To do this, we consider the connected system in panel a) of Fig. 2.9, and
a disconnected system formed by removing the Hamiltonian elementsVD;B and VB;D ,
corresponding to removing couplings crossing the dashed line in Fig. 2.9a. The GFs of
the connected (G (con) ) and disconnected (G (dis) ) systems can be related via the Dyson
equation, and in particular we can write the GF of the connected device region as

G (con)
D;D = G (dis)

D;D + G (dis)
D;D VD;B G (con)

B;D : (2.48)

Applying the Dyson equation again to obtain G (con)
B;D and inserting this into Eq. (2.48)

allows us to simplify,

G (con)
D;D =

�
E1 � H D;D � � B

� � 1; (2.49)

where the self energy term is given by

� B = VD;B G (dis)
B;B VB;D : (2.50)

We note that the self energy in Eq. (2.50) is independent of the considered device and
depends only on GF matrix elements connecting sites in the pristine surrounding `frame'
that remains when the device is removed from the full system. We take advantage of
this to temporarily replace the device with a corresponding pristine region of the same
size, as shown in panel b) of Fig. 2.9. The self-energy required to incorporate the �nite
pristine region into an in�nite, pristine sheet is the same self energy,� B , that is required
in Eq. (2.49). We can therefore write the required GF matrix, G (dis)

B;B , in terms of the GF

of the in�nite pristine sheet, G (0) . These are related using the Dyson equation with a
perturbation � VD;B ,

G (dis)
B;B =

�
1 + G (0)

B;D VD;B
� � 1G (0)

B;B : (2.51)

The advantage of writing the self-energy in terms of the pristine sheet GFs,G (0)
B;B and

G (0)
B;D , becomes clear in the next section, where we demonstrate an e�cient method to

calculate these two terms. It is worth noting that G (0)
B;D only needs to be calculated for

the sites in D which connect to sites in B. These sites are indicated by red in Fig. 2.9 and
are where the self-energy terms need to be added, as shown in Fig. 2.9c.

The calculation scheme for the patched Green's function approach

1: Calculate G (0)
B;B and G (0)

B;D for example using the methods outlined in Sec-
tion 2.3.2.

2: Calculate � B from Eq. (2.50) and Eq. (2.51).

3: The �nite GF for the device region, G (con)
D;D , is given by Eq. (2.49) and can be

treated using an adaptive RGF method, see Section 2.3.3.
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We note that this approach does not require a speci�c geometric shape of the device,
nor does the device region need to be contiguous. We can treat di�erent non-connected
patches in an extended system, as shown in the right panel of Fig. 2.8, by extending the
set D to include sites inside each patch and similarly expanding B to include sites at
the boundary of each patch. The method presented in this section is applicable to any
system where the connected, pristine GFs are easily obtainable as demonstrated in the
next section using a tight-binding description of graphene as an example.

2.3.2 Real space pristine Green's function

We now turn to the calculation of G (0)
B;B and G (0)

B;D , as de�ned above. In this work we
consider graphene in a nearest neighbor tight binding model, but the technique is easily
generalized to other cases

In Section 2.2 we showed how the pristine GF for the graphene tight binding Hamil-
tonian

G0
ij (z) =

1

 BZ

Z
d2k

eik �(r j � r i )

z2 � t2jf (k )j2
;
�

z tf (k )
tf � (k ) z

�
; (2.52)

could be calculated using complex contour methods. In this way, Eqs. (2.15) and (2.19)
can be used to �ll up the elements ofG (0)

B;B and G (0)
B;D one at a time.

Since we need GF matrices of sizeNB � NB and NB � ND , where ND and NB are the
number of sites at the edge of the device region and in the region B, respectively, it could
seem very ine�ective to calculate one element at a time. However, the total number of GF

Figure 2.10: Illustrating the symmetries of the graphene lattice. Only 1/12 of the couplings
(dark region) are unique and all other couplings can be found as rotation of this region.
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elements to be calculated is greatly reduced by the symmetries of the pristine graphene
lattice. The lattice itself is six-fold symmetric and each of these six identical wedges is
in turn mirror symmetric, resulting in a 12-fold degeneracy of the GFs indexed by site
separation vectors, see Fig. 2.10. Additionally, many of the required elements inG (0)

B;B

and G (0)
B;D are identical. For instance, the onsite and nearest neighbor GF element appear

many times, but only need to be calculated once. Taking the device region in Fig. 2.9
as example we haveND = NB = 20, yielding 400 individual elements for a brute force
calculation. Instead, using symmetries and duplicates, we only need to calculate 38 and
42 elements when determiningG (con)

B;B and G (con)
B;D , respectively. The reduction becomes

more signi�cant for larger systems, as we generally only need to add the GF elements
corresponding to the longest couplings. Consequently, only a small percentage of the GF
elements need to be calculated individually and their values for frequently used separations
and energies can be stored or reused to enable extremely fast calculation of the required
self energies.

2.3.3 Adaptive recursion for device region

In this section we consider the device region where the boundary self energy can be added
at the edge. The full GF of the device region is given byGD =

�
E1 � H D � � B

� � 1,
where we have simpli�ed the notation from Eq. (2.49). From this GF both transport and
local properties can be obtained. However, for most purposes we do not require every
element of the Green's function matrix element in the device region, and so to avoid a
time consuming full matrix inversion, various recursive or other decomposition methods
are often applied [77, 80, 88{96].

This section outlines an adaptive recursion method which e�ciently includes the bound-
ary self energy as well as an arbitrary device region shape and con�guration (and number)
of leads. Alternative approaches have been developed to treat arbitrary shaped regions
with multiple leads [78, 79, 94]. These so-called knitting-algorithms add single sites at a
time. They rely on a complicated categorizing of sites into di�erent intermediate updating
blocks making the theory and implementation cumbersome. Hence, we use an approach
similar to the ones in Refs. [88{90], and employ an adaptive partitioning of the Hamil-
tonian matrix in order to bring it into the desired tridiagonal form suitable for recursive
methods.

Tridiagonalization

Calculating physical properties generally requires certain GFs connecting a speci�c set of
sites in the device region. These sites of interest, for example, could be sites where we want
to introduce defects, or couple to probes for transport calculations, or measure properties
like the local density of states. We focus �rst on the general partitioning process, and then
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demonstrate how it can be quickly modi�ed to account for the edge self-energy terms. We
begin by placing all these sites of interest into recursive cell 1, as shown by the red sites in
Fig. 2.11. We emphasize that the cells in this process are not of a �xed size and may consist
of arbitrary sites which are not necessarily connected. Cell 2 is determined by selecting
all the remaining unpartitioned sites which couple directly to sites in cell 1 via a non-zero
Hamiltonian matrix element. In the example in Fig. 2.11, this consists of nearest neighbor
sites of those in cell 1, which are not themselves in cell 1. This process is repeated until
all sites in the device region have been allocated a cell, and is demonstrated schematically
in the panels of Fig. 2.11 where red sites indicate the current cell, and dark gray or white
sites indicate sites added to the previous cell, or to earlier cells, respectively.

Figure 2.11: The partitioning of a small graphene sample where all sites of interest are located
in cell 1. Cell 2 contains all the sites coupling to cell 1 but which are not themselves part of cell 1.
Likewise cell 3 is the sites coupling to cell 2 and so on. The red sites are assigned to the current cell
and the lines indicate the sites still to be assigned. The previous cell and all sites already added
are indicated by gray and white, respectively. The recursive sweep starting at the �nal cell and
ending in cell 1, indicated by �lled arrows, gives the GFs connecting all sites of interest. We can
also employ a second recursive sweep, as indicated by the white arrows, to obtain local properties
everywhere within the device region.

Including the boundary self-energy

The method described above is a general way to obtain a tridiagonal matrix and we now
return to the speci�c case where the recursive method needs to be adapted carefully to
take the boundary self energy into account. In general� B is a non-hermitian dense matrix
connecting all edge sites of the device region. Therefore it is essential to assign all edge
sites to the same cell. This principle is shown in Fig. 2.12. If celln � 1 contains sites
which connect to an edge site, then celln must contain not only the edge sites directly
connecting to cell n � 1, but also all other edge sites, as these are connected to each other
via � B . In this way, the cell, n + 1, must then contain all the sites connecting to cell
n, i.e. also connecting to the edge, but not included in celln. The full cell partitioning
algorithm, including this step is summarized in the box below.
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Figure 2.12: An example of the partitioning when the cell n � 1 is connected to the edge, and
we need to include the boundary self-energy,� B . In this case, all edge sites and self energy terms
are included in cell n. The symbols are similar to Fig. 2.11.

General tridiagonalizing algorithm

Starting from cell n = 1 containing all sites of interest

1: Let f ng denote all sites in celln and f " unassigned" g denote all sites not yet
assigned to a cell.

2: Find all sites j for which Hnj 6= 0 where n 2 f ng and j 2 f " unassigned" g.
Denote these sitesf n + 1g.

2a: If f n + 1g contains an edge site, then all remaining edge sites are added to
f n + 1g.

3: Sites in f n + 1g are removed fromf " unassigned" g

4: Repeat 1-3 until all sites are assigned to a cell.

Step 2a is included if we require an edge self energy term �B .
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Recursive calculation

After performing the tridiagonalization the Hamiltonian is now blocktridiagonal

H D;D =

0

B
B
B
B
@

H 1;1 V1;2 0 0
V2;1 H 2;2 V2;n 0 0

0 Vn;2 H n;n Vn;N � 1

0 0 VN � 1;n H N � 1;N � 1 VN � 1;N

0 0 0 VN;N � 1 H N;N

1

C
C
C
C
A

; (2.53)

where H n;n is the Hamiltonian of the n-the cell and Vn;n � 1 is the coupling between celln
and n � 1.

The form Eq. (2.53) enables a variation of the standard recursive algorithm [77] to
calculate the GF of the di�erent blocks. The recursive sweep to obtain the full GF of
cell n = 1 is schematically shown in Fig. 2.13 where each block illustrates a block-matrix.
Starting from the block belonging to cell n = N , we obtain the full GF for cell n = 1
(illustrated by dark gray). The light gray denotes blocks where a preliminary GF have
been calculated. These GF blocks are used below to calculate all (o�)diagonal GF blocks.

Figure 2.13: Recursive sweep going from celln = N to n = 1. Light gray indicate blocks that
are stored for the reversed sweep and dark gray indicate blocks of the full GF.

Algorithm 1

First recursive sweep to obtain full GF of cell n = 1

gN;N =
�
E � H N;N

� � 1; (2.54a)

gn;n =
�
E � H n;n � Vn;n +1 gn+1 ;n+1 Vn+1 ;n

� � 1; (2.54b)

g1;1 =
�
E � H 1;1 � V1;2g2;2V2;1 �

MX

m=1

� m
lead

� � 1: (2.54c)

One of the H n;n terms can include the boundary self energy, �B . If we calculate
transmission � m

lead terms are included.
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After the �rst sweep is complete, the fully connected GF of cell n = 1 is obtained as
G1;1 = g1;1. As all sites of interest are placed in this cell, we can now calculate observables
involving these sites. For example we calculate transmission,TL;L 0, between lead L and L'
using these GFs.

TL;L 0(E ) = Tr
�
GL 0;L � L

L;L Gy
L;L 0� L 0

L 0;L 0

�
; (2.55)

where � L = i(� L � � L y) and GL;L 0 (Gy
L;L 0) is the retarded (advanced) GF connecting the

two leads L and L'. It is noted that the choice of sites in cell n = 1 is exible and can be
modi�ed to a variety of calculation purposes i.e. not only transmission calculations.

Figure 2.14: Reversed recursive sweep going fromn = 1 to n = N showing how this sweep can
obtain both diagonal and o�-diagonal blocks.

In order to obtain other blocks of the full GF, we need to store the preliminary GF
matrices, gn;n , for each cell as we do the initial sweep fromn = N to n = 1. The stored
blocks are shown in light gray on Fig. 2.13. We can use these stored blocks from the �rst
sweep to obtain the diagonal blocks of the full GF,Gn;n , using a reversed sweep from
n = 1 to n = N , see Fig. 2.14. From these full diagonal blocks we can calculate the local
density of states (LDOS) at a site i as � ii = � Im

�
Gii

�
=� .

Algorithm 2

Algorithm for obtaining all full diagonal blocks

Gn;n = gn;n + gn;n Vn;n � 1Gn� 1;n� 1Vn� 1;n gn;n : (2.56)

Finally, we want to obtain bond currents for the state leaving a lead L . This can be
calculated by J L

ij = � H ij Im
�
G i; 1� L

1;1Gy
1;j

�
=~. Remembering that the leads are assigned

to cell n = 1, we need the o�-diagonal blocks, G1;n and Gn;1, in order to obtain bond
currents. Again we use the stored blocks from the �rst sweep to calculate the needed
o�-diagonals.
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Algorithm 3

Algorithm for obtaining full o�-diagonal blocks

G1;n = G1;n� 1Vn� 1;n gn;n ; (2.57a)

Gn;1 = gn;n Vn;n � 1Gn� 1;n : (2.57b)

We emphasize that the presented method is not unique to graphene systems, but can
be employed to arbitrary tight-binding-like models. The method o�ers increased exibility
compared to the standard left-right recursive approach, [77] but keeps the operation count
scaling Ncell � M 3, where Ncell is the number of cells andM is the number of sites in
each cell. We note that the cell size uctuation is greater within the adaptive approach,
so that the total operation count will also be higher by a factor dependent on the device
aspect ratio and circumference. However, the larger number of matrix elements returned
allow the system to be connected to multiple probes or as a patch in an extended system -
options not available using a standard recursive sweep. The use of multiple patches within
our framework, as illustrated in Fig. 2.8, can also signi�cantly reduce the percentage of
the system that needs to be built recursively. This removes the need for computation-
ally expensive bu�er zones, ork-space averaging techniques, that standard recursive GF
techniques would require in attempting calculations of similar systems.
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2.3.4 Summary of method 2

Patched Green's function (PGF) method

The patched Green's function approach treats de-
vice patches embedded within an extended two
dimensional region. The extended part of the sys-
tem is treated through a self-energy �B entering
the device area.

G (con)
D;D =

�
E1 � H D;D � � B

� � 1; (2.58)

The Hamiltonian for the device region can be
tridiagonalized allowing for multiple probes to be
placed at arbitrary positions. Using the tridiago-
nalized Hamiltonian, we treat the GF of the device
region, G (con)

D;D , using an adaptive recursive method
enabling calculation of local properties like LDOS
and bond currents within large regions of an ex-
tended system.

Boundary self-energy

The boundary is calculated as

� B = VD;B G (dis)
B;B VB;D : (2.59a)

G (dis)
B;B =

�
1 + G (0)

B;D VD;B
� � 1G (0)

B;B : (2.59b)

For graphene we calculateG (0)
B;B and G (0)

B;D using

G0
ij (z) =

1

 BZ

Z
d2k

N ij (z; k )eik �(r j � r i )

z2 � t2jf (k )j2
: (2.60)

This integral can be treated through complex con-
tour methods as describe in Section 2.2.
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2.4 Probe model

We now return to the model of the probes and particularly the form of the lead self-energy.
We assume that all probes are identical and generally described by a self-energy term of
the form

� 1=2
ij (E ) = V 1=2

is gs(E; r i � r j )V 1=2
sj ; (2.61)

where gs(E; r ) is a surface GF describing the electronic structure of the probe andV 1=2
is

is the coupling matrix between the device sitei and the probe. We note that if V 1=2 is a
scalar, the probe only couples to a single site in the device. We consider a structureless
probe by using the surface GF of a single atomic chain

gs(E ) =
E �

p
E 2 � 4 2

2 2 : (2.62)

where we chose the parameter = jt j to give a constant DOS within the considered energy
range.

The distance dependence ofgs(r i � r j ) in Eq. (2.61) is added by hand to avoid any
unphysical coupling between lattice sites through the probe. We therefore add a 1=jr i � r j j-
dependence for the o�-diagonal terms, as appropriate for a structureless three-dimensional
free electron gas [97]. The distance dependence for the o�-diagonal �nally gives the GF,

gs(E; r i � r j ) = � ij gs(E ) + (1 � � ij )
gs(E )

jr i � r j j
; (2.63)

where r i 6= r j .

The probe self-energy given by Eq. (2.61) can be used to model general probes coupling
to many sites in the sample. We use this model in Chapters 4 and 5 with probes coupling
to an area of � 1 nm2. For calculations on the dual-STM setup in Chapter 3 we are in
the weak coupling regime outlined below.

Transmission in the weak coupling regime

In the weak coupling (STM) regime, we use the common Terso�-Hamann approach [98{
101] where each site couples to a single orbital at the tip of the probe. In this approach
the coupling element becomes dependent of both the distancedi and the angle� i between
probe apex and sitei .

Vis = V0wi e� di =� cos
�
� i

�
; (2.64)
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where V0 is a scaling factor,wi = e � ad2
i =

P
m e� ad2

m is a normalization factor with param-
eters � = 0 :85�A and a = 0 :6�A

� 2
chosen in accordance to Refs. [99] and [102].

Inserting this into the expression for the transmission in Eq. (2.39) gives the simple
form of the transmission

T12(E ) =
�
2�V 1V2� lead

� 2 jG12(E )j2; (2.65)

where � lead = � Im( gs)=� is the density of states of the probe which is slowly varying over
the considered energy window, hence, the only energy dependence originates from the GF
term. We furthermore note that the transmission scales with the couplings� V 2

1 V 2
2 which

depend exponentially on the distance between the tip and the sample.



CHAPTER3
Dual probe on graphene

The standard single-STM measurement yields direct information of the local density of states,
and is a wide-spread method for analyzing nanoscale features on surfaces, including graphene
akes with impurities, vacancies, edges, or deliberate nanostructuring. In comparison, the
transmission between two probes yields more information than what can be extracted from a
single-STM probe measuring topography or local density of states. In this chapter, we apply
the integral Green's function methodpresented in Section 2.2. We study the dual-STM setup
for pristine graphene as well as for simple defects like vacancies and adatoms. These simple
cases provide a very instructive introduction to the dual probe method and its analysis. In
this regard, we �rst consider analytical calculations made using the SPA approximation for the
high symmetry directions. Afterwards, these analytical results are compared to full numerical
calculations. To distinguish the di�erent results, we divide the results after the two distinct
operation modes of the dual probe setup: scanning and spectroscopy.

ˆ The scanning modeoperates with one �xed and one movable probe to obtain images
of the position dependent conductance between the probes. The results are published
in Paper I.

ˆ The spectroscopy modeuses �xed probe positions and instead vary the energy of the
electrons propagating through the graphene sheeti.e. varying a gate. The results are
published in Paper II.

3.1 Dual-STM using stationary phase approximation

In this section we consider the dual-STM transmission using the SPA expressions derived
in Section 2.2.2. This analytical approximation to the GF along high symmetry directions
provides simple analytical expressions showing the energy and distance dependencies of
the transmission between the probes in the presence of impurities, see Fig. 3.1. The simple
analytical expressions derived in this section will be compared to numerical calculations
in the rest of this chapter.
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For convenience we repeat the SPA expressions for separations between thei and j
sites exceeding a few lattice spacings

G0;ac
ij; SPA =

A(E)eiQ(E )dij

p
dij

; (3.1a)

G0;zz
ij; SPA =

X

� = �

A � (E )eiQ � (E )dij

p
dij

; (3.1b)

where A(E) is an energy dependent amplitude andQ(E) is the Fermi wavevector for
armchair or zigzag separations. The coe�cients are given in Section 2.2.2.

Figure 3.1: Schematic overview of a dual-probe STM setup. Current input and output probes
and an impurity on site 0 are indicated together with their relative separations.

Pristine graphene

We �rst consider the case of pristine graphene without defects. This case is important
to understand because any features for pristine graphene are superimposed on when we
perturb the pristine system. In addition, the pristine case provide simple explanations
for directional features in the dual-STM transmission explored using numerical techniques
later in this chapter.

Inserting Eq. (3.1) into the transmission formula

T12(E ) = Tr
�
G(E)� 1(E )Gy(E )� 2(E )

�
; (3.2)

gives the distance dependence of the transmission,T12 / 1=d12 for all directions.

Consider now the case when the separation between the two probes is in the armchair
direction. Using Eq. (3.1a), we �nd that the transmission coe�cient increases linearly
with energy. This gives a linear increase ofT (ac) / jAj 2=d12 with energy as jAj 2 grows
linearly with energy for low energies, see Section 2.2.2. On the other hand,T (ac) � d12 is
constant as we change the probe positions.
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The zigzag direction is more complicated because of the two terms in Eq. (3.1b),

T (zz)
12 � d12 /

�
�

X

� = �

A � eiQ � d12
�
�2

= 2 jA + j2 + 2 jA � j2 + 2 jA + jjA � jjei( Q+ �Q � )d12 + 2a+ a� e� i( Q+ �Q � )d12

= 2 jA + j2 + 2 jA � j2 + 4 jA + jjA � j cos
�

�
Q+ � Q � �

d12

�
; (3.3)

where we have used the de�nition A � = � (1 + i) jA � j from Eq. (2.46). In addition to
the linear increase with energy of the �rst two terms, we also �nd an oscillating term.
The oscillation period decreases with increasing energy due to the energy dependence of
Q+ � Q � . We therefore expect a more rapid oscillation for higher values of the Fermi
energy.

The absence of oscillations for the armchair direction compared to the oscillation in
Eq. (3.3) is important when exploring directional e�ects using the dual-STM setup.

Simple impurities

Next we consider defects like vacancies and adatoms. To obtain an analytical treatment
in this case let the defects be coupled to a group of sites denoted 0 and the probes coupled
to sites denoted 1 and 2.

The GF for a graphene system with a perturbation can be calculated using the Dyson
equation. Restating the Dyson equation using thet-matrix formalism

G12 = G 0
12 + G 0

10t 00G 0
02; (3.4)

where

t 00 =
�
1 � V00G 0

00

� � 1V00: (3.5)

Inserting this into Eq. (3.2) we obtain

T12 / Tr
��

G12 + G10t 00G02

��
G y

12 + G y
02t y

00G y
10

��

= Tr
�
G12G y

12 +
�
G10t 00G02

��
G10t 00G02

� y

+ 2Re
�

(G10t 00G02)G y
12

��
: (3.6)

Eq. (3.6) is generally applicable, but if the probes and the defect couple to single sites all
matrices reduce to scalar quantities and enable simple analytic expressions. For example,
we use the SPA expression Eq. (3.1a), when both probes and defects are all collinear along
the armchair direction, to calculate the change in transmission when a defect is introduced

� T12 = T12 � T 0
12 /

4jAj 4

d10d20
jt00j2 �

2jAj 3
p

d10d20d12
Re

�
(1 + i) t00eiQ(d10 + d20 � d12 )

�
; (3.7)
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where T 0
12 is the pristine transmission, d12 denotes the distance between the two probes,

and d10 and d20 denote the distance between the defect site and probe 1 and 2, respectively.

A change in transmission occurs due to the backscattering at the defect. The size and
form of � T12 depend on the type of defect throught00. Below we use Eq. (3.7) to consider
two di�erent situations: the case where the defect is in between the probes (case 1) and
the case where the defect isnot in between the probes (case 2).

Case 1: � T (ac) using SPA for d12 = d10 + d20

Defect lies between the probes,i.e. d12 = d10+ d20

� T12 /
4jAj 4

d10d20
jt00j2

�
2jAj 3

d20

q
d10

�
1 + d10

d20

� Re
�

(1 + i) t00

�
: (3.8)

Case 2: � T (ac) using SPA for d10 = d12 + d20

Defect on either side of the probes,i.e.
d10 = d12 + d20

� T12 /
4jAj 4

d10d20
jt00j2

�
2jAj 3

d20

q
d10

� d10
d20

� 1
� Re

�
(1 + i) t00e2iQd20

�
:

(3.9)

The result for the impurity on the other
side of the probes (d20 = d12 + d10) is ob-
tained by interchanging 1 and 2.

The case described by Eq. (3.8) does not give rise to oscillations but resonances can
occur depending on the transfer matrix t00. On the other hand, the case in Eq. (3.9)
gives rise to oscillations as we change either the energy by changingQ or the position
by changing d20. These oscillations are a consequence of quantum interference between
the outgoing wave from the output probe and the wave scattered by the defect. Similar
expressions as Eqs. (3.8) and (3.9) can be derived for the zigzag separation, but the simple
form is complicated by the two interfering terms in Eq. (3.1b).

The behavior demonstrated in Eqs. (3.8) and (3.9) will be con�rmed by numerical
calculations performed in the remainder of this chapter. First, we vary d20 for a �xed
energy and observe the 2Q-oscillations from Eq. (3.9) by moving the output probe relative
to the di�erent defects in a so-called scanning mode. Secondly, we vary the energy in a
spectroscopy modewhere both probes are �xed.
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3.2 Scanning mode

In this section we treat the setup shown in the schematic Fig. 3.2 exploring e�ects beyond
the high symmetry directions. The input probe is �xed in position and we collect the
propagating electron wave at the output probe. In this way, we scan the sample using the
movable probe, calculating the transmission between the two STM probes at each position
using the method based on the integral formulation for the Green's function, \Integral
Green's function method", outlined in Chapter 2. This yields real space conductance maps,
which form the main results of this section and also con�rms the behavior predicted by the
analytical SPA expressions derived previously. We use the real-space conductance maps
to explore quantum interference e�ects near defects and edges in graphene as published
in Paper I [103]. Fourier transforms of the real-space maps allow us to extract further
details, and in particular they reveal information about intra and intervalley scattering
due to the defects.

Figure 3.2: Artistic illustration of
two STM probes. One probe is �xed
and one is scanning across the sam-
ple obtaining the conductance be-
tween the probes for each position.

3.2.1 Pristine graphene

In Fig. 3.3 we show the real space conductance map for pristine graphene atEF = 0 :5jt j.
Other Fermi energies show similar qualitative behavior, but lower EF values require a
larger scan area to obtain the same number of oscillation periods. Furthermore, the results
are not very sensitive to the exact position of the stationary probe, with the exponential
coupling generally ensuring that the probe primarily couples to a single site.

As shown in the previous section the transmission decays monotonically as 1=d12. Cor-
recting for this geometrical decay yields the constantT � d along the armchair directions,
while oscillations occur for zigzag directions. The transmission in the zigzag direction was
derived previously for strict single-site coupling asT (zz)

12 � d12 / cos
��

Q+ � Q �
�
d12

�
. As

we change the distanced12 between the probes the transmission exhibits oscillations with
the wavevector Q+ � Q � . As seen in Fig. 3.3 this leads to both long and short range
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oscillations. The long range oscillations depend on the Fermi wavelength asQ+ and Q�

represents the opposite sites of the Fermi surface in the zigzag direction.

(a) (b)

Figure 3.3: (a) The conductance map for pristine graphene withEF = 0 :5jt j. The �xed input
probe is at the origin, and the map represents the conductance between the probes as a function
of scanning probe position. The conductance has been multiplied by the inter-probe distanced12

to compensate for a geometric decay, see Eq. (3.1). (b) A magni�cation of the boxed area showing
the short range oscillations.

The short range oscillation, on the other hand, is independent ofEF and inherent
to quantities measured along the zigzag direction. In the zigzag directionQ+ (EF ) =
cos� 1

� � t � EF
2t

�
and Q� (EF ) = � cos� 1

� � t+ EF
2t

�
can be approximated using the Taylor

series expansion cos� 1(x) � �= 2 � x and the interference term written as Q+ (EF ) �
Q� (EF ) � = � + 1 � 4�

3 . In this way, the transmission along the zigzag direction becomes

T (zz)
12 � d12 � cos

� 4�
3 d12

�
. Moreover, we notice that d12 = na0 is discrete with n being an

integer and a0 being the graphene lattice vector. The cosine sampled at discrete values,
4�
3 n, is responsible for the three di�erent type of sites which is evident in Fig. 3.4a. Here

we observe that every third point follows the same oscillation curve giving rise to a large
scale oscillations pattern caused by the interplay between these curves, see Fig. 3.4b.

These three di�erent oscillation curves are the origin of the small scale oscillations and
are a manifestation of the same mechanism observed for graphene nanoribbons with an
armchair edge [104], where the transverse modes are along the zigzag direction.

Oscillations varying on the atomic scale tend to get canceled for probes coupling to
many sites with di�erent phases. However, the long range oscillations are more robust,
particularly for small EF , as the phase is constant over a wider range of sites and should
thus be observable even for tips with a larger radius of curvature.
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(a) (b)

Figure 3.4: (a) The dual STM probe transmission in the zigzag direction separated in three
groups of sites such that every third site belongs to the group \site 1". The three groups oscillate
with the same large oscillation period determined byQ+ � Q � . (b) The circles represent high
transmission values corresponding to the three group of sites from (a). The resulting real space
pattern is responsible for the oscillations shown in the numerical calculations in Fig. 3.3.

3.2.2 Vacancies

We now turn to the case of simple vacancies in an otherwise pristine graphene sheet. The
GF for a graphene system with a perturbation can be calculated using the Dyson equation
as explained in Chapter 2,

Gij = G0
ij +

X

nm

G0
in Vnm Gmj ; (3.10)

whereVnm is the perturbation matrix element between site n and m. For a vacancy at site
n the perturbation reduces toVnn ! 1 and the solution for the full GF can be conveniently
described in the t-matrix formalism as Gij = G0

ij + G0
in tnn G0

nj where tnn = � 1=G0
nn , see

Section 3.1.

Single-STM probe

The single probe STM measurement is a widely used tool to determine the nanoscale
electronic properties of surfaces. The typical STM measurement yields information about
the local density of states of the surface [37, 45]. STM measurements around a single
vacancy have been studied thoroughly using experiments [47, 48, 105, 106] and theoretical
calculations [39, 40, 107{109]. We will not provide a detailed discussion of these results.
Instead, we give a short introduction to the main result regarding single STM real space
scans to ease comparison with the dual probe results.
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A standard way to analyze real space STM scans is to make the Fourier transform of
the real space image [47, 48, 106]. This gives a representation of the wavevectors of the
electrons around the vacancy. In Fig. 3.5 we show a sketch of the Brillouin zone of graphene
including constant energy contours for an energy outside the linear regime (within the
linear regime the constant energy contours are circular). The �nalk -space map is derived
from the Brillouin zone as the result of scattering between di�erent parts of the Brillouin
zone. The vacancy causes two types of scattering [12]: intra- and intervalley. Intravalley
scattering involves wavevectors from the same valley and the resulting wavevectorq1 =
k1 � k2 � 2qF is shown in red in Fig. 3.5. Likewise for the intervalley scattering which
is between wavevectors from opposite valleys depicted in blue in Fig. 3.5. The resultant
k -space map revealed by Fourier transforming the real space map, gets the qualitative
form shown in the right panel of Fig. 3.5.

Fig. 3.6 shows the result of a simulated STM scan around a vacancy. The numerical
calculations use the Integral Green's Function method discussed in Chapter 2 with the
di�erence that we only include a single STM probe. In Fig. 3.6 we identify both intra-
and intervalley scattering signatures as sketched in Fig. 3.5. The inset A shows the small
wavevectors arising from intravalley scattering resulting in 2qF oscillations. The inter-
valley scattering also causes 2qF oscillations, but by a qualitatively di�erent scattering
mechanism as evident from the full Fourier transform.

Figure 3.5: (Left) Schematic of the two dimensional Brillouin zone (dashed line). The constant
energy contours (full line) are shown at theK and K 0 points, the energy shown is beyond the lin-
ear regime. The two scattering vectors are shown for both intra and intervalley scattering (black).
Intravalley scattering vectors q1 (red) connect points on the same energy contour. Intervalley
scattering q2 (blue) connects two points on di�erent energy contours. (Right) The resultant Bril-
louin showing possible scattering processes with red and blue dashed curves corresponding to intra
and intervalley processes, respectively. The pristine Brillouin zone from the left panel is show as
reference.
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Figure 3.6: The Fourier transform of the calculated real space STM image around a vacancy
(not shown). The Fourier transform pattern corresponds qualitatively to the map of scattering
amplitudes in Fig. 3.5. The frames A and B correspond to zooms of the intra and intervalley areas
of the Brillouin zone, respectively.

Dual-STM probes

We now return to the case of dual-STM probes where the real space maps correspond to
the transmission between the two probes when the position of the output probe is varied.
Accordingly, such scans yield more information than what can be extracted from LDOS
obtained using a single STM probe.

Fig. 3.7 shows the relative change in transmission from the pristine lattice case when
a single vacancy is introduced at the origin. The vacancy and �xed probe are separated
along the armchair direction and the scanning probe measures conductance uctuations
in the region around the vacancy. Quantum interference e�ects are clearly visible in
Fig. 3.7. The map for a zigzag separation of �xed probe and vacancy (not shown) looks
qualitatively similar. To describe the oscillations we turn to the SPA expression derived
in Section 3.1. The solution of the Dyson equation for a vacancy isGij = g0

ij + g0
i 0t00g0

0j ,
where t00 = � 1=g0

00 is the t-matrix element of site 0 when V00 ! 1 . We consider the
analytic solutions for the path shown by the dashed line in Fig. 3.7. We observe oscillations
in region A, where the scanning probe is between the �xed probe and vacancy such that
d12 = d10 � d20. From Eq. (3.9) we �nd � T / R e

�
A t00 exp

�
2iQd20

�
=
p

d10d20d12
�
, which

exhibits 2Q � 2qF oscillations. When the scanning probe is not between the �xed probe
and the vacancy no oscillations occur and we observe a shadow in region B behind the
defect due to scattering (see Eq. (3.8)).

The oscillations arise due to interferences between an incoming plane wave and the
backscattered wave, analogous to optical interference e�ects. To analyze the pattern
further, we consider the Fourier transform of the conductance map in the same way as for
the single-STM calculations above.
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Figure 3.7: Real space map ofT � T 0, the di�erence between the transmission between In and
Out probes with (T), and without (T0) the impurity, respectively. The scan is done at EF = 0 :25jt j
around a vacancy at (0; 0). The �xed probe (outside the scan area) at (0; 106) nm is separated
from the impurity along the armchair direction.

Fig. 3.8 shows the Fourier transform of � T for the single vacancy at di�erent energies
and positions of the �xed probe relative to a vacancy at the origin, with Panel (a) corre-
sponding to Fig. 3.7. We notice a distinct double-ring feature arising from the interference
fringes. The double-ring can be explained by considering backscattering of a plane wave.
An incoming plane wave along they direction is k in = � ey where ey is a unit vector
in the y-direction. The wave is scattered at an angle� , ksc = cos(� )ey + sin( � )ex . The
interference betweenk in and ksc causes fringes parallel tok in � ksc which makes an angle
� = tan � 1

�
� sin(� )=

�
� 1 � cos(� )

��
with the y-axis. Allowing all possible values of�

results in two circles with diameters of 2kf centered on they axis. Consequently, the ring
shaped features are an image of 2kf ei � in the complex plane, for all possible values of�
and with the amplitude of double the Fermi wavevector.

Following the scattering analyzes, an incoming wave along they-direction (armchair)
gives the double-ring pattern in Fig. 3.8a. A plane wave along they-direction only has a
components of the wavevector alongky direction, k = (0 ; ky). This means that the inital
state before scattering is at the top and bottom of the Fermi surface, indicated by red dots
in Figs. 3.8f and 3.8g. Scattering from these points to all other points on either the same
valley (intravalley, Fig. 3.8f) or the opposite valley (intervalley, Fig. 3.8g) gives rise to the
scattering pattern shown at the bottom of Figs. 3.8f and 3.8g. The intravalley scattering
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produces the short wavevector features at the center of the Fourier transform (and at
all reciprocal lattice vectors), while the intervalley scattering yields the large wavevector
features at the K and K 0-points. Figs. 3.8a and 3.8b correspond to an energy in the
linear dispersion regime whereas 3.8c and 3.8d show an energy with trigonal warping, thus
leading to the Fourier signatures sketched by the diagrams of Fig. 3.8f-g.

In Fig. 3.8 we see additional �ne structure due to deviations from the ideal picture of
a plane incoming wave. A broader range of incomingk-vectors increases the part of the
Fermi surface which can act as an initial state. This e�ect is more pronounced for incoming
waves along the zigzag direction where even a small broadening of the incomingk-vector
allows a larger part of the Fermi surface to act as an initial state. Similar calculations
performed for a Gaussian shaped charge distribution, modeling a trapped charge, �nd that
the scattering �ngerprint is qualitatively similar to that of the single vacancy. This is in
contrast to single-probe LDOS measurements, where the intervalley scattering �ngerprint
vanishes for extended defects[43, 110].

Figure 3.8: Fourier transform of the real-space map of � T for a single vacancy separated from
the �xed probe along the armchair ((a) and (c)), and zigzag ((b) and (d)) directions. Energy is in
the linear regime (E = 0 :25jt j) in (a) and (b), and beyond the linear regime (E = 0 :5jt j) in (c) and
(d). (e) The Fermi surface of graphene beyond the linear regime. (f)-(g) Scattering diagrams for
intra- and intervalley scattering.
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3.2.3 Crystalline edges

We now turn to the case of crystalline edges. The GF for the semi in�nite system with
an armchair edge,S0

ac, is calculated from the pristine GF with the method of images, as
described in Ref. [111]

Sac
ij (z) = G0

ij (z) � G0
ij 0(z); (3.11)

where G0 is the GF for the pristine in�nite system and the site j 0 is the image of the
original site j around the mirror axis along the armchair edge.G0 is calculated using the
complex contour methods discussed in Chapter 2 andSac takes the place of the full GF
used in the Dyson equation and transmission formula. The zigzag edge does not posses
the same mirror symmetry and we therefore use a direct inversion scheme to calculate the
GF for the semi in�nite system containing a zigzag edge.

We briey present the central result of a single probe STM measurement to ease
comparison with the dual probe situation. Fig. 3.9a shows a simulation of an STM mea-
surement near a crystalline armchair edge. It clearly shows localization of the electronic
density of states along the C-C bond and parallel to the edge. This results in a charac-
teristic interference pattern, whose shape depends on the edge structure rather than the
electron energy. Following the approach from last section, we make the Fourier transform
of the real space image. The result for an armchair edge is shown in Fig. 3.9b and for
a zigzag edge in Fig. 3.9c. Comparing the result for the armchair and zigzag edge, we
notice that the zigzag edge does not give rise to intervalley scattering as also shown by
Raman experiments [112]. This arises due to the termination of the di�erent edges. The
armchair edge consists of both sublattices and therefore mixes valley whereas the zigzag
edge consists of a single sublattice. As a consequence, it does not mix valleys (intervalley
scattering). For a thorough discussion of the single STM measurement near crystalline
edges see Refs. [113] and [49].

Figure 3.9: (a) Real space STM simulation near a crystaline armchair edge forEF = 0 :15jt j. (b-c)
Fourier transform of STM simulation near armchair edge (b) and zigzag edge (c) forEF = 0 :25jt j.
The outline of the �rst Brillouin zone is indicated in white.
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Figure 3.10: (a-b) The Fourier transform for an armchair (a) and zigzag edge (b) forEF = 0 :25jt j.

We now turn to the dual-STM setup. The conductance maps (not shown) reveal oscilla-
tions away from the edge arising from the interference between incoming and backscattered
waves. In contrast to the single vacancy case, not all scattering angles are available due to
the symmetries of the edges. In consequence, the double-rings reduce to points indicating
the direction of propagation (zigzag for armchair edge and vice versa) as shown in Figs.
3.10a-b. The only qualitative di�erence is the direction of the incoming wave and hence
the direction of the scattering �ngerprint in k -space. This is in sharp contrast to single-
probe STM measurements, where the zigzag edge does not show an intervalley signal, see
Fig. 3.9c. The dual-probe setup therefore opens the possibility of characterizing edges by
its interference pattern as both edges are equally visible with di�erent signatures.
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3.3 Spectroscopy mode

In this section, we consider the setup shown schematically in Fig. 3.11. As opposed to the
scanning mode discussed in the previous section, both probes are now �xed and we vary
the energy of the propagating electrons. This places us in a situation between the single
STM setup and the �xed macroscopic contacts.

The variation of the Fermi energy of the electrons could be obtained using a gate be-
neath the graphene or setting the potential of the graphene sheet relative to the probes
using an additional probe. We still keep the dual-STM setup in the phase coherent regime
at low temperature. In this regime, structural details, such as single-site scattering cen-
ters, edges, or grain boundaries, limit the conductance, such that quantum interference
phenomena become visible in the transmission between the probes as published in Paper
II [114]. We calculate the transmission numerically using the \Integral Green's Function
method" discussed in Chapter 2 and use it to explore the directional e�ects of pristine
graphene as well as the spectroscopic �ngerprints of defects like vacancies and adatoms.

Figure 3.11: Artistic illustration of
two STM probes where both probes
are �xed in position.

3.3.1 Pristine graphene

In the case of pristine graphene, we again return to the SPA expressions for the transmis-
sion as derived in Section 3.1. For armchair separation between the probes, we get the
linearly increasing transmission characteristic of graphene,T (ac) (E ) / jA (E)j2=d12, where
d12 is the constant separation between the probes andjA (E)j2 grows linearly with energy
for low energies, see Fig. 3.12b.

The zigzag direction is more complicated because of the two interfering terms in
Eq. (3.3) caused by the two non-identical sides of the Fermi surface along the zigzag
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direction. Here we repeat the result for reference

T (zz)
12 (E ) � d12 / 2a+ (E )2 + 2a� (E )2 + 4a+ (E )a� (E ) cos

�
�
Q+ (E ) � Q � (E )

�
d12

�

(3.12)

In addition to the linear increase of the �rst two terms, the last term oscillates with energy
due to the energy dependence ofQ+ (E ) � Q � (E ). The term Q+ � Q � / E if we expand
the expressions forQ� in Eq. (2.46) to lowest order. We therefore expect oscillations as
a function of energy caused by the cosine term in Eq. (3.12). We clearly observe these
oscillations in Fig. 3.12c where we plot the energy dependent transmission for a zigzag
separation between the probes ofd12 � 50 nm. The transmissions are calculated using
both the SPA expressions Eq. (3.1) (dots) and using the Analytical GF method presented
in Chapter 2 (line). We note an almost perfect match for all energies, which again con�rms
the validity of the SPA approach.

In Fig. 3.12d we consider an intermediate direction rotated � � 11� relative to the
armchair direction. Consequently the oscillation period depends on the rotation angle� ,
as de�ned in Fig. 3.12a. The oscillation is a consequence of the asymmetry of the Fermi
surface in the given direction and is therefore a �ngerprint of the crystalline direction be-
tween the probes. The GFs for all other separations (except armchair) have the same form
as for the zigzag direction [84]. So the transmission generally takes a form qualitatively
equivalent to Eq. (3.12) but with di�erent expressions for Q+ and Q� , which depend on
the direction of separation. In the limit of low energies we can expand the coe�cients as
jA (E)j2 / E and

�
Q+ (E ) � Q � (E )

�
/ E 2=� (� ). Here � (� ) is an oscillation period that

depends on the angle� de�ned in Fig. 3.12a. Accordingly � = 0 denotes armchair separa-
tion and � = 30 � denotes zigzag separation between the probes. The energy dependence
of the transmission in Eq. (3.12) now becomes

T12 / E cos
�

E 2d12

� (� )
+ � ph

�
; (3.13)

where � ph is a phase factor, independent of the direction but dependent on the distance
and the exact atoms coupling to the probes. If we plotT12=E as a function of d12E 2

we can determine the period� (� ) as the lowest full period of oscillation in the T12=E vs
d12E 2 plot for the corresponding angle� . In Fig. 3.12e, we plot � (� ) as a function of angle.
Fig. 3.12e is the average of many individual calculations of� (� ) for separations ranging
from 20 to 100 nm.

From Fig. 3.12e we conclude that� (� ) provides a �ngerprint of the probe separation
direction. Furthermore � (� ) enables us to determine the crystalline direction with a simple
spectroscopic measurement provided we know the distance between the probes and the
gate is kept su�ciently small for the expansions of A and Q� to be valid.
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(a)

Figure 3.12: (a) Sketch of the pristine sample and the de�ntion of the rotation angle � from
the armchair direction. (b-d) The transmission as a function of energy between the two leads
separated by 50 nm along (b) armchair, (c) zigzag and (d) rotated� = 11:1� from the armchair
direction. In (b) and (c) the transmission calculated using the SPA is indicated (red dots). (e)
The oscillation period � (� ) (see main text for de�nition) is plotted against rotation angle � . The
curve is constructed by averaging over many individual calculations with distances ranging from
20 to 100 nm.
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3.3.2 Simple impurities

Next we consider defects like vacancies and adatoms. In this case we get the full GF from
the t-matrix formulation of the Dyson equation G12 = G0

12 + G0
10t 00G0

02, where t 00 is the
t-matrix for a given type of impurity.

Vacancies are modeled as a change of the onsite energy,V00 ! 1 . On the other hand,
adatoms are modeled with an energy-dependent self energy �� , describing a resonant
level with energy � � , coupled to the graphene sample with coupling constant � , i.e.
V00 = � �

00 = j � j2=(E + i0 + � � � ). To summarize the t-matrices become, [115, 116]

Vacancy : t00 =
V00

1 � V00G0
00

! �
1

G0
00

: (3.14a)

Adatom : t00 =
� �

00

1 � � �
00G0

00
=

�
� �

00
� 1 � G0

00

� � 1

=
j � j2

E � � � � j  � j2G0
00

: (3.14b)

In this way, the adatom gives rise to a resonant level whose position is determined by both
� � and  � . We choose parameters from Ref. [117] as� � = � 0:185jt j and t � = 0 :37jt j. This
gives a resonant level within the energy interval of consideration.

Fig. 3.13 shows the numerical result compared to the analytical expression derived in
Section 3.1, see Eq. (3.8), for both a vacancy and an adatom. The impurities are located
equidistant (d10 = d20 = d12=2) from the two probes, where d10 (d20) is the distance
between probe 1 (2) and the impurity. As for the pristine case treated above, we observe

Figure 3.13: The transmission as a function of energy for pristine graphene (dashed), vacancy
(red) and adatom (blue). The impurity is in between probes, which are separated by� 50 nm along
the armchair direction. The dots denote a similar calculation using the SPA expression Eq. (3.8).
The parameters for the adatom are chosen as in Ref. [117] as� � = � 0:185jt j and t � = 0 :37jt j.
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an almost perfect match between the analytic (symbols) and numerical (lines) results.
The vacancy gives rise to an overall reduction in transmission due to scattering, while the
adatom leads to a smaller reduction of transmission, except at the resonance. Here the
level of the adatom interacts strongly with the continuum of the graphene states giving
rise to the asymmetric Fano type resonance [118] observed at approximately� 0:15 eV in
Fig. 3.13. Similar results are obtained for the zigzag direction, but superimposed onto the
characteristic zigzag oscillation discussed in the previous section.

Impurity positions

For the rest of this section we focus on the adatom as the vacancy was studied in detail
using the scanning mode presented in Section 3.2. To investigate the inuence of adatom
position on the resonance, we move the adatom away from the high symmetry point
between the probes. First, the adatom is moved along the line connecting the probes
such that it is no longer equidistant from the probes. These positions are shown by
the red and green squares in Fig. 3.14a. The corresponding dual-probe transmissions
are shown in Fig. 3.14b and the change relative to the pristine graphene sheet is shown in

(a)

Figure 3.14: (a) Sketch illustrating the two probes separated along the armchair direction by
� 50 nm. The symbols refer to impurity positions. Blue is along the line of separation and
equidistant of the probes. The green and red squares are moved relative to the blue site along
the armchair direction (parallel) by 12.8 nm and 34 nm, respectively. The transmission for the
parallel translation are shown in (b) and (c). The green and red circles are equidistant of the
probes but moved along the zigzag direction (perpendicular) to 7.4 nm and 17.2 nm, respectively.
The transmission function for impurities in these positions are shown in (d) and (e). The zero
point for the curves has been translated for better distinction between curves.
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Fig. 3.14c. Furthermore, both panels include the transmission for the equidistant impurity
(blue curve) for comparison. Likewise Figs. 3.14d and 3.14e show the corresponding
transmissions as the adatom is moved perpendicular to the line separating the probes
while keeping the impurity equidistant to the probes.

First, we consider the parallel case (Figs. 3.14b-c). Here the adatom is either in-
between the probes, yet closer to one of them (green square in Fig. 3.14a), or to the far
side of one of the probes (red square in Fig. 3.14a). The Fano-type resonance is present
for both positions and only the form changes. However, when the impurity does not lie
between the probes (red square), additional oscillations arise. This can be understood by
comparing Eqs. (3.8) and (3.9) where the di�erence is the term exp

�
2iQ(E)d20

�
introduc-

ing interference between the incoming wave from the input probe and the backscattered
wave from the impurity. This term gives rise to energy dependent oscillations through the
energy dependence ofQ(E). The same type of \additional" oscillations are present for
the perpendicular direction and especially for the red circle position (Figs. 3.14d-e). In
this case, we have to consider the interference between the emitted wave and the scattered
wave returning from the impurity in the direction of the second probe. These oscillations
have the same origin as those investigated in real space in Section 3.2 while scanning one
probe around the impurity.

Con�gurational average

In an experimental setup, individual defects or adatoms can be di�cult to locate. This
makes investigations of many randomly scattered defects important. We �x the two probes
with an armchair separation of 50 nm and place adatoms randomly with varying concen-
tration. The averaged transmissions are shown in Fig. 3.15. The transmission is almost
unchanged at energies away from the resonance, despite the oscillations caused by indi-
vidual impurity positions shown in Fig. 3.14. This shows that the oscillations, induced
by interference between incoming and scattered waves, tend to average out for many de-
fects. However, the resonance feature survives con�gurational averaging as is evident
from Fig. 3.15. The signal is enhanced on resonance and an overall Fano type resonance is
present in Fig. 3.15b with a height that scales with impurity concentration. This suggests
that the dual-probe setup can detect the type (position of resonant level) and concentra-
tion (peak height) of adatoms on the surface of a graphene sample without the need of
scanning the exact position of the impurity as required for a single probe measurement.
This is in line with the suggested applications of graphene as a gas sensor [119, 120]. In
the case of random vacancies we see an overall decrease in the transmission following the
impurity concentration. In this case a zero energy peak is present due to localization
e�ects around vacancies. This feature has been described in several works addressing the
LDOS [40, 44, 121].
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Figure 3.15: (a) Con�guration averaged transmission as a function of energy. (b) The di�erence
between the averaged transmission and the pristine transmission. We place impurities in a 50� 85
nm rectangle around the probes. The unequal sides are chosen to take into account the probe
separation direction. The curves are made from averaging 2� 104 con�gurations.
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3.4 Summary

Scanning mode

The dual-probe setup in scanning mode o�ers new
exibility to study directional transport e�ects in
nanosystems beyond the reach for a single STM
probe experiment. Using one probe in scanning
mode while �xing the other, we are able to com-
pute real space conductance maps using the Ana-
lytical GF method presented in Chapter 2.

The resulting real space maps show anisotropic
behavior depending on the underlying crystal di-
rection and quantum interferences around defects
and crystalline edges.

An e�cient way of analyzing the real space maps
is to perform the Fourier transform, which can be
used to extract information of intra- and interval-
ley scattering processes.
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Spectroscopy mode

A dual-STM setup with �xed probes and a
probe separation distance in the nanometer range,
makes it possible to obtain local transport prop-
erties at the nanoscale by varying the electron en-
ergy.
This allowed us to study directional transport ef-
fects, not directly attainable using macroscopic
contacts or single-STM measurements. Further-
more, we considered the spectroscopic �nger-
prints of local perturbations such as vacancies and
adatoms. In particular, we observe Fano-type res-
onances in the spectroscopic �ngerprint arising
from resonant states in adatoms. The resonance is
shown to be a dominant feature in the dual probe
spectroscopy compared to the single probe.



CHAPTER4
Dual probe investigation of
nanostructures in graphene

In the previous chapter, we introduced the two fundamental operation modes of a dual probe
setup in the case of simple defects. We now extend the discussion to more complex defects
or nanostructures. Many applications require deliberate nanostructuring of the graphene in
order to engineer its electronic structure. Theintegral Green's Function method used in
the previous chapter is only useful for moderately sized perturbations to the pristine system.
However, thepatched Green's function method(PGF) introduced in Chapter 2 is able to treat
sizeable defects while allowing for calculation of local electronic and transport properties. The
PGF method enables us to study the e�ect of individual perturbations within an in�nite system
without edges or periodic properties.

We �rst consider the spectroscopic response of a single perforation (\antidot") in an
otherwise pristine graphene sheet. These results are published as parts of Paper II and III
[87, 114]. Secondly, we consider the situation of local gating. Here we apply a local gate to
create a scattering region or \dot" and calculate the e�ect of an incoming wave emitted from
one of the two probes.

4.1 Graphene antidots

In this section, we investigate local transport properties near antidots (i.e. perforations)
in a graphene sheet [23]. Periodic arrays of antidots have been studied as a way to open
a bandgap in graphene [23, 122{124] or to obtain waveguiding e�ects [24, 125]. Antidots
can be fabricated using a variety of experimental techniques like block copolymer [64, 126,
127] or electron beam lithography, [128{130]. Unfortunately, these fabrication processes
inevitably lead to disorder and imperfect edges. Several studies show that the electronic
structure of an antidot is closely related to the exact edge geometry [114, 122, 125] which
may be controllable by heat treatment [129, 131], or selective etching [130, 132].
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Figure 4.1: Schematic illustration of a
dual probe setup around a perforation in a
graphene sheet.

Here we consider a single antidot and its e�ect on the nanoscale current ow in the
system. A single graphene antidot has been considered as a nanopore for DNA sensing
[133, 134] and recent studies of antidots in a magnetic �eld have shown the Aharonov-
Bohm e�ect for conducting edge states around single antidot[135]. This makes the single
antidot a fundamentally interesting system and not only a building block of periodic arrays.
The PGF method allows us to study a single antidot with an experimentally realizable
size [120, 126, 134] with no inuence from periodic repetition or �nite sample e�ects. In
fact, we demonstrate the treatment of experimental structures found from high resolution
transmission electron microscope (TEM) images using pattern recognition. [136, 137]

4.1.1 Dual probe spectroscopy

We consider three possible edge geometries for antidots: zigzag, armchair or circular,
the last contains an alternating sequence of armchair and zigzag edges, see Fig. 4.2. We
calculate the transmission for each antidot type placed between probes separated in the
armchair direction (y-direction in Fig. 4.2). The result is shown in Fig. 4.3a. As expected
the transmission is generally lowered by the introduction of a perforation. A notable

Figure 4.2: The density of states for E = 0 :028jt j around antidots with di�erent edge structures
as indicated. The maps are individually scaled.
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di�erence between the antidot types is a transmission dip present for the circular, and
particularly zigzag, type antidots. This dip resembles the Fano type resonance observed
for single adatoms in the previous chapter, see Fig. 3.13. Fig. 4.3a suggests that the
resonant feature is connected to the zigzag edges, as the circular antidot consists of a
mixture of zigzag and armchair edges. We therefore map the local density of states on
sites around the antidot at the energy of the transmission dip (see Fig. 4.2). The DOS is
localized around the zigzag edges as known for nanoribbons or antidot lattices [123, 125].
The localized states, being essentially dispersionless, resemble a single level and therefore
create a Fano type resonance in the transmission. In addition, we notice a di�erence
between the resonance of the circular and zigzag antidot on Fig. 4.3a. The resonance of
the pure zigzag edge has a sharper feature than the mixed edge (circular antidot). This
leads to the conclusion that the resonance features can be related to the amount of zigzag
edge present. Calculations performed with antidots of varying size (not shown) yield

Figure 4.3: (a) The transmission for probes separated along the armchair direction (� 50 nm)
for zigzag, armchair and circular antidots. The antidot structures are shown in Fig. 4.2. (b)
Transmission for the same zigzag antidot as (a) including disorder of varying strength. Each curve
is an average of 50 di�erent con�gurations and have been shifted relatively to each other. (c) The
transmission for the same zigzag antidot as (a), with probe separations (� 50 nm) along armchair
and zigzag direction. (d) Single probe spectroscopy of zigzag antidot with the same probe position
as (a). Calculation both with and without disorder is included. The curves have been shifted
relatively to each other.
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qualitatively the same result, but the position of the dip feature changes depending on the
length of the zigzag edge present. This in turn can be used as a �ngerprint to determine
the edge pro�le of antidots and other nanostructures.

In Fig. 4.3b the robustness of the signal against edge disorder is investigated. We add
a onsite potential, chosen randomly within [� W; W ], to the two rows of atoms around the
antidot. Fig. 4.3b shows the transmission for di�erent disorder strengths averaged over
several con�gurations. For weak edge disorder the resonance feature persists whereas it
vanishes for higher disorder strengths as expected because high disorder tends to destroy
the localized edge state giving rise to the resonance in the �rst place.

Next we consider the separation direction between the probes. The exact direction
between the probes should not have a great impact on the spectroscopic �ngerprints, if the
dual-probe setup is to be a useful tool for characterization of larger nanostructures, such
as antidots. Therefore we compare the transmission for both zigzag and armchair probe
separations in Fig. 4.3c and note very similar behavior at low energies. We considered
several non-symmetric positions (not shown) all exhibiting the resonant feature in the
same position.

Finally, we compare the single and dual probe spectroscopy of the zigzag antidot.
Fig. 4.3d shows the single probe spectroscopy both without disorder and including a weak
disorder. The single probe position is the same as one of the probes in Fig. 4.3a. We
notice small oscillations due to the symmetry breaking caused by the presence of the
antidot. This is the same kind of Friedel oscillations arising around single vacancies [44].
Without disorder the localized state is barely visible in Fig. 4.3d, but the small resonance
vanishes at a disorder strength where it is clearly visible in the dual probe spectroscopy
(cf. Fig. 4.3b). Consequently the transmission signal from the dual probe setup yields
considerably more information about defect induced transport processes than the single
probe measurement.

4.1.2 Bond currents

The antidot size considered above is in line with previous work [122, 123, 125]. However,
the patched Green's function approach presented in Chapter 2 allows for calculation of
properties like transmission, LDOS and bond currents for notably larger systems. In
this section we investigate the nanoscale current ow around antidots of realizable sizes
[120, 126, 134]. We discuss the Fano type resonance observed above for larger antidots
an extend the study to antidot geometries found in high resolution transmission electron
microscope (TEM) images [136, 137].

First, we consider a zigzag-edged antidot with side lengthR = 48a � 12 nm, where
a =

p
3a0 = 2 :46 �A. This is comparable to experimental sizes where sub-20-nm feature

sizes have been reported [64, 126, 127, 134]. The antidot is in-between two probes placed
200 nm apart, as shown schematically in the inset of Fig. 4.4a. The main panel of Fig. 4.4a
shows the transmission as a function of energy for this dual probe setup. We note the
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Figure 4.4: (a) The transmission as a function of energy for a dual probe setup with an antidot
in between the probes as schematically shown in the inset. The distance between the probes are
200 nm and the antidot with purely zigzag edges has side lengthR = 48a0 � 6:8 nm. The shaded
area corresponds to the LDOS around the edge of the antidot. (b-c) The bond currents at the
highlighted energies in (a). The size of the arrows corresponds to the magnitude of the bond
current.

distinct transmission peaks. As explained above the peaks are related to localized states
along the zigzag edges. As a consequence, we notice the correspondence between the
peaks in the transmission and the peaks in the LDOS around the edge, see shaded area
in Fig. 4.4a. The presence of several peaks is a consequence of the longer zigzag edge
segment compared to the antidot used in Fig. 4.3.

Next, we calculate the bond currents from the top lead. The bond currents around
the zigzag antidot for the energies indicated in Fig. 4.4a are shown in Figs. 4.4b-c. It
is clear that the transmission dips are related to vortex like current paths. These vortex
paths create a larger \e�ective size" of the antidot at this energy which is characterized
by a region around the antidot avoided by the current ow. On the other hand, at
the transmission peaks when the current passes near to the antidot edge minimizing the
backscattering caused by the antidot.

The antidot considered in Fig. 4.4, although of realistic size, is an idealization, as
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experimental perforations will inevitably contain imperfections. To consider a more real-
istic case, we turn to a perforation observed in experimental TEM images. The original
TEM image is shown in Fig. 4.5e. Using pattern recognition [136, 137] the positions of
the individual carbon atoms can be identi�ed and result in the lattice shown in Fig. 4.5f.
We surround the experimentally obtained atomic positions with pristine graphene, see
Fig. 4.5a, to allow for calculations using thepatched Green's functionmethod. The posi-
tions of the two probes are indicated in Fig. 4.5a, however, they are separated by 200 nm
in the actual calculation to ensure the assumption of a plane incoming wave.

The transmission between the two probes are shown in Fig. 4.5b together with the
DOS of the edge atoms in the antidot. Even though the antidot edge is very irregular
it still contains zigzag segments. These zigzag segments give rise to localized states as
usual, however, since the length of segments vary, the resonance energy of the localized
states are di�erent for the di�erent segments. This causes the broadening of the peaks
in the density of states as observed in Fig. 4.5b. As a result the Fano-type resonances in
the transmission are also signi�cantly broadened. Considering the two energies I and II
in Fig. 4.5b corresponding to \dips" in the transmission, we calculate the bond currents
and the DOS around the antidot, see Fig. 4.5c-d. The DOS is indicated by the lightblue
colormap in Fig. 4.5c-d and we clearly observe a larger DOS at certain segments of the
antidot edge for both I and II. Comparing with the spatial bond current maps, we �nd
that the edge segments with high DOS cause vortex patterns qualitatively similar to
those observed for the pristine edges, see Fig. 4.4. In turn these vortex patterns are
responsible for the additional backscattering causing the transmission dips. In this way,
dip I corresponds to a vortex pattern at the left side of the antidot, see Fig. 4.5c, whereas
the dip at II is caused by a vortex pattern at the bottom of the antidot, see Fig. 4.5d. The
electrons at di�erent energies experience a di�erent e�ective perforation size and shape
caused by these vortices. This type of irregular scattering causes most of the current to
ow around the antidot either along the \top" or \bottom" edge of the antidot. If we
could control such irregularities, we could imagine controlling the direction of the current
ow by designing asymmetric scatterers causing a preferred scattering direction.

The results presented in this section also prove another important development. In-
stead of experiments trying to replicate idealized theoretical systems, we here demonstrate
that high resolution experimental techniques can act as a starting point for theoretical cal-
culations. This potentially allows for a better understanding of the electronic structure
and transport properties of nanostructures when theoretical calculations can be made on
the exact structures studied experimentally.
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(e) (f)

Figure 4.5: An actual perforation is obtained from high resolution TEM images through pattern
recognition and we consider the vortex like current paths forming around the perforation at certain
energies. (a) Shows the structure of the perforation as well as an indication of the probe position
(in the actual calculations the probes are 200 nm apart). The indicated areas correspond to the
zooms in (c) and (d). (b) The transmission for the dual probe setup. The shaded area indicates
the average LDOS around the edge of the antidot. Furthermore, the energies I and II correspond
to the energies used on (c) and (d), respectively. (c-d) Bond current maps taken at the energies I
and II, respectively, and at the positions indicated on (a). (e) Actual high resolution TEM image
adapted from [137]. The scale bar is 5 nm. (f) The same image as (e) overlayed with graphene
lattice constructed using pattern recognition. Note that the graphene lattice has been rotated in
(a) to have armchair direction along the y-direction. Picture is adapted from [137].
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4.2 Locally gated dots

The antidot studied in the previous section modi�ed the electronic structure by removing
part of the graphene sheet. A di�erent route to obtain external control of the properties
is to apply external electrical �elds. Locally and spatially varying electrical �elds pro-
vide a unique opportunity to tune the potential landscape by forming p-n junctions. In
graphene the linear dispersion making the quasiparticles behave like massless relativistic
particles,photons, gives rise to peculiar e�ects for such p-n junctions. Most notably is
perhaps the Klein-tunneling [11] or electron focusing described by a negative refractive
index in an optical analogue [21]. The p-n junction takes the role of the intersection be-
tween two materials with di�erent refractive index therefore guiding the electrons [138].
Moreover, optical e�ects like waveguiding have been studied both theoretically [139, 140]
and experimentally [25]. The ability to create local gates has also been used to realize the
equivalent of optical cavities in ballistic graphene devices [22, 26, 141].

This section focuses on the circular p-n junction which gives rise to e�ects like caustics
[142] or quasi bound states [143{146] a�ecting the scattering from the gated region. Many
of the theoretical predictions use the Dirac approximation which inherently contain the
\photon-like" behavior of graphene electrons. Instead, thepatched Green's function method
allows us to study locally gated regions within a tight binding approach, while using the
two probes as emitter and collector of electrons. In this way, the dual probe setup combines
the ability to study electron waves in an in�nite medium (graphene sheet) with the ability
to analyze directional e�ects like preferred scattering directions without the assumptions
of the low energy Dirac Hamiltonian. The multiple patches connected through the self-
energy allow us to place one probe very far away (+250 nm) from the gated region ensuring
that the incoming electron wave closely resembles a plane wave. Furthermore, it allows
for an analysis both of the local electronic structure using LDOS maps and the electron
scattering using real space bond current maps.

Figure 4.6: Artistic illus-
tration of a dual probe setup
around a locally gated region.
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4.2.1 Local gate in Dirac approximation

We �rst consider a circularly gated region within the low energy Dirac approximation. This
allows for an analytical solution of the scattering problem which is used in the analysis
of the numerical results at the end of this section. We �rst consider the Dirac model for
a circularly gated dot to determine the form of the wavefunctions inside and outside the
gated region. Starting from the the Dirac Hamiltonian H without any perturbation,

H = � i~vF � � r = � i~vF

�
0 � i@x � @y

� i@x + @y 0

�
; (4.1)

we rewrite the problem in polar coordinates (r; � ),
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The derivatives from Eq. (4.1) become
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�
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@�

�
: (4.3)

Finally inserting into the Dirac Hamiltonian while adding the circularly symmetric gating,

H = � i~vF � � r + V �( R � r ) = ~vF

� ~V �( R � r ) e� i � (� i@r � 1
r @� )

ei � (� i@r + 1
r @� ) ~V �( R � r )

�
; (4.4)

where �( R � r ) is the Heavyside step function, ~V = V=~vF and � = [ � x ; � y ] with � x=y
being the Pauli spin matrices. Introducing a rotational symmetric ansatz for the spinor
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�
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�
; (4.5)

we insert into the Dirac equation, Hj 	 i = E j	 i
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These equation can be reduced to
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The system of equations, Eq. (4.7), is equivalent to a second order equation in eithera(r )
or b(r ).

�
r 2@2

r + r@r � m2
�

a(r ) = � r 2
�

E
~vF

� ~V �( R � r )
� 2

a(r ); (4.8)

b(r ) ful�lls a similar equation with m ! m + 1. Using ~k =
�
�E=~vF � ~V �( R � r )

�
� we can

�nally write the second order equation for a(r ) as

�
r 2@2

r + r@r + ( ~k2r 2 � m2)
�

a(~kr ) = 0 : (4.9)

Eq. (4.9) is formally equivalent to the Bessel equation. In conclusion, we �nd the wave-
functions in the presence of a circularly gated dot to be either Bessel functions of the �rst
kind Jm (~kr ) or Hankel functions of �rst kind H (1)

m (~kr ). The exact wavefunction in the
di�erent regions are determined by the applied boundary conditions as shown below.

Scattering from circular gated region in Dirac approximation

Above we solved for the wavefunction in the presence of a circularly gated dot and we
now turn to the scattering caused by this dot on an incoming plane wave. To solve the
scattering problem inside and outside the gated region, we assume an incoming plane wave
along the x-direction ( / eikx ) and consider the scattered wave inside and outside the gated
region following the approach of Ref. [144]. As the asymptotic form of the Hankel solution
is Hm (z ! 1 ) / 1

z eiz this solution correspond to an outgoing wave. Consequently, the
scattered wave outside the gated region is expanded using Hankel functions of the �rst
kind while the wave inside are expanded using Bessel functions.

j	 incoming i =
1

p
2

�
eikx

eikx

�
=

1
p

2

1X

m= �1

im
�

Jm (kr )eim�

iJm+1 (kr )ei( m+1) �

�
; (4.10a)

j	 scat;out i =
1

p
2

1X

m= �1

cr
m im

 
H (1)

m (kr )eim�

iH (1)
m+1 (kr )ei( m+1) �

!

; (4.10b)

j	 scat;in i =
1

p
2

1X

m= �1

ct
m im

�
Jm (qr)eim�

iJm+1 (qr)ei( m+1) �

�
; (4.10c)

where k = E=~vF and q =
�
�E=~vF � ~V

�
�. cr

m and ct
m are scattering coe�cient to be

determined by the boundary conditions are the edge of the gated region (r = R).

The continuity of the wavefunction requires

j	 incoming i + j	 scat;out i = j	 scat;in i ; (4.11)
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for r = R. The requirement needs to be ful�lled for each angular momentumm leading
to

Jm (kR) + cr
m H (1)

m (kR) = ct
m Jm (qR); (4.12a)

Jm+1 (kR) + cr
m H (1)

m+1 (kR) = ct
m Jm+1 (qR): (4.12b)

Solving this system of equations yields the scattering coe�cients

ct
m =

Jm+1 (kR)H (1)
m (kR) � Jm (kR)H (1)

m+1 (kR)

H (1)
m (kR)Jm+1 (qR) � H (1)

m+1 (kR)Jm (qR)
(4.13a)

cr
m =

Jm+1 (kR)Jm (qR) � Jm (kR)Jm+1 (qR)

H (1)
m (kR)Jm+1 (qR) � H (1)

m+1 (kR)Jm (qR)
(4.13b)

Using symmetries of the Bessel (and Hankel) functionsJ� m = ( � 1)m Jm we see that
cr=t

� m = cr=t
m� 1.

The results of this section provide analytic expressions to help analyze the numerical
results presented below. An important quantity is the ratio between the wavenumber
inside and outside the gated region,N = q=k = j ~E � ~V j=j ~E j, where ~E = E=~vF which
determines the behavior of the electron wave when passing through the dot region. A
small E results in a largeN value while E ! V results in N ! 0. In consequence, lowE
leads to sharp resonances which broaden and overlap for larger energies.

For a large dot radius compared to the wavelength of the electrons, the scattering
shows features known from ray optics. Refraction inside the gated region gives rise to
caustics, which are studied in details in Ref. [142], including a ray-optical model. In this
case the boundary of the gated region acts as a lens focusing the electrons resulting in a
focusing of the electron ow [144].

Instead, we focus on the situation where both the radius and energy are small. For
speci�c values ofE and R, resonances appear inar

m . Dependent on the parameters, several
of these resonances may appear. Below we consider these resonances and their e�ect on
the current ow by comparing the analytic solution to numerical calculations using the
full tight binding model.
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4.2.2 Local density of states

We consider a gated region with parametersR = 10 nm and V = 0 :1jt j, where t is the
carbon-carbon hopping integral. Numerical calculation using thepatched Green's function
method allows us to determine two qualitatively di�erent spatial pro�les in the LDOS,
corresponding to two resonant modes shown in Fig. 4.7. These are the only resonances
clearly resolved for the chosen set of parameters. We clearly notice the di�erence at the
center. Here the mode in Fig. 4.7a is �nite whereas the mode in Fig. 4.7b vanishes at
r = 0. Furthermore, we observe a large di�erence in magnitude between the two.

(a) m= 0 (b) m= 1

Figure 4.7: Real space map of the local density of states for the (a)m = 0 ( E = 0 :002jt j) and
(b) m = 1 mode (E = 0 :012jt j) for V = 0 :1jt j. The local gated region forR = 10 nm is indicated
with the white dashed line.

Comparing the calculation in Fig. 4.7 with the analytic solution in Eqs. (4.10) and (4.13),
we �rst use Eq. (4.10c) to determine the electron density n within the gated region as
n = 	 y	 = h	 j	 i ,

n / j ct
m j2

�
J 2

m (qr) + J 2
m+1 (qr)

�
: (4.14)

From Eq. (4.14) we note that the m = 0 mode gives rise to a �nite electron density at
r = 0 because of theJ 2

0 (qr) term. On the other hand, the m = 1 mode does not contain
such a term and consequently gives rise to a vanishing electron density atr = 0. From
this, we conclude that the gated dot contains two resonances corresponding to am = 0
and a m = 1 mode. These two modes give rise to the di�erent spatial pro�les of the LDOS
in Fig. 4.7. The m = 0 and m = 1 modes and the interference between them cause the
di�erent behavior of the incoming electrons which is investigated below.



Chapter 4. Dual probe investigation of nanostructures in graphene 71

Probability current

Next, we study the probability current in the gated region. The probability current or
ux describes the change in the probability of �nding an electron at a given position. It
is therefore similar to the bond currents and comparable to the net ow of current at a
given point.

The probability current can be calculated from the spinors asJ i = 	 y� i 	 = h	 j� i j	 i
[12]. Using polar coordinates we get the radial and angular component

j r = 	 y� � x cos(� ) + � y sin(� )
�
	 = 	 y

�
0 e� i �

ei � 0

�
	 ; (4.15a)

j � = 	 y� � y cos(� ) � � x sin(� )
�
	 = 	 y

�
0 � ie� i �

iei � 0

�
	 : (4.15b)

Using the ansatz for a rotationally symmetric spinor, Eq. (4.5),

j	 i = e im�
�

a(r )
ei � ib(r )

�
; (4.16)

we insert into Eq. (4.15),

j m;m 0

r = ie i( m� m0)�
�
a� (r )b(r ) � a(r )b� (r )

�
; (4.17a)

j m;m 0

� = e i( m� m0)�
�
a� (r )b(r ) + a(r )b� (r )

�
: (4.17b)

For the radial component we use Eq. (4.10c) for the wavefunction inside the gated region,

j m;m 0

r = �
1
2

ei( m� m0)� �
ct

m0
� ct

m Jm0(qr)Jm+1 (qr) � ct
m0

� ct
m Jm (qr)Jm0+1 (qr)

�
(4.18)

(4.19)

Exploiting the fact that ct
� m = ct

m� 1, we can collectm0 = � (m + 1) and m = � (m0+ 1)
terms to obtain

j m
r / j ct

m j2
�
J 2

m+1 (qr) + J 2
m (qr)

�
cos

�
(2m + 1) �

�
: (4.20)

We can derive a similar expression for the angular component,

j m
� / j ct

m j2
�
J 2

m+1 (qr) � J 2
m (qr)

�
sin((2m + 1) �

�
(4.21)

For the m = 0 mode we analyze Eqs. (4.20) and (4.21) in detail. We observe thatj 0
r is

zero when� = �
2 n with n being an integer. The resulting vertical j 0

r = 0 line is indicated
in Fig. 4.8. Similarly, j 0

� is zero when� = �n giving rise to a horizontal j 0
� = 0 line or

when r attains a value such that J 2
m+1 (qr) = J 2

m (qr) giving rise to a circular j 0
� = 0 curve.

We note that the total current �eld needs to be perpendicular to both the j 0
r = 0 and

j 0
� = 0 curves. Furthermore, the current is incoming from the left due to the placement of
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the probes, so we conclude that the current �eld of them = 0 mode must contain a vortex
pattern as the one shown by the red arrows in Fig. 4.8. By symmetry arguments, this
vortex pattern must be symmetric around the x-axis and tends to con�ne the electrons in
the gated region when this mode is activated.

Similar analysis can be done for them-th mode giving rise to a pattern containing 2(m+
1) vortices. Below, we study these vortex patterns and their e�ect on the transmission
through the gated region using numerical calculations in a dual probe setup.

Figure 4.8: Schematic of them = 0 mode of the gated region. From Eqs. (4.20) and (4.21) we
see that j r = 0 on y = 0 and j � = 0 on x = 0. In addition, the radial dependence of j � leads to
a circle with j � = 0. The intersection of these lines causes vortices guiding electrons through the
center of the gated region. The �gure is adapted from [144].

4.2.3 Transmission and bond currents

In this section, we use thepatched Green's functionmethod to calculate the transmission
between two probes placed on either side of the gated region (radiusR = 10 nm and gate
strength V = 0 :1jt j). Earlier, we demonstrated that this gated region contains two modes
(m = 0 and m = 1). We place the dot in between the probes such that the input probe
is 250 nm away from the dot while the second probe is 20 nm on the opposite side, see
schematic in Fig. 4.9. This ensures that the incoming wave is almost a perfect plane wave.

The transmission between the probes is shown in Fig. 4.9 together with the average
LDOS within the gated region. We observe a notable Fano-type resonance [144] in the
transmission where a small variation in energy can lead to a large change in transmission
and even give rise to a suppression of the Klein tunneling e�ect at the energy highlighted
by the circle in Fig. 4.9. To analyze these features, we calculate the bond current leaving
the far probe. In Fig. 4.10a-c the bond current maps are shown for the highlighted energies
in Fig. 4.9 and are represented schematically in the bottom of Fig. 4.9. The size of the
bond current is given by the colormap and the direction is indicated by the direction of
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Figure 4.9: (Top) A sketch of the dual probe setup with two probes � 250 nm apart with a
gated circular region in between. The right panel shows the transmission between the probes. The
shaded area corresponds to the average LDOS within the gated region. The marks correspond to
the bottom schematics. ParametersR = 10 nm and V = 0 :1jt j. (Bottom) Schematics showing
the two vortices of the m = 0 mode (square), two counterpropagating vortices backscattering the
current (circle) and the six vortices of the m = 1 mode (triangle).

the arrows. In addition the bond current maps, Fig. 4.10 also shows directional scattering
de�ned as the size of the bond currents relative to the pristine value as a function of the
angle � with the horizontal axis where � = 0 corresponds to the right hand side of the
region, i.e.

�
�J (R + �r; � )

�
�=

�
�J0(R + �r; � )

�
� where we use�r = 5 nm in Fig. 4.10d-e.

The behavior at the energy highlighted by a square, is caused by the vortex pattern
shown in Fig. 4.10a. This vortex pattern consists of two vortices focusing the current
through the gated region. This is consistent with the analytic treatment of the m = 0
mode using Eqs. (4.20) and (4.21) leading to the schematic in Fig. 4.8. As the two vortices
are in the same direction as the incoming current them = 0 mode focuses the current
somewhat as it passes through the gated region. This focusing is also evident from the
directional scattering in Fig. 4.10d. Here we clearly see the increased current at� = 0 �

caused by the focusing nature of the vortices. Likewise the suppression around� = � 90�

is caused by the backwards current ow in the vortex pattern at this angle.

The previous analytical analysis of Eqs. (4.20) and (4.21) predicted a vortex pattern
with 2( m + 1) vortices for the m'th mode. We con�rm this prediction by the numerical
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calculations when considering the bond current map in Fig. 4.10c belonging to the energy
highlighted by a triangle in Fig. 4.9. Here we clearly observe the six predicted vortices
of the m = 1 mode. The m = 1 mode gives three preferred scattering directions� = 0
and � � � 120� as evident from Fig. 4.10f which should be seen in contrast to the single
preferred scattering direction caused by the two vortices of them = 0 mode. The preferred
directions correspond to \outgoing" channels between neighboring vortices where both
vortices cause an outward current ow. Similarly, the suppressed directions are caused
by \in-going" channels. In addition, we observe that the current at the m = 1 mode is
greatly enhanced compared to the pristine system demonstrating the strong resonance at
m = 1 already observed in relation to the magnitude of the LDOS.

At last we consider the interference between them = 0 and m = 1 mode which is
responsible for the suppression of the transmission at the energy highlighted by a circle in
Fig. 4.9. This interference leads to the inversion of them = 0 vortex pattern, as clearly
visible in Fig. 4.10b. Two counterpropagating vortices block the current ow through the
gated region and increases the backscattering. This vortex pattern dramatically changes
the preferred scattering direction going from the focusing of them = 0 mode at � = 0 �

to suppression at� = 0 � , see Fig. 4.10e. Instead the current is increased along directions
corresponding to the outwards ow in the two vortices (� � � 120� ).

The analysis of the current ow through the gated region is schematically summarized
in Fig. 4.9 showing the transition from the focusing vortex pattern of the m = 0 mode, to
the six vortices of the m = 1 which cause three preferred scattering directions and greatly
enhance the current through the gated region. The numerical calculations have clearly
shown the formation of the analytically predicted features which interplay give rise to
two counterpropagating vortices suppressing the current ow and causing the Fano-type
resonance in the transmission spectrum.

Similar to the antidots case, we have demonstrated the ability of this type of nanos-
tructuring to alter the current ow at the nanoscale. In both cases we observed how the
interplay between single states or modes is the origin of vortex patterns causing Fano-
type resonances in the transmission able to act as switches by manipulating the energy
or gating. The formation of vortices gives rise to preferred current directions either by
increasing the scattering by certain parts of the nanosctructure (antidot) or by guiding
the current along the vortex path e�ectively focusing the current (gated dot).
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(a) (d)

(b) (e)

(c) (f)

Figure 4.10: (a-c) The bond currents incoming from the left for (a) the m = 0 mode (E =
0:002jt j), (b) two counterrevolting vortices suppressing the ow through the gated region (E =
0:01jt j) and (c) m = 1 mode (E = 0 :00125jtj), see Fig. 4.9. The arrows indicate the direction of
the electron ow, whereas the color denotes the magnitude of the current. Each arrow is a sum of
all the individual bond currents in a box around the arrow position. (d-f) The size of the bond
current relative to the pristine case 5 nm away from the gated region for the cases in (a-c). Here
� = 0 � corresponds to thex-axis. Parameters for the gated region areR = 10 nm and V = 0 :1jt j
and spatial region is indicated by the dashed line.
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4.3 Summary

Antidot spectroscopy

A graphene antidot with zigzag edge geometry
possesses localized edge states. By studying in-
dividual antidots with dimensions of R � 10 nm
within an otherwise in�nite graphene sheet, we
demonstrate that the interplay between these lo-
calized zigzag edge states and the pristine contin-
uum gives rise to Fano-type resonances in the dual
probe transmission for probes placed on opposite
sides of the antidot.
We show how these resonances are caused by cur-
rent vortices formed near the zigzag edge seg-
ments. The phenomena was found to be strongest
for perfect edge geometries but are also visible for
even very disordered experimental antidots where
the structure are obtained from high resolution
TEM images.

Spectroscopy of locally gated dot

We analyzed the current ow through a locally
gated dot and demonstrated the existence of two
fundamental modes characterized by the angular
quantum number m = 0 and m = 1. The analyti-
cal predictions made from the solution of the Dirac
model, where con�rmed by numerical tight bind-
ing calculations. In this way, we showed the two
focusing vortices of them = 0 mode and the six
vortices of the m = 1 mode. Moreover, we consid-
ered the interplay between these two modes giving
two counterpropagating vortices, suppressing the
current ow and causing a Fano-type resonance in
the transmission spectrum.
This opens the possibility of manipulating
graphene-based devices by spatially structured
electric gating.



CHAPTER5
Strain �elds with pseudomagnetic

e�ects

Although graphene is only one atom layer thick, it can sustain remarkably large mechanical
deformations without breaking. Consequently, graphene o�ers an outstanding combination of
electronic and mechanical properties. The close relation between the structural and electronic
properties of graphene opens the possibility of strain engineering as a method to manipulate the
electronic, optical and magnetic properties of graphene [28, 29, 86, 147{158]. The application
of strain in graphene can lead to e�ects like bandgap formation [159] or transport gaps [147]. In
particular the extraordinary response of graphene to inhomogeneous deformations has received
much attention [29, 148, 149]. In fact, the altered tight binding parameters due to the lattice
deformation mimics the role of a gauge �eld in the low energy e�ective Dirac model of graphene
[27, 160]. The formation of a so-called pseudomagnetic �eld (PMF) suggests the presence of
Landau quantization in the absence of external magnetic �elds [29] which has been con�rmed
by STM experiments on bubble-like deformations [151, 161].

Actual strain engineering on the nanoscale would allow for strongly localized PMFs while
at the same time enabling continuously varying �elds. In addition, the PMF induced by the
strain can lead to large �eld strengths of hundreds of Tesla and enable otherwise unattainable
spatial distributions of magnetic �elds. These remarkable properties demonstrate the potential
of strain engineering to manipulate the electronic and transport properties of graphene.

Following the experiments on bubble-like deformations [151, 161{163], we apply thepatched
Green's function methodto various inhomogeneous strain �elds giving rise to pseudomagnetic
�elds (\pseudomagnetic dots"). We �rst introduce the general method to apply strain through
a tight binding model. Afterwards we use this to describe how a triaxial strain induces a con-
stant PMF which in turn results in Landau quantization. Furthermore, we study rotationally
symmetric local deformations, investigating the resulting inhomogeneous PMF distributions
and the formation of pseudo-Landau quantization in these inhomogeneous �elds. The dual
probe setup is afterwards used to study the transport properties of single pseudomagnetic
dots. Finally, we extend the discussion of single pseudomagnetic dots to arrays of dots and
investigate their e�ect of the transport regimes in the samples.
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5.1 Strain using a tight binding approach

We treat graphene through a nearest neighbor tight binding Hamiltonian characterized by
the carbon-carbon hopping matrix t which is equal for all couplings. When we displace the
atoms relative to each other the bond lengths vary leading to a spatially dependent hopping
integral, t ij = t(r i ; r j ). The position of an atom is r i = r 0

i + u where r 0
i is the equilibrium

position and u = ( ux (x; y); uy(x; y); z(x; y)) is the displacement �eld. In equilibrium the
bond length is a0 = 0 :142 nm but after displacement it changes todij = jr i � r j j and the
hoppings are modi�ed according to [28, 152, 158]

t ij = t0e� �
�

dij =a0 � 1
�
; (5.1)

where t0 is the pristine hopping parameter and � = @log(t)=@log(a)ja= a0 � 3:37 [28].

The new bond length is given either directly from the changed positions of the atoms,
r i , or from the strain tensor [164]

dij =
1
a0

r ij � � � r ij =
1
a0

�
a2

0 + � xx x2
ij + � yyy2

ij + 2 � xy x ij yij
�
; (5.2)

where the strain tensor is given from classical continuum mechanics as

� ij =
1
2

�
@j ui + @i uj + ( @i z)(@j z)

�
; i; j = x; y; (5.3)

where ui (x; y) = ui is the in-plane deformation �eld and z(x; y) = z is the out-of-plane
deformation [27].

5.2 Pseudomagnetic �eld from strain �eld

We now generalize the low energy e�ective Dirac Hamiltonian to the situation of deformed
graphene. The local modi�cations of the hopping amplitudes in Eq. (5.1) can be expanded
to �rst order t ij (r i ; r j ) � t0 + �t ij (r i ; r j ) . The introduction of spatially varying hopping
parameters into the tight binding description induces an e�ective gauge �eld A into the
low energy Dirac Hamiltonian [27, 148]. The components of this vector potential are given
by A = Axex + Ayey where ex and ey are unit vectors in x and y-directions, respectively.
Choosing the coordinate system with thex-axis along the zigzag direction, the e�ective
gauge �eld is given by the change in hopping parameters [156]

Ax � iAy = �
1

evF

X

n

�t (r ; r + � n )eK �� n (5.4)
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where� n are the nearest neighbor vectors, andK determines the valley of the �rst Brillouin
zone of graphene. We determine�t (r i ; r j ) by expanding Eq. (5.1) and exploiting Eq. (5.2)
[27, 28, 160, 165]

t ij = t0

�
1 �

�
a0

(dij � a0)
�

= t0

�
1 �

�
a2

0
� n � � � � ij

�
(5.5)

We note that this only takes into account the �rst order corrections. Expanding to higher
orders in the deformation leads to Fermi surface anisotropy [157] and spatially dependent
Fermi velocity [166{168].

Inserting Eq. (5.5) into Eq. (5.4) while using a general two dimensional strain �eld,
� ij (x; y), leads to a gauge �eld of the form [27, 160, 169]

A = �
~�

2ea0

�
� xx � � yy

� 2� xy

�
; (5.6)

which gives rise to an e�ective Dirac Hamiltonian given by [27, 29]

H � K (q) = vF � �
�

q � eA
�

; (5.7)

where � = [ � x ; � y ] with � x=y being Pauli matrices, � K denotes the two valleys andvF is
the pristine Fermi velocity. In this way, we see that the gauge �eld acquires opposite sign
in the two valleys and therefore does not break time reversal symmetry.

Similar to a real vector potential, the strain induced vector potential results in a so-
called pseudo magnetic �eld (PMF), Bs, perpendicular to the graphene sheet and given
by

Bs = r � A = @xAy � @yAx : (5.8)

Importantly, the de�nition of the pseudomagnetic �eld is inherently connected to a �rst
order expansion of the low energy Dirac model of graphene and we only use the framework
of pseudomagnetic �elds to provide simple analysis of numerical results. Consequently, all
presented calculations are based on a full tight binding model with hopping parameters
modi�ed according to Eq. (5.1).

5.3 Constant pseudomagnetic �eld using triaxial strain

The pseudomagnetic �eld enters the Dirac Hamiltonian in the same way as a real magnetic
�eld, if we restrict ourselves to a single valley (see Eq. (5.7)). We can therefore compare
the constant PMF to a real magnetic �eld. In the presence of a real magnetic �eld the
electronic spectrum is modi�ed giving rise to Landau quantization [82]. However, as
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opposed to the conventional (non-relativistic) Landau levels which have a spectrum linear
in the B -�eld, the Landau levels for the massless Dirac fermions in graphene follow a
characteristic

p
Bn -behavior including a zero energy Landau level (n = 0). The analogy

between real and pseudomagnetic �elds therefore suggests the existence of pseudo Landau
levels in the presence of a constant pseudomagnetic �eld [29, 161],

En = sign( n)
q

2e~v2
F Bsjnj; (5.9)

where En is the energy for the Landau leveln. The corresponding magnetic lengthlB
becomes

lB =

r
~

eBs
= 26nm=

p
Bs: (5.10)

Guinea et al. [29] showed that a triaxial strain leads to a constant PMF according
to Eq. (5.6). Below we have collected details about the triaxial strain in the armchair
direction. As evident from the analytical derivations, the triaxial strain in the armchair
direction gives rise to a constant PMF whose size is determined by the strength of the
strain.

Triaxial strain - Armchair direction

z(r; � ) = 0 ; (5.11a)

u (r; � ) =
�

ux

uy

�
=

�
u0r 2 sin(3� )
u0r 2 cos(3� )

�
; (5.11b)

A = � 4u0r
~�

2ea0

�
sin(� )

� cos(� )

�
; (5.11c)

Bs = 8u0
~�

2ea0
(5.11d)

where u0 determines the strength of the strain �eld [29, 153].

Figure 5.1: Illustration of a triaxial
strain along the armchair direction.
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5.3.1 Pseudo Landau Levels

Several studies have used classical molecular dynamics to determine the strain �eld [149,
155]. Neek-Amalet al.[154] showed the importance of molecular dynamics when determin-
ing the quantitative e�ect of the PMF on the LDOS. However, Ref. [154] also showed that
the qualitative features of a deformation remain after relaxation by molecular dynamics.
We therefore use analytic displacement �elds as shown in Eq. (5.11) to investigate the
formation of Landau levels in the presence of a constant PMF. The strain �eld is applied
in a circular region with radius R. As the strain �eld in Eq. (5.11) grows with distance
from the center, the maximum strain also grows with increasing radiusR even for the same
strength of the resulting PMF. Consequently, we use the PMF strengthBs as reference
parameter below as this relates directly to the features in the electronic structure.

Beyond r = R, we apply a smoothing to make the strain �eld go to zero at the edge of
the patch as required by the patched Green's function method. The smoothing is applied
using the transformation � ! � e� (r � R)2=2� 2

for r > R . In the calculations below, we
consider a radius ofR = 10 nm and a smoothing of � = 3 nm to ensure a minimal e�ect of
the smoothing region on the interior of the strained region. The �nite size e�ects imposed
by such a treatment are discussed at the end of this section.

The resultant PMF distribution caused by such a triaxial strain smoothed after r > R
is shown in Fig. 5.2. Here we clearly observe the constant PMF forr < R and the
smoothing region with a varying PMF of opposite sign. Note that the opposite sign within
the smoothing region arise because we smooth the strain tensor (and not the PMF) causing
a negativechange of the strain forr > R . As the constant PMF, + Bs, for r < R is caused
by a positive change in the strain with increasingr , the smoothing gives rise to a PMF of
opposite sign while decreasing the strain to zero.

Figure 5.2: The PMF distribution of a triaxial strain (Eq. (5.11)) for r < R which is made �nite
by an exponential smoothing� ! � e� ( r � R )2 =2� 2

for r > R .

Fig. 5.3 shows the average DOS in the center of the constant PMF region withBs = 100
T. Importantly, we note the appearance of peaks in the DOS. These correspond almost
perfectly to the Landau levels expected from Eq. (5.9). However, we note one important
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Figure 5.3: Average density of states for both the A and B sublattice at the center of a region
with radius of R = 10 nm subjected to a triaxial strain corresponding to Bs = 100 T. The positions
of the Landau levels expected from Eq. (5.9) is indicated by dashed curves. The smoothing region
has a width � = 3 nm and the curves are translated vertically with respect to each other.

di�erence between these pseudo Landau levels (pLL's) compared to regular Landau levels:
the zeroth pLL only has a �nite contribution to the LDOS on one sublattice, as also
observed in Refs. [154, 170].

5.3.2 Sublattice splitting of the zeroth pseudo Landau level

We can understand the sublattice splitting of the zeroth pLL by considering the Dirac
Hamiltonian Eq. (5.7). The solution to the two dimensional Dirac Hamiltonian around
K is a two dimensional spinor j	 K i =

�
 �

K ;  �
K ;

�
, where � denotes the A sublattice

and � denotes the B sublattice. The spinor components of valleyK 0 satisfy the same
Dirac equation asK with qx ! � qx and interchanged sublattice pseudospin. This can be
conveniently collected in a four component spinorj	 i containing both valleys, [171]

j	 i =

0

B
B
@

 �
K

 �
K

�  �
K 0

 �
K 0

1

C
C
A ; (5.12)

the minus sign is included following the notation of Ref. [171]. This de�nition uses
the valley isotropic formulation of the four-dimensional Dirac equation with two identical
subblocks as adopted earlier in Eq. (5.7). However, we note that other representations
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which use two unequal blocks are also common in the literature [82].
�

vF � � (q + eA ) 0
0 vF � � (q � eA )

�
j	 i = E j	 i ; (5.13)

First, we conclude from Eqs. (5.12) and (5.13) that interchanging the valley index inverts
the role of the two sublattices, i.e.

�
 �

K ;  �
K

�
!

�
�  �

K 0;  �
K 0

�
. Second, we note that

replacing Bs with � Bs corresponds to interchanging the valleys. Generally this follows
from the fact that A ! � A interchange to role of the subblocks in Eq. (5.13).

The wavefunction for the di�erent valleys and signs of the B -�eld can be determined
from these symmetries. We can assume a solution to the two dimensional Dirac equation
of the form j	 K i = c1j�i + c2j�i for the K valley and positive magnetic �eld. Here c1 and
c2 are coe�cients determining the size of the A (j�i ) and B (j�i ) component, respectively.
Considering this form of the solution, we use the symmetries to determine the form of the
wavefunction (except for a phase factor) for theK 0 valley, j	 K 0i , and negativeB -�eld.

B � B

j	 K i c1j�i + c2j�i c2j�i + c1j�i

j	 K 0i c2j�i + c1j�i c1j�i + c2j�i

(5.14)

For a pseudomagnetic �eld the total wavefunction, j	 pseudoi , contains components from
K and K 0 with opposite sign of the B -�eld,

j	 pseudoi = j	 K (B )i + j	 K 0(� B )i : (5.15)

On the other hand, the total wavefunction in the presence of areal magnetic �eld, j	 real i
has the same sign of theB -�eld in the two valleys,

j	 real i = j	 K (B )i + j	 K 0(B )i : (5.16)

Having de�ned the wavefunctions by Eqs. (5.15) and (5.16) and the symmetries in Eq. (5.14),
we now return to discuss the zeroth Landau level. Below, we �rst consider the case of a
real magnetic �eld. Afterwards we use this result to discuss the case of a pseudomagnetic
�eld.

Zeroth Landau level in a real magnetic �eld

We �rst consider the solution for the zeroth ( n = 0) Landau level in the K and K 0 valleys
under the inuence of a real magnetic �eld according to Ref. [82]

j	 real
K (B )i n=0 =

�
 �

K
 �

K

�
=

�
0

jn = 0 i

�
(5.17a)

j	 real
K 0 (B )i n=0 =

�
 �

K 0

 �
K 0

�
=

�
0

jn = 0 i

�
: (5.17b)
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where jn = 0 i denotes the state belonging to the zeroth Landau level. For a real magnetic
�eld, the zeroth Landau level has a nonzero component corresponding to the B sublattice in
the K valley and to the A sublattice in the K 0 valley. Therefore, the valley and sublattice
pseudospin coincide for the zeroth order Landau level in a real magnetic �eld. Considering
the wavefunctions from Eq. (5.14) this corresponds toc1 = 0 and c2 6= 0. Therefore, we
conclude that even though the two sublattices are decoupled both contribute to the total
density of states. This can be easily seen by considering the electron density,� = h	 j	 i ,
for the two valley with c1 = 0

� K = h	 K (B )j	 K (B )i = jc2j2h�j�i ; (5.18a)

� K 0 = h	 K 0(B )j	 K 0(B )i = jc2j2h�j�i : (5.18b)

Evidently, Eq. (5.18) means that the sublattices are decoupled at the zeroth Landau level
in the presence of a real magnetic �eld [82].

Zeroth Landau level in a pseudomagnetic �eld

We now return to the situation of the pseudomagnetic �eld with the wavefunction Eq. (5.15).
For the zero order pseudo Landau level, we havec1 = 0 from the analogy with the real
magnetic �eld. Consequently, the electron density for the two independent parts of the
wavefunction (K and K 0) in the pseudomagnetic case is given by

h	 K (B )j	 K (B )i = h	 K 0(� B )j	 K 0(� B )i = jc2j2h�j�i ; (5.19)

where the expression forj	 K (B )i and j	 K 0(� B )i is given by Eq. (5.14) with c1 = 0. We
conclude that the zeroth order pLL only has a �nite contribution on one sublattice.

This analysis of the sublattice polarization of the zeroth pLL is con�rmed by the
numerical calculations in Fig. 5.3. The sublattice with the �nite contribution is determined
by the direction of the triaxial strain because this determines the sign of theB -�eld
experienced by theK valley. The solution Eq. (5.17) assumes a positiveB -�eld in the K
valley yielding c1 = 0. If the K valley experienced a negativeB -�eld, we get a vanishing
contribution for the opposite sublattice. The strain direction shown in Fig. 5.1 gives rise to
a positive PMF in the K valley resulting in a zeroth pLL with �nite contribution on the B
sublattice. Rotating this strain �eld by 60 � gives a similar but negative PMF, meaning that
the zeroth pLL level would switch to the A sublattice. This special connection between
the sublattices, the zero order pLL and the direction of the triaxial strain is investigated
in more detail in the next section.

5.3.3 Rotation of triaxial strain

In general a rotation of the triaxial strain by an angle � from the armchair direction as
illustrated in Fig. 5.4 leads to a PMF of the form Bs = B0 cos(3� ) and we observe a
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maximum B -�eld when the strain is aligned with the armchair direction. On the other
hand, a triaxial strain in the zigzag direction does not give rise to a PMF at all. Even if
the magnitude of the displacement �eld is the same but rotated to the zigzag direction,
we do not observe any changes in the low energy spectrum.

In Fig. 5.5 we show the average DOS on sublattice B for di�erent rotation angles of
the triaxial strain �eld. First, we observe a decrease in the strength of the PMF as we
rotate the strain �eld away from � = 0 � . The decreasing PMF is evident from the lower
energy of the �rst pLL. Furthermore, we notice the more developed Landau peaks for
strain along the armchair directions (� = 0 � and � = 60 � ). Finally, the linear density
of states observed at� = 30 � (zigzag direction) con�rms the prediction of zero PMF for
zigzag type strain. Clearly, the formation of a PMF is highly dependent on the direction
of strain meaning that strain along multiple directions (ex. rotational symmetric strain)
becomes a mixture of di�erent peaks, therefore, making the observation of pLLs di�cult.

At last, the results in Fig. 5.5 show the existence of a zeroth pLL peak for� =
0� ; 10� ; 20� whereas we do not observe any zero order peak for� = 40 � ; 50� ; 60� . This
con�rms the predicted dependence of the zeroth order pLL on the sign of the PMF,
because the strain at� = 0 � to � = 30 � corresponds to +B0 while the strain at � = 30 � to
� = 60 � corresponds to� B0. Consequently, the zero order peak exists on the B sublattice
for positive PMFs in agreement with the discussion in the previous section.

Triaxial strain - arbitrary direction

z(r; � ) = 0 ; (5.20a)

u (r; � ) =
�

ux

uy

�
=

�
u0r 2 sin(3[� + � ])
u0r 2 cos(3[� + � ])

�
; (5.20b)

Bs = 8u0 cos(3� ): (5.20c)

Figure 5.4: Illustration of a triax-
ial strain rotated an angle � from the
armchair direction.
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Figure 5.5: The average density of states for sublattice B at the center of a triaxial strain
corresponding to Bs = 100 T and a radius R = 15 nm. The di�erent curves correspond
to di�erent rotational angles � as de�ned in Fig. 5.4.
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5.3.4 Finite size e�ects

We now investigate the inuence of the �nite size of the strained region. Fig. 5.6 shows
the LDOS on the B sublattice for a triaxial strain corresponding to Bs = 100 T and with
radius R = 5 ; 10 and 15 nm and smoothing� = 3 nm. For Bs = 100 T we get a magnetic
length of lB � 2:6 nm from Eq. (5.10). For a radius much larger than lB , we conclude
from Fig. 5.6 that the pLL's are clearly formed. In contrast, the pLLs vanish when lB is
comparable or even smaller than the size of the strained region. This trend is observed
for the R = 5 nm (black) in Fig. 5.6. Instead, we notice the formation of additional states
around E = 0 for small R. These are so called quasi bound states and are also observed
for small real magnetic dots [172].

In conclusion, regions of constant PMF must be bigger than the corresponding mag-
netic length for pLLs to be formed, even in the case of the \correct" type of armchair
triaxial strain. This important observation is useful when we consider inhomogeneous
PMFs in later sections.

Figure 5.6: Average density of states on sublattice B at the center of a triaxial strain correspond-
ing to Bs = 100 T for radius R = 5 ; 10 and 15 nm. Each case has a smoothing region of width
� = 3 nm and the curves are translated vertically with respect to each other.

5.4 Finite inhomogeneous strain �eld

Experimentally Levy et al.[161] demonstrated that inhomogeneous strain �elds in nanobub-
bles accidentally formed on a platinum (111) surface, showed signatures of pseudo Landau
levels in the density of states corresponding to �eld strengths of up to 300 T. Since these
pioneering studies other experiments have tried to control the formation of nanobubbles
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[151] or the applied strain via pressure [149, 162], substrate interactions [173] or substrate
structuring [163]. Most of these approaches aim at deforming the graphene lattice locally
resulting in a spatially concentrated PMF. However, reliable ways to control strain will
in general not produce the special triaxial strain as discussed in the last section. In-
stead, we concentrate on rotationally symmetric displacement �elds. We can imagine this
class of strain �elds to be obtained by experiments modifying the substrate or pressur-
izing semi-freestanding graphene. We rely on classical continuum mechanics to obtain
the displacement �elds of local deformations (or nanobubbles). It is expected to provide
qualitatively similar results as strain �elds obtained using molecular dynamic simulations.
The main di�erence lies in the actual magnitude of the strain as discussed in Refs. [154]
and [149].

Figure 5.7: Collection of pseudomagnetic �eld distributions for di�erent strain pro�les.

In this section we describe local deformations giving rise to inhomogeneous strain �elds
and PMFs. We consider four di�erent types of strain �elds:

ˆ Finite triaxial strain

ˆ Gaussian height pro�le

ˆ Membrane bubble model

ˆ Non-linear plate bubble model

The resulting PMF for each strain �eld is collected in Fig. 5.7 for comparison. In the rest
of this chapter, we consider these local deformations (or nanobubbles) and their e�ect on
the electronic properties. For future reference we describe the di�erent models in more
detail below.
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Finite triaxial strain

We use the triaxial strain considered previously and apply a spherical smoothing
modifying the magnitude of the triaxial strain by a Gaussian damping [168],

z(r; � ) = 0 ; (5.21a)

u (r; � ) =
�

ux

uy

�
=

�
u0r 2 sin(3� )
u0r 2 cos(3� )

�
e� r 2

2� 2 ; (5.21b)

where u0 is the strength of the strain and � is the width of the damping.

Using Eqs. (5.3) and (5.6) the PMF becomes

Bs = 8u0
~�

2ea0

�
r 4

8� 4 �
r 2

� 2 + 1
�

e� r 2

2� 2 : (5.21c)

The damping decreases the size of the PMF away from the center, creating a spatially
varying PMF evident from Fig. 5.8. In consequence, we do not expect pseudo Landau
levels unless the Gaussian damping is small, e�ectively leaving a large part of the
triaxial strain pro�le unchanged to produce a constant PMF.

Figure 5.8: The pseudomagnetic
�eld distribution of the �nite triax-
ial strain pro�le in Eq. (5.21c).

Rotationally symmetric strain �elds

The remaining strain pro�les for local deformations are rotationally symmetric. We there-
fore use polar coordinatesr = ( r; � ) for the in-plane deformation and z(r ) = z for the
out-of-plane deformation,

u =
�

ux

uy

�
=

�
ur cos(� )
ur sin(� )

�
: (5.22)

We make use of the identities

@x = cos(� )@r �
1
r

sin(� )@� ; (5.23a)

@y = sin( � )@r +
1
r

cos(� )@� : (5.23b)
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Combining Eqs. (5.3) and (5.6) gives the vector potential and corresponding PMF

A = �
~�

2ea0

�
Ax

Ay

�
= �

~�
2ea0

g(r )
�

cos(2� )
� sin(2� )

�
; (5.24a)

Bs = �
~�

2ea0

�
2g(r )

r
� @r g(r )

�
sin(3� ); (5.24b)

where we have used the de�nition

g(r ) = @r ur �
ur

r
+

1
2

(@r z)2: (5.25)

We notice from Eq. (5.24b) that the PMF is always 3-fold symmetric for rotationally
symmetric displacements. The magnitude, on the other hand, depends on both the in-
plane and out-of-plane displacement. This is clearly seen in Fig. 5.7 showing the PMF for
a Gaussian height pro�le, the membrane bubble model and non-linear plate bubble model.

Gaussian height pro�le

The Gaussian height pro�le is a simple deection of the graphene sheet according to
a Gaussian pro�le.

z(r; � ) = h0e� r 2

2� 2 ; (5.26a)

u (r; � ) =
�

ux

uy

�
=

�
0
0

�
; (5.26b)

where � is width and h0 is the height of the bubble. Using Eq. (5.24b) the PMF
becomes

Bs =
~�

2ea0

r 3h2
0

� 6 e� r 2

2� 2 sin(3� ): (5.26c)

The Gaussian pro�le is an example of a rotationally symmetric pro�le without sharp
edge e�ects. However, as only the out-of-plane component of the position is changed,
a rather large height is required to obtain sizable strain �elds.

Figure 5.9: The pseudomagnetic
�eld distribution of the gaussian
height pro�le in Eq. (5.26c).
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Next, we analyze rotationally symmetric deformations using membrane and non-linear
plate theories [174] as derived in Appendix A. This corresponds to the experimental situ-
ation of pressurizing a graphene sheet which is free standing forr < R and adhere to the
substrate for r > R .

Describing the sheet as an elastic plate under a central loadp, the central equation
governing the deformation is given by Eq. (A.15)

@i N ij = 0 ; (5.27a)

Dr 4z + N ij @i @j z + p = 0 ; (5.27b)

where i; j = ( x; y), D is the bending modulus related to the Young's modus and Poisson's
ratio [175], N ij is the tensor of the axial force de�ned in Appendix A. A general solution
to Eq. (5.27) does not exist. Instead, we use two general approximations: The membrane
model and the non-linear plate model.

Membrane model ( r < R )

The membrane bubble model ignores the bending sti�ness (D = 0) and provides
a relatively simple approximate solution to the continuum mechanic problem for a
vanishing deection at r = R, see Appendix A.

z(r; � ) = h0

�
1 �

r 2

R2

�
; (5.28a)

u (r; � ) =
�
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uy

�
=

0

@u0
r
R

�
1 � r

R

�
;

0

1

A ; (5.28b)

Bs =
~�u 0

2ea0R2 sin(3� ): (5.28c)

whereR is the radius of the bubble,h0 is the height andu0 is given byu0 = 1 :136h2
0=R

[174]. The membrane model results in a kink" at the edge which is similar to the
clamped nanobubbles studied in Ref. [149] using molecular dynamics.

Figure 5.10: The pseudomagnetic
�eld distribution of the membrane
model in Eq. (5.28c).
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Non-linear plate model ( r < R )

The non-linear plate bubble model is an extension of the linear plate solution to the
elastic plate problem in continuum mechanics, see Appendix A. The non-linear plate
model combines the standard out-of-plane solution from the linear plate solution
with a non-linear in-plane displacement taking into account a �nite in-plane force.

z(r; � ) = h0

�
1 �

r 2

R2

� 2

(5.29a)

u (r; � ) =
�

ur

u�

�
=

�
r (R � r )(c1 + c2r );

0

�
; (5.29b)

Bs =
~�

2ea0

�
(c1 � c2R) �

32h2
0r 3

R6

�
1 �

r 2

R2

��
sin(3� ): (5.29c)

where R is the radius of the bubble, h0 is the height and the constants arec1 =
1:308h2

0=R3 and c1 = � 1:931h2
0=R4 [174].

Figure 5.11: The pseudomagnetic
�eld distribution of the non-linear
plate model in Eq. (5.29c).
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5.5 Local density of states in inhomogeneous strain �elds

In this section, we consider the local density of states of the rotationally symmetric bubble
models. We focus mainly on the membrane model as this provides a good example of the
highly relevant pressurized (or gas-inated) bubbles. The membrane model has a relatively
simple PMF distribution while at the same time showing signi�cant edge e�ects caused by
the sharp edge atr = R. Many of the features we discuss below emerge from the strongly
clamped nature of this bubble type. The results are published as part of Paper II. The
patched Green's function methodpresented in Chapter 2 enables calculations of real space
LDOS maps investigating single bubbles in an extended system without applying periodic
boundary conditions which may introduce interactions between neighboring bubbles.

Throughout this section we consider a membrane bubble with dimensionsR = 10 nm
and h0 = 3 nm corresponding to a maximum strain of approximately 10 %. The strain
pro�le is given by Eq. (5.28) and gives rise to the PMF distribution shown in Fig. 5.12.
First, we analyze real space LDOS maps demonstrating a perfect sublattice polarization
caused by the PMF. Secondly, we study the combination of pseudo-Landau levels and
Friedel oscillations governing the resonances of the membrane bubble. At last we compare
the membrane bubble to a non-linear plate bubble of the same dimensions discussing both
the formation of pseudo-Landau levels and Friedel oscillations in the two models.

5.5.1 Sublattice polarization

We �rst investigate real space LDOS maps of the bubble region where the PMF is threefold
symmetric as shown in Fig. 5.12a. The threefold symmetry from the PMF is found to be
reproduced in the LDOS maps at all energies. An example is shown in Fig. 5.12b-c
where real space LDOS maps for the two sublattices are shown, clearly demonstrating the
threefold symmetry of the PMF distribution.

Considering the two LDOS maps in Fig. 5.12b-c belonging to the two sublattices,
we also notice the perfect asymmetry or sublattice polarization, as we obtain the LDOS
map for the B sublattice by a 60� -rotation of the A sublattice. Earlier studies of Gaussian
bubbles [152, 158, 176] also noticed this sublattice polarization and in fact the polarization
is present for all the strain models presented in Section 5.4. Below we demonstrate how the
polarization is a general consequence of the opposite sign of the PMF in the two valleys.

Following the analysis in Section 5.3, we �rst consider the generic wavefunction in
the K -valley, j	 K i = c1j�i + c2j�i , where j�i denotes the wavefunction component on
the A sublattice and j�i denotes component on the B sublattice while the coe�cients c1

and c2 determine the relative size of the wavefunction components. Using the symmetry
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Figure 5.12: (a) The PMF distribution of the membrane model is repeated from Fig. 5.10. (b-c)
The real space LDOS map of a resonant state atE = 0 :06jt j using the membrane bubble model
for (b) sublattice A and (c) sublattice B.

arguments of Section 5.3 this wavefunction behaves di�erently in the two valleys depending
on the sign of theB -�eld. For reference we repeat the wavefunction analysis from Eq. (5.14)

B � B

j	 K i c1j�i + c2j�i c2j�i + c1j�i

j	 K 0i c2j�i + c1j�i c1j�i + c2j�i

(5.30)

In case of a PMF the total wavefunction, j	 i , has contributions from the two valleys with
opposite sign of theB -�eld, j	 i = j	 K (B )i + j	 K 0(� B )i . Using this we obtain the total
electron density � = h	 j	 i for the two di�erent parts of the wavefunction,

h	 K (B )j	 K (B )i = h	 K 0(� B )j	 K 0(� B )i = jc1j2h�j�i + jc2j2h�j�i : (5.31)

From Eq. (5.31) we conclude that we get the same contribution to the LDOS from the
two valleys. Consequently, if the LDOS of the B sublattice follows the PMF in the K -
valley causing it to increase when the PMF is positive, then Eq. (5.31) concludes that the
contribution to the LDOS from the opposite valley is similar. This e�ectively gives rise to
the characteristic sublattice polarization illustrated in Fig. 5.12 and is a generic feature of
pseudomagnetic �elds causing the two valleys to experience equal but oppositeB -�elds.

5.5.2 Pseudo Landau levels and Friedel oscillations in clamped bubbles

Above we observed a good correspondence between the real space LDOS maps and the
threefold symmetric PMF distribution. However, if we consider the LDOS maps at several
energies in Fig. 5.13, we notice additional details. In Fig. 5.14a we therefore calculate the
energy dependent LDOS at the positions indicated by symbols (square, circle and triangle)
in Fig. 5.13. We �rst consider the average of the LDOS within the `slice' containing the
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symbols, shown by the bottom (red) curve in Fig. 5.14a. Two distinct oscillation types
are observed, and we argue that these can be divided into Friedel-type and PMF-induced
features.

At high energies in particular we notice regularly spaced oscillations with an approx-
imate period of ~vF �= 2R. These are consistent with Friedel-type oscillations related to
the size of the structure and emerging from interferences between electrons scattered at
opposite sides of the bubble. An exact treatment needs to take into account the renormal-
ized Fermi velocity, vF , due to the average change in bond length. [177] At lower energies,
we observe distinct peaks which are not equally spaced (the �rst two appear atE1 and
E2). We will show that these are due to pseudomagnetic e�ects and we refer to them as
pseudo Landau levels.

Besides the Friedel oscillation associated with the bubble radius, we also have similar
oscillations associated with the distances to the di�erent edges of the bubble. These
features are highly position dependent, and explain the di�erences between the three
single position curves in Fig. 5.14. These position dependent oscillations are washed out,
when we consider the average. Accordingly, only the oscillations which dependent on
the structure's size are seen in the average (bottom curve in Fig. 5.14). However, at
individual positions these oscillations can have a considerable impact. In this way, the
individual curves in Fig. 5.14a show that the pLL peak at E2 is only dominant for the
points indicated by the square and triangle. The E2 peak is suppressed by Friedel-type
interference at the circle point, which is also clear from the LDOS map in Fig. 5.13b.

The amplitude of the Friedel-type oscillations is determined by the strength of scatter-
ing near the bubble edges. The clamped edge atr = R gives rise to signi�cant strain �elds

Figure 5.13: (a-c) Real space LDOS maps for the A sublattice taken at the energies
E1 = 0 :06jt j, E2 = 0 :089jt j and E3 = 0 :23jt j, corresponding to energies of the �rst two
pseudo Landau levels and an energy dominated by Friedel type oscillations, respectively.
The energies and the symbols correspond the ones used in Fig. 5.14. The scale bar is 5
nm.



96 5.5. Local density of states in inhomogeneous strain �elds

(a) (b)

Figure 5.14: (a) The LDOS as a function of energy for the three positions indicated in
Fig. 5.13 and for the average of the `slice' of the bubble region containing the symbols. The
dashed lines indicate the LDOS without the bubble. The curves are shifted with respect to
each other to increase visibility. (b) The di�erence in LDOS as a function of energy for the
point indicated with a triangle on Fig. 5.13. We show both the full calculation (full line)
and an arti�cial system containing only the perturbation for a small region at the edge
of the bubble (dashed line). We adjust the average hopping constant in the calculation
of the arti�cial system to match the full calculation. Inset: The peak energies 1-4 as a
function of

p
n, where n is the peak number.

along this edge, leading to a sharp, strong perturbation. More realistic pro�les calculated
from molecular dynamics also indicate strong perturbations near the edges of clamped
bubbles [149]. Our results indicate that edge scattering e�ects may signi�cantly a�ect
LDOS behavior in clamped bubble systems and even mask PMF-induced features.

To treat the oscillations due to the feature size and edge sharpness in more detail, we
calculate the LDOS for an arti�cial system only taking into account the strain �eld along
a small ring around the edge, see Fig. 5.14b (dashed red line). In this way, only Friedel-
type features are expected within the structure. If we compare to the full calculation (full
black line in Fig. 5.14b), we notice that the oscillations at higher energies are present in
both calculations, whereas the sharp peaks are only present in the full calculation. This
con�rms the Friedel nature of the higher energy oscillations and suggests the lower energy
peaks are due to an alternative mechanism.

To con�rm that the alternative mechanism responsible for the sharp peaks are pseu-
domagnetic e�ects, we compare the peak positions to the standard form expected for

Landau levels in graphene from Eq. (5.9),En = sign( n)
q

2e~v2
F Bsn. The peaks labeled

1-4 in Fig. 5.14b display the
p

n dependence characteristic of Landau levels in graphene,
as shown in the inset of Fig. 5.14b. The size of the PMF can furthermore be inferred from
the distance between the peaks corresponding to the slope of the inset curve. In this way,
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we determine the size of the PMF to be approximatelyBs � 30 T.

To further analyze the two di�erent types of peaks, we compare the full strain pro�le
to the same strain pro�le only containing the out-of-plane displacement. The membrane
out-of-plane displacement is special because it does not produce any PMF according to
the e�ective Dirac description. This can easily be seen by inserting the height pro�le
Eq. (5.28a) into the general expression for the PMF Eq. (5.24b). This is not a general
feature of rotationally symmetric bubble models, but is a special feature of the membrane
model which we can exploit to study Friedel and pseudo-Landau features separately.

In order to study the real space patterns together with the energy spectrum, we cal-
culate the angle averaged LDOS as a function of the energy and distance from the center
of the bubble,

� � s(r; E ) =
1
N

X

jr i j= r

�
� i (r i ; E ) � � 0

i (r i ; E )
�
; (5.32)

where � i and � 0
i is the density of states at sitei with and without the bubble, respectively.

In Fig. 5.15, we plot the � � s as a function of both E and r for both the full membrane
model and \the out-of-plane only" contribution. It is noted that the height is smaller
in the out-of-plane only calculation as the in-plane and out-of-plane strain compensate
to produce an overall lower strain in the full model. In Fig. 5.15a we therefore choose a
maximal height of the out-of-plane only contribution giving roughly the same maximal
strain.

Comparing Figs. 5.15a and 5.15b, we notice both have a high DOS at the edge of the
bubble (r � 10 nm) close to zero energy. This peak is related to the sharp edge present in
both calculations and are not directly related to pseudomagnetic e�ects, but due to the
arti�cial nature of the \the out-of-plane only" calculation the peak is larger here.

Figure 5.15: A contour showing the average � LDOS for the bubble region (r < R = 10 nm),
see Eq. (5.32), as a function of energy and position for (a) the out-of-plane contribution to the
membrane model and (b) the full membrane model.



98 5.5. Local density of states in inhomogeneous strain �elds

If we now consider the rest of the spectrum for the \out-of-plane only" contour in
Fig. 5.15a, we immediately notice the regular spaced vertical lines. These lines indicate
that the DOS is higher on average in the bubble region at these energies but eventual real
space oscillations as a function ofr are averaged out when considering all angles. In this
way, we consider the regular spaced vertical lines in the (E; r )-contour as a signature of
the standing wave pattern characteristic of Friedel oscillations.

If we compare the \out-of-plane only" calculation to the full membrane calculation
Fig. 5.15b, we notice similar vertical lines at higher energies comparable to those from
the \out-of-plane only" contour. However, the peaks at lower energies are qualitatively
di�erent. The vertical lines are no longer uninterrupted in the full calculation and they
are no longer regularly spaced as discussed above. This signi�es that these peaks have a
di�erent origin and are not caused solely by a standing wave resonance. The \out-of-plane
only" and the full membrane strain pro�le both gives rise to resonances, but those not
originating from standing wave e�ects are not present in the case without a PMF and we
again conclude that the resonant states at lower energies are related to the existence of
a PMF. We must therefore be careful to distinguish between the two type of resonances
when investigating the electronic e�ects of PMFs induced by inhomogeneous strain �elds.

5.5.3 Comparison of membrane and non-linear plate models for gas in-
ated bubbles

In the previous section we considered the membrane model when searching for signatures
of PMFs in strained bubbles. We concluded that Landau-like features where superimposed
with Friedel-type oscillations caused by the sharp edge features. It is therefore worth to
consider a bubble with a softer edge pro�le than the membrane bubble when considering
the formation of pseudo Landau-like states.

Where the membrane model is suitable for very large bubbles when bending sti�ness
can be neglected, we have also introduced the non-linear plate model which is more ap-
propriate for including bending e�ects near the edges of smaller bubbles, see Section 5.4.
Comparing the height and strain pro�le of the membrane and non-linear plate model
(Fig. 5.16a), we notice that the non-linear plate bubble has much smoother edges than the
membrane model. Therefore, we expect the non-linear plate bubble to result in weaker
Friedel oscillations.

Considering the average LDOS caused by the two models it is clear that the higher
energy oscillations are considerably suppressed in the non-linear plate model compared to
the membrane one, see Fig. 5.16b. However, in the non-linear plate model there is also
an absence of sharp Landau-level-like peaks following a

p
n distribution, with the possible

exception of the peak denoted by the red circle.

We notice from Fig. 5.16a that the non-linear plate model gives rise to an additional
node in the strain pro�le. This node in turn also produce a radial uctuation in the sign
and strength of the PMF (Fig. 5.17) which is consistent with the lack of pseudo Landau
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(a) (b)

Figure 5.16: (a) The radial height and strain pro�le for the membrane and non-linear plate
model. (b) The average DOS with the two bubble models (membrane and non-linear plate) with
R = 10 nm and h0 = 3 nm. Important peaks in each are highlighted by symbols and corresponding
real space LDOS maps are shown in Fig. 5.17.

level features observed in Fig. 5.16b. In the non-linear plate model, the center of the bubble
has a �eld distribution similar to that of the membrane case, and the central region of the
LDOS map in Fig. 5.17 (red, circle) resembles that of the corresponding membrane model
peak (blue, circle). The Friedel features for the high energies in Fig. 5.16b (triangle) are
more blurred than for the membrane case, as expected for scattering from a less-sharp
bubble edge. It seems that bubble shapes which reduce Friedel oscillations also e�ectively
remove pseudomagnetic Landau e�ects due to the less uniform PMFs induced by their
strain pro�les.

Finally, we note that the low energy peaks (square symbol) are localized at the edges
in both bubble types. It is not directly related to pseudomagnetic e�ects, but emerges due
to the interface between the pristine graphene region outside the bubble and the strained,
perturbed region within. The presence of localized states at this boundary acts somewhat
like a potential, and induces the scattering which lies behind the Friedel oscillations in
these bubbles. We note that these states in the non-linear plate bubble are far less localized
than their membrane bubble counterparts, due to an edge which is no longer as sharp.
This in turn leads to the smoothening and averaging out of the Friedel oscillations that
we observed earlier for the non-linear plate bubbles. Soft-edged bubbles therefore display
weaker interference e�ects, however their shape pro�les also resulted in pseudomagnetic
�eld distributions unsuitable for pseudo-Landau level formation. Our results therefore
suggest that it will be di�cult to obtain reliable Landau level features in such gas inated
systems, unlike bubbles formed on substrates which often display the triaxial-type strain
giving rise to a more constant PMF suitable for the formation of Landau levels.
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Figure 5.17: The PMF distributions for (top) membrane and (bottom) non-linear plate model.
Real space LDOS maps for sublattice A for the peaks highlighted in Fig. 5.16a. The scale bar in
all LDOS maps is 5nm.
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5.6 Transport through individual pseudomagnetic dots

In the previous sections we have considered features in the density of states. In this section,
we now turn to the transport properties of pseudomagnetic dots. Previous studies have
considered the transport through nanobubbles in graphene nanoribbons [178] or situations
where the whole system is subjected to a constant PMF [179, 180]. The latter is an example
of systems containing Landau quantization where the �rst introduce the strain �elds into a
nanoribbon making analysis less transparent as the PMF e�ect competes with the general
nanoribbon features. Instead, we embed the local deformations into an in�nite sheet by
using the patched Green's function methodderived in Chapter 2. The two probes are
placed on opposite sites of the deformation as shown in Fig. 5.18 and we use at probes
coupling to an area of 1� 2 nm2 to ensure that the setup corresponds to the impinging of a
plane wave onto the deformation. We focus on systems which donot give rise to ordinary
pseudo Landau levels quantization like those discussed in Section 5.3, as these are di�cult
to obtain for more experimental relevant strain pro�les as discussed in Section 5.5.2. In
consequence, we consider PMFs giving rise to quasi bound states and discuss the current
ow trough these.

Figure 5.18: Artistic sketch illustrating the
dual probe setup around a strained bubble
(dot).

5.6.1 Gauss height pro�le

We start by considering the Gaussian height pro�le as introduced in Section 5.4. It has
a threefold symmetric PMF causing the same sublattice polarization in the LDOS as the
membrane bubble. The main di�erence between this bubble model and the others treated
in this thesis, is that the Gaussian height pro�le does not have sharp edge features. Fur-
thermore, the magnetic type states leading to the form of pseudo Landau levels discussed
for the membrane bubble requires very extreme parameter choices. We therefore focus on
a situation with moderate strain. Using h0 = 3 nm and � = 5 nm gives a maximum strain
of approximately � � 6%. In this way, we use the Gaussian height pro�le as an example of
a strain pro�le without signi�cant Friedel type e�ects as discussed in the last section for
the membrane and non-linear plate model. Consequently, we see no sharp edge features in
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(a)

Figure 5.19: (a) Transmission between two probes� 300 nm apart with a locally deformed
region giving rise to a PMF in between. The setup is schematically shown in the inset. The shaded
area corresponds to the average LDOS within the strained region. The marks corresponds to the
bond current maps in Fig. 5.20. (b) The real space LDOS map for sublattice B at the energy
corresponding to the energy marked by the circle. The white dashed line denotes ther = 2 �
region.

the LDOS distribution, see Fig. 5.19b. Similar to the membrane model studied in the last
section, the Gaussian height pro�le also gives rise to sublattice polarization. Evidently,
the LDOS map in Fig. 5.19b contains only one sublattice and we obtain a similar map for
the opposite sublattice by 60� -rotation.

We consider the dual probe setup shown in the inset of Fig. 5.19a and calculate the
transmission between the probes. Fig. 5.19a shows both the transmission through strained
region and the average LDOS within it. When we discuss the transmission curve it is
worth remembering the position of the probes compared to the bubble. The input probe
is placed far away from the bubble ensuring a plane wave impinging on the bubble region.
The second probe is placed along the same line (x-axis) but much closer to the bubble
region. Therefore the transmission reects the scattered electron ow from an incoming
plane wave in thex-direction. If the second probe is moved around the bubble region, the
transmission spectrum changes reecting the electrons scattering in di�erent directions.

From Fig. 5.19a, we �rst notice that the increased DOS is accompanied by a focusing of
the electron ow. The focusing makes the transmission in the presence of the bubble larger
than the pristine transmission. Similarly, we observe energies where the transmission is
strongly suppressed blocking the electron ow through the bubble.

To study the transmission spectrum in more detail we calculate the bond currents
leaving the farthest probe (250 nm from the bubble). The real space bond current maps
corresponding to the highlighted energies in Fig. 5.19a are shown in Fig. 5.20a-c. The
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current direction is indicated by the arrow and the relative size of the bond current com-
pared to the pristine value, jJ j=jJ0j, is given by the colormap. In Fig. 5.20a, we associate
the initial focusing with a vortex pattern concentrated in the opposite side of the bubble
compared to the incoming wave. We show this situation schematically in the inset of
Fig. 5.20d. Furthermore, we plot jJ j=jJ0j a distance of 5 nm from the bubble region, as a
function of the angle � with the x-axis. The angular scattering of Fig. 5.20a is shown in
Fig. 5.20d. We note a signi�cant increase in current at � = 0 � caused by the two vortices
at the right side of the bubble. However, the focusing is quite broad with a minimum at
� = 90 �

As we increase the energy further, di�erent vortices come into resonance. For the trans-
mission peak highlighted by the circle in Fig. 5.19a we observe a narrower pseudomagnetic
focusing e�ect through the bubble. The electron ow is directed into a narrow ow by six
counterrevolting votices as shown in the inset of Fig. 5.20e. Here the angular scattering
in Fig. 5.20e reveals that electrons are guided into the region� � � 30� . Furthermore, we
observe small directional peaks at� � � 60� (zigzag direction) which correspond to the
line where two counterpropagating vortices meet. The two small side peaks are therefore
an \in-going" current into the bubble region caused by the two vortices.

Finally, we consider the suppression of the transmission highlighted by the triangle
in Fig. 5.19. The bond current map in Fig. 5.20c reveals a current in the bubble region.
However, the current is guided away from direct transmission along thex-axis. In this
way, the angular scattering 5 nm away from the bubble reveals a signi�cant current at
� � � 120� . Comparing the angular scattering (Fig. 5.20f) with the bond current map
(Fig. 5.20c) shows that the peaks at� � 120� reect an overall avoidance of the bubble
region leaving the transmission suppressed.

Fig. 5.20 demonstrates a pseudomagnetic focusing of the current through a rotationally
symmetric bubble. Similarly, we observed an anti-focusing where the current avoids the
strained region depleting the current after the bubble. Controlling the strain or the elec-
tron energy enables switching between the focusing and anti-focusing regime. However,
the Gaussian height pro�le does not show any pseudomagnetic Landau-like states which
we observed in relation to the membrane bubble in the previous section. Furthermore, the
Gaussian bump creates a smooth transition into the pristine graphene sheet; therefore no
sharp edge e�ects are observed which we found to be very important in relation to the
more realistic gas-inated bubbles. The e�ect of both sharp edge features and pseudo-
magnetic Landau-like states are discussed in the next section treating the bubble using
the membrane model.
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(a) (d)

(b) (e)

(c) (f)

Figure 5.20: (a-c) The bond currents incoming from the left for the marked points in Fig. 5.19.
The arrows indicate the direction of the electron ow, whereas the color denotes the magnitude
of the current. Each arrow is a sum of the individual bond currents around the position of the
arrow. (a) The focusing through the center of the bubble from two vortices. (b) The peak of the
transmission (see Fig. 5.19) through the bubble caused by a 6-fold vortex pattern comparable to
the PMF distribution. The dashed white lines correspond to the highlighted angles in (e). (c) The
suppression of electron ow trough the bubble. (d-f) The size of the bond current relative to the
pristine case 5 nm away from the gated region for the cases in (a-c). Here� = 0 � corresponds to
the x-axis. The bubble size is indicated by the dashed line corresponding tor = 2 � . Parameters
for the strain pro�le are h0 = 3 nm and � = 5 nm.
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5.6.2 Membrane bubble model

We now turn to the membrane bubble model with the same parameters used previously
(R = 10 nm and h0 = 3 nm). We consider a similar setup as in the previous section,
with the Gaussian strain pro�le replaced with the membrane, see Fig. 5.21a. The trans-
mission between two probes is given in Fig. 5.21b. At �rst we notice the similarity with
the transmission through the Gaussian strain pro�le. The initial increase of the DOS
within the strained region is accompanied by an increased transmission even surpassing
the pristine value. In contrast to the Gaussian strain pro�le the �rst transmission peak
does not correspond to a LDOS map closely resembling the PMF distribution. For the
membrane model the �rst peak in the DOS is mainly caused by an increased DOS at the
edge. Calculating the bond currents and angular scattering for this peak (Figs. 5.22a
and 5.22c), we notice that the angular scattering is very similar to the one obtained for
the Gaussian pro�le with a focusing of the current ow through the center of the bubble.
This focusing is caused by a very di�erent bond current pattern compared to the Gaussian
bump. The membrane model generates two counterpropagating vortices at the edge of the
bubble. These two vortices are located where the LDOS is high, see inset of Fig. 5.21b.
The focusing e�ect caused by the vortices at the edges is similar to the one caused by the
potential discussed in Chapter 4 and since they are located on the left side of the bubble,
the angular scattering becomes quite broad albeit strongest at� = 0 � .

After the �rst peak, the transmission decreases following the trend seen for the Gaus-
sian bump. However, the membrane model gives rise to several modes in the DOS related
to the standing wave patterns in the bubble region. The next peak is therefore associated
with the higher order mode where the increased DOS in the bubble region is followed by

(b)

Figure 5.21: (a) Schematic of the dual probe setup with a membrane bubble in between. (b)
Transmission spectrum for the dual probe setup in (a) using bubble parametersR = 10 nm and
h0 = 3 nm. The shaded area indicate the average DOS in the bubble region. The symbols
correspond to the bond current maps in Fig. 5.22a-b and the insets show the real space LDOS map
for one sublattice at the given energy.
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(a) (c)

(b) (d)

Figure 5.22: (a-b) The bond currents incoming from the left for the marked points in Fig. 5.21.
Here the arrows indicate the direction of the electron ow, whereas the color denotes the magnitude
of the current. Each arrow is a sum of the individual bond currents around the position of the
arrow. (a) The current focusing through the center of the bubble at the �rst transmission peak
caused by a vortex pattern at the bubble edge. (b) The Landau-type state with a six-fold vortex
pattern guiding the current. The dashed white lines correspond to the highlighted angles in (d).
(c-d) The size of the bond current relative to the pristine value as a function of the angle� with
the x-axis 5 nm away from the bubble region for the cases in (a-b). The bubble size is indicated
by the dashed line at r = R. Parameters for the strain pro�le are h0 = 3 nm and R = 10 nm.

an increased focusing through the pseudomagnetic dot. In addition, we notice a distinct
peak at the position of the �rst pseudo-Landau type state highlighted by the circle. The
bond current map at this energy is shown in Fig. 5.22b. Here we identify the six-fold
vortex pattern as schematically shown in the inset of Fig. 5.22d. This also shows a very
general feature of current paths in pseudomagnetic dots: the current tends to be largest
in regions in between the positive and negative �elds similar to a snake like current in
real magnetic �elds. This was also observed in studies of bandgap opening using strain
[147]. The distinct vortex pattern gives rise to three preferred scattering directions, see
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Fig. 5.22d. Surprisingly these directions do no correspond to transition lines at� = � 60�

between the negative and positive PMF (zigzag direction). Investigating the bond current
map we notice that the central vortex is dominating and almost suppresses the rightmost
vortices. The current in the central vortex is guided at the bubble edge leaving the bubble
region approximately at armchair directions � = 30 � .

Fig. 5.22a demonstrates how the sharp edge features give rise to a focusing of the
current similar to the pseudomagnetic focusing seen for the Gaussian height pro�le in
the previous section. Furthermore, Fig. 5.22b considered the Landau-type states of the
membrane bubble. This reveals a pseudomagnetic guiding of the current in a clearly
formed vortex pattern corresponding to the PMF, but the pseudomagnetic focusing is not
as obvious as for the Gaussian bump. However, the vortex patterns responsible for the
focusing and guiding e�ects only correspond to the PMF in one of the valleys. This opens
the possibility of manipulating the valley degree of freedom. We discuss this in further
detail in the next section.

5.6.3 Pseudomagnetic valley �ltering

We have considered both the Gaussian and membrane strain pro�le and their e�ect on the
current through the resulting PMF. In both cases we �nd vortex patterns when considering
the bond current maps. These vortices are associated with spatial regions experiencing a

Figure 5.23: Schematic of an the incoming wave containing both valleys impigning on a bubble
where each valley experience opposite PMFs. The PMF in theK and K 0 valleys results in
enhanced reection of the K valley and enhanced transmission of theK 0 valley.
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speci�c PMF. This can be explained by classical electron trajectories in a magnetic �eld.
Each direction of the PMF can be associated with a vortex (or magnetic orbital) in a
given direction. When we change the energy di�erent vortices come into resonance giving
rise to the current paths. However, each spatial region experiences both a positive and a
negative PMF corresponding to theK and K 0 valley. Only one of the valleys experiences
a PMF matching a transmitting vortex pattern as schematically shown in Fig. 5.23. The
valley where the sign of the PMF does not match transmission will preferentially be
backscattered. In conclusion, the incoming wave contains both valleys, but since the
two valleys experience a di�erent PMF they get scattered di�erently. E�ectively, we
conclude that the rotationally symmetric strain �elds resulting in three-fold symmetric
PMFs should increase the presence of one valley upon transmission { the signature of
a valley �lter. The manipulation of the valley degree of freedom is commonly referred
to as valleytronics [156] and the realization mechanisms creating valley polarized current
is a necessary requirement. Valley �lters have been suggested by di�erent means such
as nanoribbon constrictions [181], strained waveguides [182] or special grain boundaries
[183, 184].
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5.6.4 Finite triaxial strain

Finally, we turn to the �nite triaxial strain introduced in Section 5.4. The dual probe
setup is shown in Fig. 5.24a together with the transmission spectrum and average DOS in
the strained region (Fig. 5.24b). As mentioned earlier, the Gaussian decay of the triaxial
strain causes an inhomogeneous PMF that does not give rise to pseudo-Landau levels
unless the strained region is signi�cant larger than a nanobubble. Instead, we focus on a
relatively small strained region (� = 5 nm) giving rise to quasi bound states as observed
from the DOS in Fig. 5.24b. These quasi bound states are roughly regularly spaced and
are evidently not equivalent to pseudo-Landau levels.

At �rst, we consider the transmission peak highlighted by a square in Fig. 5.25b. This
peak does not correspond directly to a peak in the DOS. We calculate the bond current
map together with the angular scattering at r = 2 � (Figs. 5.25a and 5.25d). We clearly
notice a focusing through the strained region similar to the one observed for the previous
bubble models. However, no vortex pattern is visible and the angular scattering decays
smoothly from a maximum at � = 0 � to � = � 90� .

If we now consider the peaks in the DOS, we notice that these are associated with
asymmetric dips or Fano-type resonances in the transmission. This is true for all of the
sharp DOS peaks where the lifetime of the quasi bound state is long corresponding to
narrow peaks in energy space. For the broad peaks we no longer observe the characteristic
asymmetric dip in the transmission after the peak. Instead we experience a regular trans-

(a) (b)

Figure 5.24: (a) Schematic showing the dual probe setup with a �nite triaxial strained region
in between. (b) Transmission spectrum for the dual probe setup where the shaded area indicate
the average DOS in the strained region. The symbols correspond to the bond current maps in
Fig. 5.25a-c and the strain pro�le uses the parameters� = 5 nm and u0 = 10 � 5 nm� 1 corresponding
to a maximum PMF of � 300 T in the center of the strained region and a maximum strain of
� � 2:5%.
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mission peak at the same energy of the peak in the DOS. Now turning to the bond current
map for the second peak in the DOS (circle), we observe a di�erent behavior compared
to all the previous cases, see Fig. 5.25b. Here transmission dip is caused by a splitting
of the current. As a result, we see two preferred scattering directions at� = � 90� . As
indicated by the inset in Fig. 5.25e this can be explained by the bending of the trajectory
caused by either the positive or negative PMF associated with the two valleys. Following
this argument the strain �eld leads to a \beam splitter" not only separating the current
in two, but also separating depending on valley.

At last we consider the third peak in the DOS (triangle), which also gives rise to
a transmission dip. Fig. 5.25f reveals multiple preferred scattering directions at� =
0; � 60� ; � 90� ; � 120� . From the bond current map in Fig. 5.25c, we see that it is a result of
a snake like current running around the strained region. The peaks at� = 0 ; � 60� ; � 120�

corresponds to \outgoing" currents whereas the peaks at� = � 90� are caused by a current
ow into the strained region. The snake like current path can be understood as the second
order mode corresponding to the beam splitting one. The current is not just bending once,
but makes a full period as shown schematically in the inset of Fig. 5.25f giving rise to the
multiple scattering directions.

The calculations in Fig. 5.25 demonstrates di�erent transport features for quasi bound
states in pseudomagnetic dots. Such quasi bound states have also been discussed for
real magnetic dots [172, 185]. Each quasi bound state is associated with an asymmetric
transmission peak focusing the current after the dot. However, at resonance the quasi
bound states give rise to trajectories connected to theB -�eld experienced in the di�erent
regions of the pseudomagnetic dot. These trajectories give rise to intriguing e�ects such
as snake currents around the dot and beam splitting with suggested valley polarization.
This demonstrates the possibilities for pseudomagnetic current guiding in locally strained
regions by manipulating both the current trajectories and valley degree of freedom by a
single pseudomagnetic dot. However, the interaction between such pseudomagnetic dots
is still unexplored together with the average e�ect of an ensemble of such dots. The latter
is the focus of the next section where we go beyond the dual probe investigation of single
pseudomagnetic dots and instead consider a full array using an order-N method based on
the Kubo-Greenwood formalism.
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(a) (d)

(b) (e)

(c) (f)

Figure 5.25: (a-b) The bond current maps for a �nite strained region at the energies marked in
Fig. 5.24. The arrows indicate the direction and the color denotes the magnitude of the current.
Each arrow is a sum of the individual bond currents around the position of the arrow. (a) The
bubble focusing through the center of the bubble associated with the �rst transmission peak. (b)
The current is split by the PMF at the second peak in the DOS. (c) The third peak in DOS causes
a snake like current path around the strained region. The dashed line corresponds tor = 2 � .
(c-d) The size of the bond current relative to the pristine value at r = 2 � as a function of the
angle � with the y-axis. The strain pro�le uses the parameters� = 5 nm and u0 = 10 � 5 nm� 1

corresponding to a maximum PMF of � 300 T at the center of the strained region.
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5.7 Pseudomagnetic dot arrays

Until now we have considered individual bubble-like deformations using LDOS and bond
currents. In this section we briey consider a periodic array of pseudomagnetic dots
supporting pseudo-Landau levels. Such arrays have been proposed experimentally by
exploiting substrate interactions [151] or actual substrate nanostructuring [163].

The methods developed for multiple probes in Chapter 2 focused on calculatinglocal
and nanoscale transport properties, however, this makes them ill suited for studying large
periodic features. Instead, we apply the popular Kubo-Greenwood propagation method
[15, 186{188]. This approach has been successfully applied to a wide range of graphene sys-
tems including polycrystalline samples [189, 190] and samples including chemically doping
[116, 191] or other type of defects [192{197]. As opposed to the patched Green's function
method, the calculation approach based on the Kubo-Greenwood formula only allows for
the calculation of average sample properties. Consequently, the e�ect of probes or leads is
not described by such an approach. Likewise we cannot directly use the Kubo-Greenwood
formalism to describe local properties. However, using this approach we can calculate the
properties of samples containing millions of atoms e�ectively treating \lab-sized" systems.
Below we briey outline central concepts of the Kubo-Greenwood propagation method
and then apply it to analyze the conductivity of a periodic array of pseudomagnetic dots
supporting Landau quantization.

5.7.1 Kubo-Greenwood propagation methods - a quick safari

In linear response theory the Kubo-Greenwood formula for the diagonal DC conductivity,
� xx , reads [15],

� xx (! ) =
2�e 2~




Z 1

�1
dE

f (E) � f (E � ~! )
~!

Tr
�
vx � (E � H )vx � (E + ~! � H )

�
; (5.33)

where 
 is the area of the sample and vx is the x component of the velocity operator.
The factor of 2 accounts for the spin degeneracy. Limiting ourselves to the case of zero
temperature and zero frequency, Eq. (5.33) reduces to

� xx (E ) =
2�e 2~



Tr

�
vx � (E � H )vx � (E � H )

�
: (5.34)

We now introduce the mean square spreading of the wavefunction, which is a central
quantity for numerical evaluation of Eq. (5.34)

� X 2(E; t ) =


(X (t) � X (0))2�

; (5.35)
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where X (t) = Uy(t)XU (t) is the position operator in the Heisenberg representation and
U(t) = e � iH t=~ is the time evolution operator. We can show that the conductivity can be
expressed using this mean square spreading [15, 198]

� xx =
1
2

e2� (E ) lim
t !1

d
dt

h� X 2(E; t )i �
1
2

e2� (E ) lim
t !1

Dx (E; t ); (5.36)

where the density of states is� (E ) = Tr
�
� (E �H )

�
=
 and we have introduced the di�usion

coe�cient in the last equation

Dx (E; t ) =
h� X 2(E; t )i

t
: (5.37)

For the isotropic case we usually considerD(E; t ) = Dx (E; t )+ Dy(E; t ) = 2 Dx (E; t ) when
calculating the conductivity.

From Eq. (5.36), we conclude that the central object in the calculation is the mean
square spreading of the wavepacket, �X 2(E; t ). We can express this quantity conveniently
as [15]

� X 2(E; t ) =
Tr

�
� (E � H )(X (t) � X (0))2

�

Tr
�
� (E � H )

�

=
Tr

�
[X; U (t)]y� (E � H )[X; U (t)]

�

Tr
�
� (E � H )

� ; (5.38)

where we have used the relationX (t) � X (0) = Uy(t)[X; U (t)] where [�; �] is the commu-
tator.

A computationally e�ective method to evaluate the traces in Eq. (5.38) is to take
advantage of the self-averaging feature in large systems. If we consider a random phase
state of the form

j RP i =
1

p
M

MX

i =1

e2i�� i ji i ; (5.39)

where � i is a random number in [0; 1] and ji i is the i -th orbital. For su�ciently large
systems self-averaging lets the trace of an operatorB be approximated by Tr[B ] �
h RP jB j RP i . Using this approximation greatly simpli�es Eq. (5.38)

� X 2(E; t ) =
h 0

RP (t)j� (E � H )j 0
RP (t)i

h RP j� (E � H )j RP i
; (5.40)

where j 0
RP (t)i = [ X; U (t)]j RP i . We notice that the numerator and denominator in

Eq. (5.40) have the same form and we can use e�cient order-N methods like Lanczos
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tridiagonalization [199] or Kernel Polynomial methods[200] to evaluate the traces.In order
to obtain the states j 0

RP (t)i , we expand the time evolution operatorU(t) in Chebyshev
polynomials [186] and propagate the initial random phase state in time. For each time
step we usej 0

RP (t)i to calculate the mean square spread from Eq. (5.40) and the di�usion
coe�cient from Eq. (5.37). The behavior of D (t) reveals the transport mechanism which
can generally be divided into three main regimes: ballistic, di�usive and localization, see
Fig. 5.26. In the ballistic regime electrons travel through the system without experiencing
any scattering and D(t) remains linear with a slope of v2

F . The di�usive regime, on the
other hand, is characterized by a saturation ofD(t) for long times. In this regime, we can
use the saturation to de�ne quantities such as mean free pathle and relaxation time � .
At last, in the localization regime where strong disorder causes quantum interference, we
observe a decay of the di�usion coe�cient following approximately � 1=t. In this regime,
the mean square spreading �X (E; t ) reaches a constant value related to the localization
length.

Figure 5.26: Sketch of the typical behavior of the di�usion coe�cient for the three characteristic
regimes: (a) ballistic, (b) di�usive and (c) localization.
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Below we summarize essential quantities and derived quantities like carrier velocity,
mean free path and mobility.

Kubo-Greenwood O(N ) method

Central quantities for the propagation method calculated at each time step:

Mean square spreading: �X 2(E; t ) =
Tr

�
� (E � H )(X (t) � X (0))2

�

Tr
�
� (E � H )

� (5.41a)

Conductivity: � xx (E; t ) =
1
2

e2� (E )Dx (E; t ) (5.41b)

Di�usion coe�cient: Dx (E; t ) =
� X 2(E; t )

t
(5.41c)

Carrier velocity: vx (E; t ) =

p
� X 2(E; t )

t
(5.41d)

Propagated length: L x (E; t ) = 2
p

� X 2(E; t ) (5.41e)

Kubo-Greenwood O(N ) method - di�usive regime

In the di�usive regime, we assume that D(E; t ) = Dx (E; t ) + Dy(E; t ) saturate at a
value D max (E ) from which we calculate semi-classical quantities

Semi-classical conductivity: � sc(E ) =
1
4

e2� (E )D max (E ) (5.42a)

Velocity: v(E ) = lim
t ! 0

D(E; t )
t

(5.42b)

Mean free path: le(E ) =
D max (E )

2v(E)
(5.42c)

Relaxation time: � (E ) =
v(E)
le(E )

(5.42d)

Electron mobility: � (E ) =
� sc(E )
e n(E)

(5.42e)

Charge density: n(E) =
Z

� (E )dE (5.42f)
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5.7.2 Superlattice of nanobubbles

In this section we apply the Kubo-Greenwood method presented above to calculate the
average sample properties for an array of pseudomagnetic dots. We consider a circular
dot with radius R subjected to a triaxial strain pro�le u = ( u0r 2 sin(3� ); u0r 2 cos(� )), see
Eq. (5.11). Outside this region, we apply a smoothing to the strain tensor making the
strain decrease away from the dot. Using a Gaussian decay� exp

�
� (r � R)2=2� 2

�
for

r > R the PMF is e�ectively zero at r = R + 3 � as shown in Fig. 5.27a. As discussed in
Section 5.3, the triaxial strain at r < R gives rise to a constant PMF and the smoothing
region gives rise to a varying PMF of opposite sign in a ring around the constant region,
see Fig. 5.27a. We repeat this pseudomagnetic dot in a periodic array with a lattice
constant L as shown in Fig. 5.27b. This system can be considered as an idealized example
of the array of self-formed bubble deformations showing pseudo Landau level signatures
envisioned experimentally by J. Lu et al.[151].

Figure 5.27: (a) A single pseudomagnetic dot showing the region of constant PMF surrounded
by a region with PMF of opposite sign. (b) The superlattice of pseudomagnetic dots with a littice
constant L ..

In the calculations presented below, we use a sample containing 6:4 � 106 atoms cor-
responding to a sample size of approximately 400 nm� 350 nm. The state propagation
uses time steps of �t = 10 fs and a total simulation time tmax = 7 :5 ps. The expansion
of the time evolution operator uses Chebyshev polynomials corresponding to coe�cients
larger than 10� 12. Finally, the traces are approximated via the initial phase state and the
Lanczos method using 2000 iterations with a broadening included through an imaginary
part of � = 5 meV.

To attain convergence and enforce a saturation of the di�usion coe�cient, we further-
more superimpose a random distribution of long range disorder [194, 201]. We consider
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impurities with onsite energy Vn =
P

i � i e�j r n � r i j2=(2� 2 ) where r i is the center of the i -
th impurity, the maximum onsite energy is � i 2 [� W=2; W=2], W = 2 jt0j and � =

p
3a

with a = 0 :245 nm. To ensure that the pseudomagnetic dots are the dominant source of
scattering we use a low impurity concentration ofc = 0 :01%; 0:05% and 0:1%.

(a) (b)

Figure 5.28: (a) Density of states for the strain array with L = 200a, R = 40a, � = 10a and a
strain corresponding to 600 T. The result without the strain array is indicated by the black dashed
curve. Both calculations include a 0:05% concentration of long range impurities as explained in
the main text. (b) Conductivity, � xx (E; t max ), for di�erent impurity concentrations. It should
be noted that the choice of plotting � xx (E; t max ) makes the curve dependent on the maximum
calculation time. This is mainly important for the low energy regime where localization behavior
is observed.

First, we consider the density of states of the pseudomagnetic dot array withL = 200a,
R = 40a and � = 10a with a = 0 :246 nm and a strain �eld corresponding to 600 T (a
maximum strain of � 14% for the given dot dimensions), see Fig. 5.28a. With this PMF
the characteristic magnetic length is smaller than the dot size and we expect the formation
of Landau quantization. Calculating the DOS of the full PMF array (Fig. 5.28a), we clearly
see the pseudo-Landau levels and especially the zeroth order peak. The peak features are
superimposed with the linear dispersion characteristic of pristine graphene (black, dashed).

To study the transport properties, we �rst calculate the conductivity, � xx (E; t max ),
for the di�erent impurity concentrations, see Fig. 5.28b. The conductivity decreases with
increased impurity concentration for most of the energy spectrum. We immediately notice
that the higher order Landau peaks do not translate to special features in the conductivity.
To characterize the e�ect of the pseudo Landau levels at higher energies, we consider
the mean free path (Fig. 5.29a) in the di�usive regime asle(E ) = D max (E )=2vF where
D(E) = Dx (E ) + Dy(E ) and vF is taken as the pristine Fermi velocity vF = 8 :6 � 105

m/s.

The mean free path with (full) and without (dashed) the pseudomagnetic dot array
clearly show features inle(E ) related to the states in the pseudomagnetic dots. Overall,
we observe a decrease of the mean free path, compared to the system without the pseudo-
magnetic dots, caused by the presence of additional scattering induced by the strain �eld.
Importantly, we furthermore notice signi�cant dips caused by the presence of the pseudo-
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magnetic dots corresponding to the pseudo Landau level features. The di�usion coe�cient
at energies around the �rst Landau level, shown in Fig. 5.29b, reveals a di�usive transport
regime, where the presence of Landau quantization increases the scattering induced on
the pristine-like states. The decrease of the di�usion coe�cient is, however, compensated
by an increase of the DOS, e�ectively leaving the conductivity unchanged. This reveals
that any delocalized Landau states compete with the induced scattering caused by these
states upon the pristine behavior and, as evidenced by the dips in the mean free path, the
scattering is the most important e�ect at higher energies.

Figure 5.29: (a) The mean free path for impurity concentrations 0:01% (blue) and 0:05% (red).
The full lines denote calculationswith impurities and the dashed curves indicate calculations with-
out. Note that the c = 0 :01% curve is rescaled. The re-scaled DOS is also shown for reference
(black curve). (b) The average di�usion coe�cient for the energies marked by square, circle and
triangle symbols in (a).

Next, we consider the low energy regime aroundE = 0 where the DOS is dominated
by the zeroth order pseudo Landau level. This level is special because the pristine DOS
vanishes at E = 0 and because it exhibits a strong sublattice polarization as discussed
in Section 5.3. In Fig. 5.30a-b we show the conductivity and mean free path in the low
energy regime for di�erent impurity concentrations. We observe a suppression of the
conductivity around E = 0 where it even goes below the minimum of the semi-classical
value, � 0 = 4e2

�h (black dashed). The value of� 0 has been demonstrated to �x the minimum
semi-classical conductivity in disordered graphene systems [196, 202] and separates two
di�erent transport regimes. These two regimes can be considered using the time evolution
of the di�usion coe�cient D (E; t ) = Dx (E; t ) + Dy(E; t ), see Fig. 5.30c-f.

For � xx > � 0 the system remains metallic and di�usive which is evident from the
di�usion coe�cient in Fig. 5.30c (diamond) where all impurity concentrations give rise to
di�usive behavior. Decreasing the energy we �nd energies where the di�erent impurity
concentrations give rise to di�erent transport regimes. In this way the energy highlighted
by the triangle in Fig. 5.30a exhibits a di�usive regime for the lowest impurity concen-
tration (0 :01%) and a weak localization for the higher concentrations (0:05% and 0:1%).
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Figure 5.30: (a) A zoom of the conductivities from Fig. 5.28b for di�erent impurity concen-
trations. The location of the minimum semi-classical conductivity � 0 = 4e2

�h is indicated by the
horizontal dashed line. (b) A zoom around the Dirac point for the mean free path from Fig. 5.29.
(c-f) Time evolution of the di�usion coe�cient for di�erent impurity concentration at the energies
marked by (c) diamond, (d) triangle, (e) circle and (f) square in (a).

On the other hand, when � xx < � 0 on Fig. 5.30a all impurity concentrations give rise
to a similar transport regime. We notice that the di�usion coe�cient reaches a saturation
regime after 1 ps on Fig. 5.30e indicating a di�usive regime. However, at much longer
time scales we observe a time-dependent decay of the di�usion coe�cient regardless of
impurity density, hence, indicating the existence of weak localization e�ects. Indeed the
low energy regime exhibits a transition from di�usive to localization behavior, however, it
is unlikely that the pseudo-Landau levels generate an actual metal-to-insulator transition
as the localization does not give rise to a speci�c transition point as seen in relation to
the quantized Hall conductance for real magnetic �elds. [190, 203, 204].

Finally, we notice the special nature of the Dirac point (E = 0). The di�usion coe�-
cient for the Dirac point (Fig. 5.30f) exhibits a qualitatively di�erent behavior compared
to the energies around the Dirac point. In Fig. 5.30f, we still observe weak localization
behavior but the magnitude of the di�usion coe�cients are opposite compared to the other
energies shown. At the Dirac point the disorder tends to induce a weak percolation re-
sponsible for the larger di�usion coe�cient at higher impurity concentrations. This causes
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the small peak-like feature at the Dirac point and a similar e�ect is observed with real
magnetic �elds in polycrystalline samples [190].

Summarizing we have analyzed the pseudomagnetic dot array supporting pseudo-
Landau levels superimposed onto the pristine DOS. The zeroth Landau level at the Dirac
point is driving the system towards localization behavior. This suggests the possibility of
switching the current at low energy. We could imagine the network of pseudomagnetic dots
to be experimentally tuneable by pressure, temperature or similar which would change the
mean free path from � 160 nm with no strain to the very small values when including
strain thus allowing for switching behavior dependent on strain. At higher energies, on the
other hand, the Landau states in the pseudomagnetic dots induce signi�cant scattering on
the pristine behavior.
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5.8 Summary

Triaxial strain and pseudo Landau levels

A triaxial strain along the armchair direction gives rise
to a constant pseudomagnetic �eld which in turn leads
to Landau quantization without the presence of a real
magnetic �eld. Using a tight binding approach including
the strain through altered hopping parameters, we demon-
strated that the pseudomagnetic induced Landau levels fol-
lowed the usual

p
Bn behavior of Landau levels for mass-

less Dirac fermions. The zeroth Landau level was shown
to only exist on one sublattice depending on the sign of
the pseudomagnetic �eld caused by the strain. Rotation
of the triaxial strain with an angle � with respect to the
armchair direction resulted in a variation of the pseudo-
magnetic �eld, Bs = B0 cos(3� ), causing a transition of
the zero order peak to the opposite sublattice for a rota-
tion of � = 60 � .

Sublattice polarization and strong edge e�ects

We studied the local and averaged densities of states in
rotationally symmetric graphene bubbles embedded in in-
�nite graphene sheets using the patched Green's function
approach. A threefold symmetric pseudomagnetic �eld
was shown to be generic for the rotationally symmetric
systems. Furthermore, we demonstrated a distinct sublat-
tice polarization using real space LDOS maps.
We determined that pseudo-Landau level features in sharp-
edged bubbles may be hidden by interference e�ects due
to electron scattering at the bubble edges. Softer-edged
bubbles were found to display weaker interference e�ects,
however their shape pro�les also resulted in pseudomag-
netic �eld distributions unsuitable for pseudo Landau level
formation. Our results suggest that it will be di�cult to
obtain reliable Landau level features in such gas inated
systems.
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Transport in pseudomagnetic dots

We considered the transport through a rotationally
symmetric Gaussian bump and demonstrated pseu-
domagnetic focusing caused by a vortex pattern cor-
responding to the PMF distribution. Similarly, we
showed an anti-focusing depleting the current after the
bubble.

The sharp edge features of the membrane model caus-
ing an increased DOS at the bubble edge also exhib-
ited a vortex pattern focusing the current into a broad
angle. Besides the edge e�ects, the membrane bub-
ble showed signi�cant vortex patterns matching the or-
bitals of the PMF for the pseudo Landau-like states.

The rotationally symmetric strain �eld was proposed
to act like a valley �lter since the two valleys should be
scattered di�erently. The two valleys experience op-
posite PMFs meaning that only one valley should give
rise to trajectories guiding the current through the bub-
ble. In this way, the other valley will be preferentially
backscattered.

We demonstrated the existence of quasi bound states
in a pseudomagnetic dot caused by a �nite triaxial
strained region. At resonance the quasi bound states
give rise to trajectories connected to the spatially vary-
ing PMF in the dot. The trajectories showed intriguing
e�ects such as snake current and beam splitting with a
suggested valley polarization.

Finally, we considered arrays of pseudomagnetic dots
using a Kubo-Greenwood propagation approach which
was also briey summarized. We demonstrated a com-
petition between delocalized pseudo-Landau states and
the scattering induced by these states upon the pristine
behavior. At higher energies the scattering is the domi-
nant e�ect decreasing the mean free path at the pseudo-
Landau levels whereas the zeroth pseudo-Landau level
exhibits localization behavior.



CHAPTER6
Leaving the phase coherent regime:

a mean �eld approach to disorder

Until now we have only considered the phase coherent regime where the defect or nanostruc-
ture is the only source of scattering. The only exception was the Kubo-Greenwood propagation
method. However, this method does not allow for inclusion of the probes which is an essen-
tial part of the multi-probe setup. Instead we focus on methods which potentially could be
combined with thepatched Green's function method.

Going beyond the coherent regime means that the coherence length becomes comparable
or smaller than the characteristic system size, which in our case is the probe separation. In this
context, we consider dephasing in the single particle description caused by elastic scattering
from defects or impurities other than the main nanostructure. Realistic device materials contain
many types of unavoidable and random sources of elastic scattering such as atomistic defects,
vacancies, edge roughness etc.

In this chapter we discuss transport in such randomly disordered systems through mean
�eld theory. We introduce the Coherent Potential Approximation (CPA) approach [205] which
replaces the disorder average with an e�ective medium characterized by a self-energy. Extend-
ing the CPA theory to transport calculations, we briey outline the Vertex-Correction (VC)
to the transmission through the e�ective medium. The combined CPA-VC scheme is �nally
applied to the simple example of substitutional doping in graphene nanoribbons. Here we
compare di�erent levels of accuracy within the CPA-VC scheme and their performance while
reproducing the results of Ref. [206].

6.1 Mean �eld theory for disorder

In a randomly disordered system, the device Hamiltonian depends on the con�guration of
individual defects. Each disorder con�guration gives rise to di�erent transport properties
and we need to average over many con�gurations to get the average properties of the
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material. Such an average can be carried out by generating many con�gurations for a
given disorder concentration and calculate the transport properties for each individual
con�guration. However, such brute force analysis is computationally expensive if possible
at all. It is therefore desired to obtain the average physical quantities without computing
each impurity con�guration individually. Aside from only treating systems where the
con�gurational average can be performed with reasonable computational cost, two general
approaches exists to deal with this problem.

The �rst approach is to apply special methods allowing for very large sample sizes
in order to take advantage of self-averagingfeatures. In this way, the e�ect of random
disorder can be described without having to calculate di�erent realizations. The Kubo-
Greenwood method discussed in Section 5.7.1 is such a method, as it scales linearly with
the system size allowing for systems containing millions of atoms. However, as mentioned
earlier the Kubo-Greenwood approach only allows for calculation of system parameters
and does not allow for the inclusion of the geometrical e�ects from probe positions.

The second approach to avoid the computationally expensive con�gurational average
is to apply mean �eld theories. Mean �eld theories replace the randomly disordered
material by an e�ective medium with the same properties. We consider the so-called
Coherent Potential Approximation (CPA) which derives a diagonal self-energy describing
the e�ect of statistically independent scatterers. The basic idea behind this technique
is to replace the con�gurational averaged Green's function,hGi with an e�ective Green's
function having the properties of the averaged system. The CPA gives an approximation to
the average Green's functionhGi , however, properties like transmission are calculated using
products of Green's functions such ash� RG� L Gyi . In general, hGi � L hGyi 6= hG� L Gyi
and we apply so-calledvertex corrections (VC) to determine hGGyi � h GihGyi allowing for
calculations of averaged quantities such as transmission.

The derivation of the CPA-VC formalism presented in the following sections uses ar-
guments of the original papers by P. Soven [205] and B. Velicky [207, 208] adapted to the
Green's function formalism as presented in the textbook by E. N. Economou [97]. Alterna-
tive derivations leading to an equivalent set of equations has been formulated recently by
Y. Zhu et al.[209]. They employ an elegant approach based on the formalism of contour
ordered non-equillibrium Green's functions where the con�gurational average is carried
out on the complex-time contour. This approach is denoted the non-equillibrium coherent
potential approximation (NECPA) and we have con�rmed numerically that the NECPA
result is identical to the CPA-VC approach presented below.
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6.2 Green's function in the Coherent Potential Approximation
(CPA)

The aim of the CPA approach is to determine an e�ective GF, �G, which describes the
average GFhGi obtained by averaging over an ensemble of disorder con�gurations. We
want to construct the e�ective GF so it di�ers from the pristine GF only by a self energy
� cpa. Therefore the central problem is to determine � cpa such that

hGi = �G =
�
E � H 0 � � L=R � � cpa� � 1; (6.1)

where � L=R is the self-energy due to the left and right lead where we assume zero disorder,
hGi is the con�guration averaged Green function and H 0 is the pristine Hamiltonian of
the device area.

We need to connect �G to the GF for a speci�c con�guration with the Hamiltonian
H = H 0 + V where V =

P
i (� i � � i; 0) is a random diagonal perturbation. Here � i; 0 is the

pristine value of the i 'th onsite and � i is a random variable taking on values� iq with the
probability x iq where q denotes the type of impurity. It follows that

P
q x iq = 1. The GF

for a single con�guration then becomesG =
�
E � H 0 � � L=R � V

� � 1. We can write the
Dyson equation forG starting from the e�ective medium GF �G and applying the di�erence
between the two systemsV � � cpa,

G = �G + �G(V � � cpa)G: (6.2)

Using the t-matrix formalism we can furthermore write

G = �G + �GT �G; (6.3)

where the t-matrix is given as

T =
V � � cpa

1 � �G(V � � cpa)

= ( V � � cpa) + ( V � � cpa) �GT: (6.4)

Taking the con�gurational average of the Green function in Eq. (6.2) and using the con-
dition Eq. (6.1), hGi = �G we get the central CPA condition

hGi = �G + �GhTi �G ! h Ti = 0 ; (6.5)

where we have used thath�Gi = �G because�G does not contain any random elements (like
V which varies between di�erent con�gurations making the average di�erent from the
individual contributions).
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The exact solution to this is complicated. In the CPA the so-called \single-site-
approximation" (SSA) is usually applied. The SSA considers the scatterers as statistically
independent meaning that we neglect the scattering from clusters of impurities and replace
the full t-matrix with a sum of the contributions from single scatterers. In this way the
t-matrix becomes a diagonal matrix, where thei -th diagonal element can take the value
tcpa
iq with a probability of x iq leading to an average given by,

ht i i =
X

q

x iq t iq : (6.6)

Applying the SSA reduces the CPA condition Eq. (6.5) to

ht i i = 0 : (6.7)

The transfer matrix, t iq , for a given type of onsite valueViq = � iq � � i; 0 can be inferred
from the full t-matrix in Eq. (6.4)

tcpa
iq = ( Viq � � cpa

i )
�
1 � �Gii (Viq � � cpa

i )
� � 1 =

�
(Viq � � cpa

i ) � 1 � �Gii
� � 1

= �G� 1
ii

�
1

1 � �Gii (Viq � � cpa
i )

� 1
�
; (6.8a)

where �Gii = [ �G]ii . To solve for � cpa, we use Eq. (6.8a) and the conditionht i i = 0 to obtain

ht i i =
X

q

x iq �G� 1
ii

�
1

1 � �Gii (Viq � � cpa
i )

� 1
�

= 0 ; (6.9)

which can be recast into the form

� cpa
i =

X

q

x iq
Viq

1 � �Gii (Viq � � cpa
i )

: (6.10)

This equation can be solved self-consistently. Moreover, the expression simpli�es if we
only consider a single type of defect, meaning that we have a host site and a disorder site
with the concentration c

� cpa
i =

cViq

1 � �Gii (Viq � � cpa
i )

: (6.11)

if we furthermore assume that the defect is a vacancy,� q ! 1 , Eq. (6.11) simpli�es to

� cpa
i = � c �G� 1

ii : (6.12)

However, we can also make further approximations to the general case of Eq. (6.10) to
ease the implementation. In the so-called low concentration approximation (LCA), we
exploit that both �G and � cpa depend on the concentration of defects. Therefore, if we
limit ourselves to �rst order in the concentrations x iq , we obtain

� cpa
i =

X

q

x iq t0;iq (6.13a)

t0;iq = Viq
�
1 � G0;ii Viq

� � 1 =
�

(� iq � � i; 0) � 1 � G0;ii

� � 1

: (6.13b)

where G0 =
�
E � H 0

�
is the pristine GF without disorder and CPA term.
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6.3 Transport using vertex corrections (CPA-VC)

We have determined the e�ective medium GF corresponding to the con�gurationaly aver-
aged system. We can use this to determine physical quantities related to the GF such as the
density of states. However, the transmission contains products of GFsT = Tr

�
� RG� L Gy

�
,

which results in a con�gurational average of the form

hT i = Tr
�
� RhG� L Gyi

�
; (6.14)

where we have used that �R is not a random variable meaning that we can take it outside
the averaging. We notice the need for additional treatment since in generalhG� L Gyi 6=
hGi � L hGyi due to multiple scattering by the impurities. Using that G = �G + �GT �G and
the condition hTi = 0 we get

hT i = Tr
�
� R �G� L �Gy� + Tr

�
� Rh�GT �G� L �Gyi

�
+ Tr

�
� Rh�G� L �GyT y �Gyi

�
(6.15)

+ Tr
�
� Rh�GT �G� L �GyT y �Gyi

�

= Tr
�
� R �G� L �Gy� + Tr

�
� R �G
 �Gy� ; (6.16)

where the last equality follows from the fact that neither � L nor �G are random variables
and can be taken outside the averagingi.e. h�GT �G� L �Gyi = �GhTi �G� L �Gy = 0 because
hTi = 0. The quantity 
 is denoted the vertex correction and is given by


 = hT �G� L �GyT yi (6.17)

Eq. (6.16) basically separates the transmission into two parts. The �rst corresponds to
the usual form of the transmission where the pristine GF have been replaced by the GF
of the e�ective medium. This term therefore corresponds to phase coherent transport
through the e�ective medium. The second term describes the di�usive contribution to
the transmission. The coherent term corresponds to calculating the transmission from
the individual transmission amplitudes ai as T / j

P
i ai j2. The coherent term therefore

includes phase information and ultimately leads to quantum interference e�ects. On the
other hand, the second term corresponds to di�usive transport giving the transmission
as T /

P
i jai j2 which does not include phase information and therefore does not lead to

quantum interference.

To utilize Eq. (6.16) we need to determine the vertex correction 
. Again, we make the
single-site approximation as in the derivation of the CPA self-energy, hence, 
 becomes
diagonal (
 ij = � ij 
 i ). We notice that 
 has the form hB � L B yi whereB is a non-averaged
operator. This is the same form as in Eq. (6.14) therefore giving rise to the same form
of solution. Moreover, we take into account that hTi = 0 and that the di�erent sites are
statistically independent meaning hTm :::T y

n i = � hTn :::T yi .


 i =
X

q

x iq t iq
� �G� L �Gy�

ii ty
iq +

X

j 6= i

X

q

x iq t iq
� �Gij 
 j �Gy

ji

�
ii ty

iq ; (6.18)
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where the single-site scattering matrix is given by Eq. (6.8a)

t iq =
Viq � � cpa

1 � �Gii (Viq � � cpa
i )

(6.19)

Again we can simplify the implementation by employing the low concentration approxi-
mation (LCA) and only keep terms to �rst order in the concentration x iq


 i =
X

q

x iq t0;iq
�
G0� L Gy

0

�
ii ty

0;iq ; (6.20)

where t0;iq is given by Eq. (6.13b).

All results derived in this section have considered �nite device regions but the theory
can be formulated generally for translational invariant systems in the transverse direction
using Bloch's theorem [209, 210]. In this way, the CPA-VC overcomes a major computa-
tional challenge o�ered by disordered systems: the broken translation symmetry precluding
the use of the standard Bloch approach.
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6.3.1 Summary of CPA-VC Technique

CPA-NVC summary

Using the CPA we replace the Green's function with an e�ective medium Green's
function by applying the self-energy � cpa.

�G =
�
E � H 0 � � L=R � � cpa� � 1; (6.21a)

where � L=R is the self energy for the leads,� iq is the onsite of impurity specie q on
site i and x iq is the probability that site i has the onsite energy� iq .

The transmission contains two terms: the ballistic transmission through the ef-
fective medium and a term describing the di�usive transport.

hT i = Tr
�
� R �G� L �Gy� + Tr

�
� R �G
 �Gy� : (6.21b)

where � L=R = i(� L=R � � L=R y) is the broadening. The self-energy, �cpa, and vertex
correction, 
, are diagonal within the single site approximation.

� cpa
i =

X

q

x iq
Viq

1 � �Gii (Viq � � cpa
i )

; (6.21c)
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ii ty
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x iq t iq �Gij 
 j �Gy
ji ty

iq :; (6.21d)

t iq =
Viq � � cpa

1 � �Gii (Viq � � cpa
i )

; (6.21e)

Viq = � iq � � i; 0: (6.21f)

Low concentration approximation

The low concentration approximation (LCA) is valid for low concentrations of defects

� cpa
i =

X

q> 0

x iq
Viq

1 � �G0;ii Viq
; (6.22a)


 i =
X

q> 0

x iq t0;iq
�
G0� L Gy

0

�
ii ty

0;iq ; (6.22b)

t0;iq = Viq
�
1 � G0;ii Viq

� � 1; (6.22c)

Viq = � iq � � i; 0: (6.22d)

We note that summation
P

q> 0 denotes all defect typesi.e. not the host site which
is taken to have onsite� 0.
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6.4 Graphene nanoribbon with nitrogen doping

In this section we study the e�ect of intentional chemical doping by nitrogen in graphene
nanoribbons (GNRs). This provides a simple case where the CPA and CPA-VC frame-
works are straightforwardly applied and studied as suggested by Refs. [211] and [212].

Chemical doping provides a natural way to alter the performance of graphene-based
devices. E�cient doping of graphene can be achieved by incorporating nitrogen (or boron)
into the pristine graphene sheet as these species can substitute for carbon atoms with-
out distorting the lattice signi�cantly. Using chemical vapor deposition (CVD) doping
concentrations of up to 10% substitution of carbon atoms with the doping atoms can be
fabricated. Early theoretical studies of the electronic properties of such samples found
that a periodic arrangement of nitrogen (or boron) dopants, forming a dopant superlat-
tice, would open a band gap. However, a random distribution of dopants among lattice
sites yields no band gap [213]. A recent study [206] has examined transmission for dif-
ferent distributions of nitrogen doping. We consider a similar setup as Ref. [206] using
the framework of CPA-VC. First, we consider symmetrical doping where the dopants have
equal probability to occupy both sublattice. Afterwards, we investigate the case ofasym-
metrical doping where the dopants only reside on one sublattice.

Figure 6.1: Schematic showing
an armchair graphene nanoribbon
with substitutional doping (red
atoms).

6.4.1 Symmetric nitrogen doping

We consider substitutional nitrogen doping symmetrically distributed between the two
sublattices. We treat GNRs with both armchair and zigzag edge terminations as the edge
geometry has proven to be essential for the electronic structure and transport properties
[214]. We model a nitrogen atom by an onsite change� iq � � 0 = t and use the CPA-
VC scheme, Eq. (6.21), to calculate the average density of states in the GNR as well as
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the transmission through the GNR. To analyze the accuracy of the CPA-VC scheme, we
compare to quantities calculated using con�gurational average over 300 individual disorder
con�gurations. The result for both armchair (AGNR) and zigzag (ZGNR) ribbons are
shown in Fig. 6.2 for a 5% concentration of nitrogen dopants.

First, we compare the CPA-VC scheme with the brute force con�gurational average.
We notice the very good agreement between the CPA and the con�gurational average
for the DOS, see Fig. 6.2a-b . It is worth noticing that the con�gurational average does
not constitute the \exact" result and are also subject to statistical error. The trans-
mission shown in Fig. 6.2c-d also exhibit good agreement between the CPA-VC and the

AGNR ZGNR

Figure 6.2: (Top) Schematic of AGNR and ZGNR. The shown AGNR has dimensionsW = 7
p

3a0

and L = 5Dac whereDac = 3a0 with a0 = 0 :142 nm. The shown ZGNR has dimensionsW = 4Dac

and L = 8
p

3a0. (a-b) Average DOS calculated using CPA self-energy and a con�gurational
average over 300 individual distributions. The shaded area corresponds to the pristine DOS for
the system. (c-d) The transmission through the GNR calculated from a con�gurational average
(black), the full CPA-VC scheme (red), the LCA (dashed red) and only including the CPA term
thus neglecting the vertex corrections (blue). The dopant concentration is 5%. AGNR parameters:
W = 40

p
3a0 � 9:8 nm and L = 40Dac � 17 nm. ZGNR parameters: W = 25Dac � 10:6 nm and

L = 50
p

3a0 � 12:3 nm.
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con�gurational average. Moreover, we conclude that even at 5%, the low concentration
approximation (LCA) gives a good agreement with the more accurate calculations. This is
especially true in the low energy regime. On the other hand, a calculation which includes
only the CPA term of Eq. (6.16) (\CPA only" in Fig. 6.2c-d), T cpa = Tr

�
� R �G� L �Gy

�
,

shows signi�cant discrepancies. This underlines the importance of the vertex correction.

Returning to the average DOS in Fig. 6.2a-b we notice a distinct electron-hole asym-
metry for both AGNR and ZGNR. For the AGNR, we observe a nearly unchanged DOS
for holes (E < 0), see Fig. 6.2a. However, we modify both electron and hole spectra for
energies beyond the �rst mode, characterized by the onset of the van-Hove singularities
characteristic of the pristine DOS. The transmission, on the other hand, does not exhibit
the same level of electron-hole asymmetry and we see that the �rst plateau persists in the
presence of dopants.

Turning to the ZGNR results, we also observe a signi�cant electron-hole asymmetry in
the DOS, see Fig. 6.2b. The sharp peak atE = 0 is associated with localized edge states
which in �rst nearest neighbor tight binding do not show up in the transmission spectrum.
On the electron side the DOS is not signi�cantly changed signifying that scattering e�ects
are less important in this regime. This is also apparent in the transmission curve in
Fig. 6.2d where the doping only introduces minor changes in the transmission. On the
hole side, however, scattering plays a dominant role smearing the plateaus of the pristine
transmission. Furthermore, we observe a suppression of the transmission through the
ZGNR on the hole side (E < 0), even though we note a signi�cant DOS in this region.

6.4.2 Asymmetric nitrogen doping

In this section, we consider asymmetric nitrogen doping as motivated by recent experi-
ments where CVD growth demonstrated the possibility for samples with large domains of
nitrogen atoms primarily occupying a single sublattice [215{218]. We therefore consider
the same devices as in the previous section following the analysis of Ref. [206] with the
dopants distributed on one sublattice.

In pristine graphene, the equivalence of the two sublattices leads the characteristic
gapless band structure. Breaking the symmetry by applying a sublattice dependent po-
tential is predicted to be similar to introducing a mass term. Consequently, a perfect
sublattice asymmetric nitrogen doping are predicted to exhibit transport gaps as well as
a electron-hole asymmetric conductivity [206, 219{222]

Using the CPA-VC approach only adding the e�ective self-energy term to one sublattice
yields both DOS and transmission through the asymmetrically doped system. Practically
this means that x iq = 0 in Eq. (6.10) for all sites belonging to one sublattice corresponding
to zero chance that a dopant atom occupies this sublattice. We again use a concentration
of 5% and the same model for nitrogen as in the previous section. The results for both
the AGNR and ZGNR are shown in Fig. 6.3.

First we consider the AGNR where the DOS exhibits electron-hole asymmetry for both
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Figure 6.3: (a-b) Average DOS and (c-d) transmission, calculated using the CPA-VC scheme for
a 5% nitrogen doping either sublattice symmetric (black,dashed) or sublattice asymmetric (red).
The parameters system sizes are the same as in Fig. 6.2.

the symmetric and asymmetric doping, see Fig. 6.3a. In the asymmetric case, however, we
notice a bandgap emerging forE < 0 caused by the e�ective mass term originating from the
sublattice dependent potential. We see that the DOS has not entirely vanished which might
be due to the small sample size where edge e�ects become increasingly important. In larger
calculations based on con�gurational average [206] and in Kubo-Greenwood calculations
of 2D graphene sheets [220] the bandgap was observed. The diminishing DOS leads to
a strong suppression of the transmission in the AGNR forE < 0, see Fig. 6.3c. This
constitutes a signi�cant di�erence compared to the symmetric doping (dashed line), where
the transmission is almost unchanged. On the other hand, the electron side is not modi�ed
signi�cantly at low energies by the introduction of the asymmetric doping showing that
the nitrogen impurities do not contribute signi�cant scattering at these energies.

When considering the ZGNR in Fig. 6.3b and 6.3d, the predicted bandgab for asym-
metric sublattice doping is seen to be sensitive to the presence of zigzag edges [206]. The
DOS is decreasing on the hole side leading to a more pronounced peak atE = 0 but
qualitatively the e�ect of the asymmetric doping is a lot less dramatic for the ZGNR. This
leads to the conclusion that the e�ective mass term created by the asymmetric doping
which created a bandgap for the AGNR is not the dominant e�ect. Instead the �nite DOS
which lead to propagation within the expected bandgap can be associated with sites near
the ribbon edge corresponding to the doped sublattice as discussed in Ref. [206].

Overall the results for the symmetric and asymmetric doping agree well with the results
of Ref. [206], demonstrating the ability of the CPA-VC approach to accurately describe
the e�ect of nitrogen doping in graphene.
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6.4.3 Computational cost

We consider the scaling of the computational cost. In Fig. 6.4a, we compare the CPU
time of calculations using the CPA-VC, LCA and con�gurational average approach. The
most computational costly operation in all the approaches is the matrix inversion. The
computational cost of a matrix inversion is N 3, where N is the total system size. The im-
plementation used in this chapter relies on such a full inversion both for the con�gurational
average and the CPA-VC/LCA calculation. However, we note that both methods can be
greatly improved using recursive schemes [209] going from aN 3 scaling to a Ncell � M 3

scaling in a recursive implementation, whereNcell is the number of recursive cells andM
is the number of sites in each cell. We therefore expect similar performance increases for
all methods using a recursive approach.

From Fig. 6.4a it is clear that the CPA-VC and LCA is more computationally e�ective
than the con�gurational average approach. For a system containing 6500 atoms the CPA-
VC is � 4 faster than the con�gurational average. Moreover, the di�erence increases with
system size making the CPA-VC/LCA much more e�ective for large systems. Furthermore,
the LCA approach is more e�ective than the full CPA-VC as it does not require the full
self-consistent calculation of the CPA self-energy in Eq. (6.10).

The above considerations disregard any so-called \self-averaging" e�ects obtained for
large disordered samples which tend to decrease the number of individual realizations
needed within a con�gurational average approach. However, the CPA-VC approach being

(a) (b)

Figure 6.4: (a) The average CPU time for the calculation using the three di�erent approaches
as a function of the system sizeN , where N is the number of atoms in the system. (b) Average
resistance ofW = 9 :8 nm wide AGNR as a function of the device length for symmetric nitrogen
doping with a 5% concentration similar to the one used in Fig. 6.2. The con�gurational average
(black) uses 300 individual distributions. The \CPA+VC" curve (red, triangle) uses both the
phase coherent and the di�usive term in Eq. (6.16) whereas \CPA only" curve (blue, circle) uses
only the phase coherent term. The dashed curve is a linear extrapolation of the blue curve showing
that the \CPA only" term increases exponentially.
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an e�ective medium theory restores the translation symmetry required by a Bloch scheme
theorem or by self-energy approaches similar to the one used extensively throughout this
thesis.

6.4.4 Scaling behavior of resistance

At last, we consider the scaling behavior using the CPA-VC. From ballistic scattering
theory it follows that a phase coherent average of transmission modes in a 1D system scales
exponentially with the device length. In a single mode conductor this can be determined
analytically as [72]

1
T (L )

= R(L) /
1
2

�
e

2L
L 0 � 1

�
; (6.23)

where L is the device length andL 0 is a length comparable to the elastic mean free path.
Evidently this is not the classical Ohmic behavior where the resistance scales linearly with
L . If we include the incoherent contribution the resistance instead becomes [72]

1
T (L)

= R(L) / L; (6.24)

giving rise to the usual form of Ohm's law. These two di�erent scalings arise due to either
coherent (Eq. (6.23)) or di�usive mechanism (Eq. (6.24)). The inclusion of dephasing
reaching the di�usive regime is at the core of the CPA-VC approach.

These two regimes are con�rmed for the CPA-VC approach by calculating the average
resistance (or 1=hT iE ) for all energies as a function of the device length using symmetric
disorder of 5%, see Fig. 6.4b. We clearly notice that the CPA-VC approach including the
di�usive term gives rise to a linear scaling 1=hT iE / L as appropriate when comparing
to the con�gurational average. On the other hand, if we only include the CPA term in
Eq. (6.16) we get a nonlinear increase of the resistance characteristic of phase coherent
transport. In conclusion the CPA-VC approach allows us to obtain the correct scaling
characteristic of di�usive transport.

The above conclusion is highly relevant in connection to the multi-probe setup, as
most experimental analyses of multi-probe systems are based on classical Ohmic behavior.
On the other hand, the theoretical framework developed in this thesis is applied in the
phase coherent regime where ballistic and quantum interference e�ects are important.
Increasing the probe separation and/or the amount of disorder would cause a transition
from the quantum regime towards the di�usive semi-classical regime. Here the CPA-VC
could be a valuable tool to allow an investigation of this transition and bridge the two
regimes.
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6.5 Summary

Nitrogen doping of graphene nanoribbons

We introduced the CPA-VC approach to treat
averaged quantities of disordered systems. The
CPA-VC calculation scheme was applied to the
case of nitrogen doping in graphene nanoribbons
using both the full and the LCA scheme. The LCA
was found to agree reasonably with the more ac-
curate calculations even for the 5 % disorder con-
centration. In addition, we demonstrated that the
CPA-VC reproduced the expectedR / L regime
of di�usive Ohmic conductors.
We furthermore investigated both the case of sym-
metric and asymmetric doping. For symmetric
doping where both sublattices are occupied by
a dopant atom with the same probability we do
not observe any bandgap formation. However, for
the asymmetric doping we demonstrate the forma-
tion of a bandgap in armchair nanoribbons. The
gap opening, however, is not observed for zigzag
nanoribbons where the dopants are shown simply
to act as additional scatterers.



CHAPTER7
Summary & Outlook

This thesis has developed theoretical and computational methods to treat multi-probe systems
within the phase coherent regime where quantum interference e�ects are signi�cant. The
central development in this thesis has been thepatched Green's function methodusing an
adaptive recursive scheme combined with a specially constructed self-energy term to treat the
extended part of the system. We can use this method to calculate the conductance between
local probes and treat the local electronic and transport properties of �nite \patches" embedded
within extended two-dimensional systems.

The developed calculation methods are applied to a broad range of phenomena related to
nanostructured graphene. In Chapter 3 we introduced the two main operation modes of a
dual-STM setup:scanningandspectroscopy. Using these two modes, we considered quantum
interference e�ects in the transmission between the two probes in the presence of simple defects
and showed how this can be applied to study scattering processes. In Chapters 4 and 5 we
extended the dual probe analysis to more complex nanostructures such as antidots, locally gated
dots and pseudomagnetic dots caused by inhomogeneous strain �elds. This demonstrated the
ability of the dual probe setup to investigate nanoscale transport phenomena where e�ects like
current guiding, focusing, depletion or similar are observed around nanostructures in graphene.
In this �nal chapter we summarize the main �ndings of the thesis and �nally we discuss the
status and possible future investigations starting from the presented systems or methods.
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Thesis summary

In Chapter 2 we developed two approaches to calculate
the transport in multi-probe setups. The integral Green's
function method allows e�cient treatment of systems with
small perturbations using a combination of analytical and
numerical integration techniques. On the other hand, the
patched Green's function methodexploits a specially con-
structed self-energy term together with an adapted recur-
sive scheme to calculate the local electronic and trans-
port properties for spatially separated \patches" within
extended systems.

Dual probe setup

Scanning mode
The dual-STM setup in scanning modeuses one station-
ary probe and one movable probe. We calculate the con-
ductance between the probes as the second probe scans
across the sample producing real space conductance maps.
These maps can be used to study directional behavior and
quantum interference e�ects around defects and crystalline
edges. Furthermore, the Fourier transform of the real space
maps can be used to extract information about scattering
processes.

Spectroscopy mode
In the spectroscopy modewe keep both probes �xed and
vary the energy of the electrons. The spectroscopy reveals
�ngerprints which can be used to characterize directional
e�ects or resonances originating from adatoms or interfer-
ence e�ects.

In Chapter 4 we considered antidots and locally gated dots
in graphene. We demonstrated how single states (antidot)
or modes (gated dot) and their interplay gives rise to reso-
nances in the dual probe transmission. Using bond current
mapping for electron waves leaving a probe far from the
nanostructure, we conclude that the asymmetric transmis-
sion peaks are caused by vortex patterns either guiding or
suppressing the current.

Antidot

Locally gated dot
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Local strain �elds

In Chapter 5 we �rst demonstrated pseudo-Landau quan-
tization in pseudomagnetic dots and discussed sublattice
polarization, �nite size e�ects and the importance of the
strain direction in relation to the pseudomagnetic �eld.
The analysis was extended to various rotationally sym-
metric strain �elds giving rise to three-fold symmetrically
pseudomagnetic �elds. The existence of pseudo-Landau
levels was considered in relation to gas-inated bubbles
with clamped edges. Here the sharp edges caused Friedel
oscillations to be superimposed with any pseudo-Landau
peaks making a clear distinction between the two e�ects
di�cult.

Vortex patterns in
pseudomagnetic �elds

Using the dual probe setup, we demonstrated pseudomag-
netic current focusing caused by a vortex pattern corre-
sponding to the pseudomagnetic �eld distribution in the
dot. Similarly, we showed the possibility of switching from
the focusing regime to an anti-focusing regime depleting
the current after the dot. Since the two valleys experience
a di�erent pseudomagnetic �eld they scatter the two val-
leys di�erently. We therefore suggested the possibility for
valley �ltering phenomena.

Array of
pseudomagnetic dots

At last we considered an array of pseudomagnetic dots
supporting pseudo-Landau levels. The Kubo-Greenwood
method revealed a transport determined by the competi-
tion between delocalized Landau states and the induced
scattering caused by these states on the pristine behavior.
At higher energies the induced scattering is the dominant
e�ect whereas localization e�ects is seen around the zeroth
pseudo-Landau level.

Finally in Chapter 6 we introduced the CPA-VC scheme
to treat averaged quantities of disordered systems. We
�rst demonstrated that the CPA-VC scheme correctly
described the case of substitutional doping in graphene
nanoribbons where it captured both the bandgab forma-
tion for asymmetrically doping and the corresponding ab-
sence of a bandgab in the symmetric case.
We furthermore showed how the CPA-VC approach cor-
rectly reproduced scaling laws for 1D di�usive conductors.
Potentially an extension of the patched Green's function
methodusing the CPA-VC approach could therefore allow
studies of the transition for a multi-probe system between
the classical Ohmic regime and the quantum regime.

Substitutional doping
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Outlook

Besides the development of a novel calculation method, the thesis work has covered nu-
merous aspects of nanostructured graphene within a relatively short time scale. This of
course has the disadvantage that several questions remain unanswered and many studies
presented in this thesis represent the initial step towards more elaborate investigations.
Therefore, we �nish the thesis by reviewing possible future investigations and extensions.

Electron optics

The intriguing subject of electron optics within graphene has only been briey discussed
during this thesis in relation to the single circularly gated region. As suggested in Ref.
[22] taking advantage of the \optic-like" electron dynamics holds the promise of a variety
of analogies with optical devices, where some have already been realized experimentally
[22, 25]. Here, thepatched Green's function methodallows for a tight binding description
of the individual gate pro�les. We can investigate the detailed response to an incoming
wave mimicking the optical situation without needing to introduce the structure into a
�nite nanoribbon. Combining the study of individual gating pro�les with large scale
simulations using the Kubo-Greenwood approach opens a variety of possible routes to
investigate electron optics phenomena at di�erent length-scales.

Strain engineering

The e�ect of inhomogeneous strain on various transport phenomena still contains novel
routes of investigation where dot-dot interactions, di�erent relative geometrical placement
of pseudomagnetic dot or the interplay between inhomogeneous pseudo-�elds and real
magnetic �elds could be interesting systems to study. Furthermore, we can use strain to
manipulate the valley degree of freedom as pointed out by Ref. [180] in relation to real
magnetic �elds which exactly cancel the pseudomagnetic �eld in one of the valleys. The
results in Chapter 5 suggest a valley polarizing e�ect of the pseudomagnetic dots as well as
current guiding phenomena which potentially could be used to design the current through
the system based on the applied strain.

Another interesting proposal in this direction is to investigate the pseudomagnetic �eld
in the context of the Quantum Hall E�ect. The results presented in this thesis suggest
that this would require large strained regions beyond the regime of nanobubbles. To study
such e�ects, we need to calculate the Hall conductivity. The Kubo-Greenwood propagation
method applied in this thesis has been extended to compute the Hall conductivity [204].
However, this approach is computationally expensive. Instead, we could apply the related
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Kernel Polynomial method [200] which allows for the calculation of Hall conductivity while
retaining the desirable order-N scaling.

Model development/extension

We can also consider extensions of thepatched Green's function framework. Here we
could imagine generalizing the calculation of the boundary self-energy to treat arbitrary
two-dimensional systems. Furthermore, we can imagine other areas where an atomistic
description of a �nite perturbation within an extended system is useful. This could for
example be in the �eld of plasmonics where light couples to the graphene sheet in a �nite
region.

At last, we turn to the overall topic of this thesis: multi-probe setups. The current
state of the theoretical understanding is still limited to the coherent regime where ballistic
e�ects and quantum interference play a signi�cant role. Most experimental analyses are
still based on classical Ohmic behavior. In this regime the resistance between two probes
scales asR � ln(D ) where D is the distance between the probes [53]. However, the current
quantum mechanical treatment predicts R � D , see Chapter 2. Consequently, it is still
an open question when and how this transition would happen. Several aspects could be
included in the present framework to investigate this important transition. Most important
is the role of disorder as the classical Ohmic regime assumes a �xed material conductivity
of a disordered material. Here the CPA-VC approach presented in Chapter 6 could prove
useful, as we demonstrated that it recovers the correct di�usive scaling for 1D conductors.
Secondly, the potential �eld caused by the probes could be included at di�erent levels of
accuracy to capture the e�ect of a �nite bias. A more complex understanding of the multi-
probe setup going from the classical description to the quantum description developed in
this thesis, would pave the way for a fundamentally important investigation of the current
ow in graphene and other two dimensional materials using these very promising multi-
probe tools.

\There is no real ending. Its just the place where you stop the
story."

| Frank Herbert, Dune Cronicles
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APPENDIXA
Plate theory

In this appendix we consider classical theory of elasticity and treat graphene as a thin plate
or membrane. We introduce central concepts in order to show the origin of the displacement
�elds used for the graphene bubbles in Chapter 5. A thorough derivation of the framework
of elasticity is beyond the scope of this discussion. Instead we refer to standard textbooks on
elasticity [164, 223] and its speci�c application to thin plates [175, 224].

De�nitions of bending and axial force

We use the standard de�nition of cylindrical coordinates for the displacement �eld, such
that ux and uy denotes the in-plane displacements andz is the lateral deection. In this
way, indices i and j denotes in-plane coordinates and the corresponding in-plane strain
tensor � ij and curvature � ij becomes,

� ij =
1
2

�
@j ui + @i uj + @i z@j z

�
(A.1a)

� ij = @i @j z (A.1b)

We use the general Einstein summation convention with� ij being the Kronecker delta to
write Hook's law relating strain � ij and stress� ij as,

� ij =
E

1 � � 2

�
(1 � � )� ij + �� kk � ij

�
; (A.2)

where E is Young's modulus and� is Poisson's ratio.

In terms of individual xy-components we get

� xx =
E

1 � � 2

�
� xx + �� yy

�
; (A.3a)

� yy =
E

1 � � 2

�
� yy + �� xx

�
; (A.3b)

� xy =
E

1 + �
� xy : (A.3c)
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We use the general form of the strain tensor including curvature by making the replace-
ment,

� ij ! � ij + z� ij : (A.4)

with � ij and � ij given by Eq. (A.1).

We now divide the forces related to in-plane forces (setting� ij = 0) or curvature forces
(setting � ij = 0). The former can be expressed conveniently using the tensor of axial force
(membrane force),N ij . For � ij = 0 we therefore obtain

N ij =
Z d=2

� d=2
� ij dz =

Z d=2

� d=2
� ij dz; (A.5a)

=
E

1 � � 2

�
(1 � � )� ij + �� kk � ij )

� Z d=2

� d=2
dz; (A.5b)

= C
�
(1 � � )� ij + �� kk � ij

�
; (A.5c)

where we have de�ned the constant

C =
Ed

1 � � 2 : (A.6)

Likewise, we de�ne the bending moments for� ij = 0 related to the curvature forces,

M ij =
Z d=2

� d=2
� ij zdz =

E
1 � � 2

Z d=2

� d=2

�
(1 � � )� ij + �� kk � ij )

�
zdz; (A.7a)

=
E

1 � � 2

�
(1 � � )� ij + �� kk � ij )

� Z d=2

� d=2
z2dz; (A.7b)

= D
�
(1 � � )� ij + �� kk � ij

�
; (A.7c)

where we have de�ned the bending modulusD .

D =
Ed3

12(1� � 2)
: (A.8)

Strain energy

The potential energy associated with the elastic strain due to the in-plane strain is given
by the integral of the membrane energy density over the area of the plate S,

U� =
Z

S

1
2

� ij N ij d2r : (A.9)
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Likewise, the potential energy associated with the bending (curvature) can be expressed
using the bending moment

U� =
Z

S

1
2

� ij M ij d2r : (A.10)

The strain energy density becomes,

U = U� + U� =
Z

S

�
1
2

� ij N ij +
1
2

� ij M ij

�
d2r (A.11)

In addition to the potential strain energy we can have energies related external forces.
Although external forces can come from many di�erent sources, we focus on lateral (trans-
verse) loadp which does work on the transverse deection

Uext =
Z

S
pz d2r : (A.12)

Summing all contributions to the energy �nally gives

V = U� + U� + Uext =
Z

S

�
1
2

� ij N ij +
1
2

� ij M ij + pz
�

d2r (A.13)

General governing equation

The �nal form of the plate is determined by minimizing the total energy V = U + Uext .
Using variation calculus, �V = �

�
U + Uext

�
, we obtain the following equations determining

the shape of the plate under hydrostatic pressurep

@i N ij = 0 ; (A.14a)

@i @j M ij + @i (N ij @j z) + p = 0 ; (A.14b)

Inserting Eq. (A.7c) into Eq. (A.14b) and using the in-plane equilibrium, @i N ij = 0, we
obtain a more convenient form of the governing equations usually called the von Karman
equation for the deection z

Dr 4z + N ij @i @j z + p = 0 ; (A.15)

Rotation symmetry

We now restrict the general equations to the rotational symmetric case subjected to ax-
isymmetric loading. We express the displacement in polar coordinates for the in-plane
(ur ; u� ) = ( u(r ); 0) and out-of-plane z(r ) = z contributions, where r =

p
x2 + y2.
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To express the equations in cylindrical coordinates for the rotational symmetric case,
we write the operators

r � A = @i A i =
1
r

@r (rA r ) +
1
r

@r A � + @zAz ! @r A r +
A r

r
; (A.16a)

r 2f = @2
i f =

1
r

@r (r@r f ) +
1
r 2 @2

� f + @2
r f ! @2

r f +
1
r

@r f: (A.16b)

Using Eq. (A.16) in Eq. (A.1a) we can write the in-plane strain components

� rr = @r u +
1
2

(@r z)2; (A.17a)

� �� =
u
r

; (A.17b)

� r� = � �r = 0 : (A.17c)

Likewise, the curvature becomes

� rr = @2
r z; (A.18a)

� �� =
1
r

@r z; (A.18b)

� r� = � �r = 0 : (A.18c)

From Eq. (A.5c), the radial and tangential components of the membrane force are

N rr = C
�

� rr + �� ��

�
= C

�
@r u + �

u
r

+
1
2

(@r z)2
�

; (A.19a)

N �� = C
�

� �� + �� rr

�
= C

�
�@r u +

u
r

+
�
2

(@r z)2
�

: (A.19b)

From Eq. (A.7c), the bending moments for the rotational symmetric case become

M rr = D
�

� rr + �� ��

�
= D

�
@2

r z +
�
r

@r z
�
; (A.20a)

M �� = D
�

� �� + �� rr

�
= D

�
�@2

r z +
1
r

@r z
�
; (A.20b)

(A.20c)

Linear plate solution

In the linear plate approximation we consider pure bending and neglect the in-plane strain
force N ij = 0. In this regime Eq. (A.15) reduces to

Dr 4z = D
1
r

@r

�
r@r

�
1
r

@r

�
r@r z

�
��

+ p = 0 : (A.21)
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Integrating four times yields the general solution for the deection z(r )

z(r ) = �
pr4

64D
+ C1 ln r + C2r 2 ln r + C3r 2 + C4; (A.22)

where Ci with i = (1 ; 2; 3; 4) are arbitrary integration constants to be determined by the
boundary conditions.

We take the origin of the coordinate system at the center of the plate. As the deection
must be �nite at r = 0 why we conclude that C1 = C2 = 0,

@r z = �
pr3

16D
+ 2C3r; z = �

pr4

64D
+ C3r 2 + C4; (A.23)

To determine C3 and C4 we consider the clamped boundary condition requiring that the
deection and its derivative must be zero at the edge of the plate,z = @r z = 0 at r = R.

C3 = �
pR2

32D
; C4 =

pR4

64D
; (A.24)

Inserting Eq. (A.24) into the general solution Eq. (A.23) we obtain the deection

z(r ) = h0

�
1 �

r 2

R2

� 2

; (A.25)

where h0 = pR4=64D is the height of the deection.

Non linear plate approximation

The linear plate solution assumed a vanishing in-plane strain forces. To relief this condition
we generally need to solve the coupled equations Eqs. (A.14a) and (A.15)

@r N rr +
N rr � N ��

r
= 0 ; (A.26)

Dr 4z +
1
r

@r

�
N rr r@r z

�
+ p = 0 : (A.27)

This set of coupled nonlinear equations are in general not analytical solvable. Instead we
will use an approximate solution. The deection is assumed to be equal to the linear plate
solution

z(r ) = h0

�
1 �

r 2

R2

� 2

: (A.28)

The in-plane displacement needs to ful�ll the boundary conditions u(r = 0) = 0 and
u(r = R) = 0. The �rst condition implies that u(r ) / r whereas the second suggests
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solutions on the type u(r ) / (1 � r=R). We combine these two conditions and assume a
polynomial form of the rest of the displacement �eld

u(r ) =
r
R

�
1 �

r
R

�
�
c1 � c2r

�
; (A.29)

where the constantsc1 and c2 must be determine by energy optimization.

Inserting Eqs. (A.28) and (A.29) into the strain energy Eq. (A.13) and minimizing
yields [174]

c1 =
179� 89�

126
h2

0

R3 = 1 :308
h2

0

R3 ; (A.30)

c2 =
13� � 79

42
h2

0

R4 = � 1:831
h2

0

R4 ; (A.31)

(A.32)

where the last quality in each line uses� = 0 :16.

Membrane approximation

Finally, we make the membrane assumption of vanishing bending sti�nessM ij = 0. In
this regime the governing equations become

@r N rr +
N rr � N ��

r
= 0 ; (A.33)

1
r

@r

�
N rr r@r z

�
+ p = 0 : (A.34)

Integrating the last equation yields

N rr @r z = �
pr
2

: (A.35)

In general the membrane force is given by Eq. (A.19) asN rr = C
�
� rr + �� ��

�
, but to

determine the form of the approximate solution we can treatN rr as a constant and solve
for z(r )

z(r ) = �
pr2

4N rr
+ c1; (A.36)

where c1 is an integration constant determined by the boundary condition z(r = R) = 0

c1 =
pR2

4N rr
: (A.37)



Inserting and rearranging gives the �nal form of the deection

z(r ) = h0

�
1 �

r 2

R2

�
; (A.38)

where h0 = pR2

4N rr
. In general we use the form of Eq. (A.38), but the maximal deection

h0 is determined generally by minimizing the energy in Eq. (A.13) using this form of the
deection.

The form of the in-plane displacement is determined similar to the non linear plate
approximation above but now we only include the zeroth order term in the polynomial

u(r ) = u0
r
R

�
1 �

r
R

�
; (A.39)

where u0 is a constant to be determined by energy minimization. Using Eqs. (A.38)
and (A.39) and minimizing the total potential energy we obtain the relation between the
constant u0 and the height h0 as u0 = 1 :136h2

0=R using � = 0 :16 [174].





Paper I

Mikkel Settnes, Stephen R. Power, Dirch H. Petersen and
Antti-Pekka Jauho

Theoretical analysis of a dual-probe scanning tunneling microscope
setup on graphene

Phys. Rev. Lett.112, 096801 (2014)













Paper II

Mikkel Settnes, Stephen R. Power, Dirch H. Petersen and
Antti-Pekka Jauho

Dual-probe spectroscopic �ngerprints of defects in graphene

Phys. Rev. B90, 035440 (2014)





















Paper III

Mikkel Settnes, Stephen R. Power,Jun Lin, Dirch H. Petersen
and Antti-Pekka Jauho

Patched Green's function techniques for two-dimensional systems:
Electronic behavior of bubbles and perforations in graphene

Phys. Rev. B91, 125408 (2015)





























Paper IV

Mikkel Settnes, Stephen R. Power, Jun Lin, Dirch H. Petersen
and Antti-Pekka Jauho

Bubbles in graphene - a computational study

Journal of Physics: Conference Series (JPCS) (2015), submitted











186



Bibliography

[1] R. P. Feynman. There's plenty of room at the bottom. Engineering and Science,
page 2236, 1960.

[2] A. K. Geim and I. V. Grigorieva. Van der Waals heterostructures. Nature,
499(7459):419{25, July 2013.

[3] M. Scarselli, P. Castrucci, and M. De Crescenzi. Electronic and optoelectronic
nano-devices based on carbon nanotubes.Journal of Physics: Condensed Matter,
24(31):313202, 2012.

[4] K. S. Novoselov, V. I. Fal'ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim.
A roadmap for graphene. Nature, 490(7419):192{200, October 2012.

[5] A. K. Geim. Graphene: status and prospects. Science (New York, N.Y.),
324(5934):1530{4, June 2009.

[6] P. R. Wallace. The band theory of graphite. Phys. Rev., 71:622{634, May 1947.

[7] J. C. Slonczewski and P. R. Weiss. Band structure of graphite.Phys. Rev., 109:272{
279, Jan 1958.

[8] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos,
I. V. Grigorieva, and A. A. Firsov. Electric �eld e�ect in atomically thin carbon
�lms. Science (New York, N.Y.), 306(5696):666{9, October 2004.

[9] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim. Experimental observation of
the quantum Hall e�ect and Berry's phase in graphene. Nature, 438(7065):201{4,
November 2005.

[10] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V.
Grigorieva, S. V. Dubonos, and A. A. Firsov. Two-dimensional gas of massless
Dirac fermions in graphene.Nature, 438(7065):197{200, November 2005.

[11] M. I. Katsnelson, K. S. Novoselov, and A. K. Geim. Chiral tunnelling and the Klein
paradox ingraphene.Nature Physics, 2(9):620{625, August 2006.

[12] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim.
The electronic properties of graphene.Rev. Mod. Phys., 81:109{162, Jan 2009.



188 Bibliography

[13] A. K. Geim and K. S. Novoselov. The rise of graphene.Nature materials, 6(3):183{
91, March 2007.

[14] A. C. Ferrari. Science and technology roadmap for graphene, related two-dimensional
crystals, and hybrid systems. Nanoscale, 7(11):4598{4810, September 2014.

[15] L. E. F. Foa Torres, S. Roche, and J.-C. Charlier. Introduction to Graphene-Based
Nanomaterials. Cambridge University Press, 2014.

[16] M. I. Katsnelson. Graphene { Carbon in Two Dimensions. Cambridge University
Press, 2012.

[17] M. F. Borunda, H. Hennig, and E. J. Heller. Ballistic versus di�usive transport in
graphene. Physical Review B, 88(12):125415, September 2013.

[18] A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Pono-
marenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim.
Micrometer-scale ballistic transport in encapsulated graphene at room temperature.
Nano Letters, 11(6):2396{9, June 2011.

[19] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N.
Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer. Electronic con�nement
and coherence in patterned epitaxial graphene. Science, 312(5777):1191{6, May
2006.

[20] K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and
H. Stormer. Ultrahigh electron mobility in suspended graphene. Solid State Com-
munications, 146(9):351{355, 2008.

[21] V. V. Cheianov, V. Fal'ko, and B. L. Altshuler. The focusing of electron ow and a
veselago lens in graphene p-n junctions.Science, 315(5816):1252{1255, 2007.

[22] P. Rickhaus, R. Maurand, M.-H. Liu, M. Weiss, K. Richter, and C. Sch•onenberger.
Ballistic interferences in suspended graphene.Nature communications, 4:2342, Jan-
uary 2013.

[23] J. A. F•urst, J. G. Pedersen, C. Flindt, N. A. Mortensen, M. Brandbyge, T. G.
Pedersen, and A. P. Jauho. Electronic properties of graphene antidot lattices.New
Journal of Physics, 11(9):095020, September 2009.

[24] J. G. Pedersen, T. Gunst, T. Markussen, and T. G. Pedersen. Graphene antidot
lattice waveguides. Phys. Rev. B, 86:245410, Dec 2012.

[25] J. R. Williams, T. Low, M. S. Lundstrom, and C. M. Marcus. Gate-controlled
guiding of electrons in graphene.Nature nanotechnology, 6(4):222{5, April 2011.

[26] Y. Zhao, J. Wyrick, F. D. Natterer, J. F. Rodriguez-Nieva, C. Lewandowski,
K. Watanabe, T. Taniguchi, L. S. Levitov, N. B. Zhitenev, and J. A. Stroscio.
Creating and probing electron whispering-gallery modes in graphene. Science,
348(6235):672{675, 2015.



Bibliography 189

[27] M. Vozmediano, M. Katsnelson, and F. Guinea. Gauge �elds in graphene.Physics
Reports, 496(4):109{148, 2010.

[28] V. M. Pereira, A. H. Castro Neto, and N. M. R. Peres. Tight-binding approach to
uniaxial strain in graphene. Physical Review B, 80(4):045401, July 2009.

[29] F. Guinea, M. I. Katsnelson, and A. K. Geim. Energy gaps and a zero-�eld quantum
Hall e�ect in graphene by strain engineering. Nature Physics, 6(1):30{33, September
2009.

[30] K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C.
Maan, G. S. Boebinger, P. Kim, and A. K. Geim. Room-temperature quantum Hall
e�ect in graphene. Science (New York, N.Y.), 315(5817):1379, March 2007.

[31] S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Guti�errez, T. F.
Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V.
Plashnitsa, R. D. Robinson, R. S. Ruo�, S. Salahuddin, J. Shan, L. Shi, M. G.
Spencer, M. Terrones, W. Windl, and J. E. Goldberger. Progress, challenges, and
opportunities in two-dimensional materials beyond graphene.ACS nano, 7(4):2898{
926, April 2013.

[32] F. Schwierz, J. Pezoldt, and R. Granzner. Two-dimensional materials and their
prospects in transistor electronics.Nanoscale, 7(18):8261{83, April 2015.

[33] A. H. Castro Neto and K. Novoselov. Two-Dimensional Crystals: Beyond Graphene.
Materials Express, 1(1):10{17, March 2011.

[34] X. Cui, G.-H. Lee, Y. D. Kim, G. Arefe, P. Y. Huang, C.-H. Lee, D. A. Chenet,
X. Zhang, L. Wang, F. Ye, F. Pizzocchero, B. S. Jessen, K. Watanabe, T. Taniguchi,
D. A. Muller, T. Low, P. Kim, and J. Hone. Multi-terminal transport measurements
of MoS2 using a van der Waals heterostructure device platform.Nature Nanotech-
nology, 10(6):534{540, April 2015.

[35] A.-P. Li, K. W. Clark, X.-G. Zhang, and A. P. Baddorf. Electron Transport at the
Nanometer-Scale Spatially Revealed by Four-Probe Scanning Tunneling Microscopy.
Advanced Functional Materials, 23(20):2509{2524, May 2013.

[36] G. Binnig, H. Rohrer, C. Gerber, and E. Weibel. Surface studies by scanning tun-
neling microscopy. Phys. Rev. Lett., 49:57{61, Jul 1982.

[37] A. Deshpande and B. J. LeRoy. Scanning probe microscopy of graphene.Physica
E: Low-dimensional Systems and Nanostructures, 44(4):743 { 759, 2012.

[38] V. V. Cheianov and V. I. Fal'ko. Selective transmission of Dirac electrons and ballis-
tic magnetoresistance of n-p junctions in graphene.Physical Review B - Condensed
Matter and Materials Physics, 74(4):1{4, 2006.

[39] C. Bena. E�ect of a Single Localized Impurity on the Local Density of States in
Monolayer and Bilayer Graphene.Physical Review Letters, 100(7):076601, February
2008.



190 Bibliography

[40] F. M. D. Pellegrino, G. G. N. Angilella, and R. Pucci. E�ect of impurities in
high-symmetry lattice positions on the local density of states and conductivity of
graphene. Physical Review B, 80(9):094203, September 2009.

[41] N. M. R. Peres, L. Yang, and S.-W. Tsai. Local density of states and scanning
tunneling currents in graphene. New Journal of Physics, 11(9):095007, September
2009.

[42] G. I. M�ark, P. Vancs�o, C. Hwang, P. Lambin, and L. P. Bir�o. Anisotropic dynamics
of charge carriers in graphene.Physical Review B, 85(12):125443, March 2012.

[43] A. Bergvall and T. L•ofwander. Spectral footprints of impurity scattering in graphene
nanoribbons. Physical Review B, 87(20):205431, May 2013.

[44] J. A. Lawlor, S. R. Power, and M. S. Ferreira. Friedel oscillations in graphene:
Sublattice asymmetry in doping. Physical Review B, 88(20):205416, November 2013.

[45] S. Lounis. Theory of Scanning Tunneling Microscopy. 2014.

[46] Y. Dedkov, E. Voloshina, and M. Fonin. Scanning probe microscopy and spec-
troscopy of graphene on metals (phys. status solidi b 3/2015).physica status solidi
(b), 252(3):n/a{n/a, 2015.

[47] G. M. Rutter, J. N. Crain, N. P. Guisinger, T. Li, P. N. First, and J. A. Stroscio.
Scattering and interference in epitaxial graphene. Science, 317(5835):219{22, July
2007.

[48] P. Mallet, F. Varchon, C. Naud, L. Magaud, C. Berger, and J.-Y. Veuillen. Elec-
tron states of mono- and bilayer graphene on SiC probed by scanning-tunneling
microscopy. Physical Review B, 76(4):041403, July 2007.

[49] H. Yang, A. J. Mayne, M. Boucherit, G. Comtet, G. Dujardin, and Y. Kuk. Quantum
interference channeling at graphene edges.Nano Letters, 10(3):943{7, March 2010.

[50] L. Tapaszto, P. Nemes-Incze, G. Dobrik, K. Jae Yoo, C. Hwang, and L. P. Biro.
Mapping the electronic properties of individual graphene grain boundaries.Applied
Physics Letters, 100(5):053114, February 2012.

[51] J. Xue, J. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, and
B. J. LeRoy. Long-Wavelength Local Density of States Oscillations Near Graphene
Step Edges.Physical Review Letters, 108(1):016801, January 2012.

[52] J. C. Koepke, J. D. Wood, D. Estrada, Z.-Y. Ong, K. T. He, E. Pop, and J. W.
Lyding. Atomic-scale evidence for potential barriers and strong carrier scattering
at graphene grain boundaries: A scanning tunneling microscopy study.ACS Nano,
7(1):75{86, 2013.

[53] T. Nakayama, O. Kubo, Y. Shingaya, S. Higuchi, T. Hasegawa, C.-S. Jiang,
T. Okuda, Y. Kuwahara, K. Takami, and M. Aono. Development and application
of multiple-probe scanning probe microscopes.Advanced materials, 24(13):1675{92,
April 2012.



Bibliography 191

[54] S. Hasegawa, I. Shiraki, T. Tanikawa, C. L. Petersen, T. M. Hansen, P. B�ggild, and
F. Grey. Direct measurement of surface-state conductance by microscopic four-point
probe method. Journal of Physics: Condensed Matter, 14(35):8379, 2002.

[55] D. H. Petersen, O. Hansen, T. M. Hansen, P. Boggild, R. Lin, D. Kj� r, P. F.
Nielsen, T. Clarysse, W. Vandervorst, E. Rosseel, N. S. Bennett, and N. E. B.
Cowern. Review of electrical characterization of ultra-shallow junctions with micro
four-point probes. Journal of Vacuum Science & Technology B: Microelectronics
and Nanometer Structures, 28(1):C1C27, 2010.

[56] I. Miccoli, F. Edler, H. Pfn•ur, and C. Tegenkamp. The 100th anniversary of the
four-point probe technique: the role of probe geometries in isotropic and anisotropic
systems. Journal of Physics: Condensed Matter, 27(22):223201, 2015.

[57] T. Kanagawa, R. Hobara, I. Matsuda, T. Tanikawa, A. Natori, and S. Hasegawa.
Anisotropy in conductance of a quasi-one-dimensional metallic surface state mea-
sured by a square micro-four-point probe method.Phys. Rev. Lett., 91:036805, Jul
2003.

[58] V. Cherepanov, E. Zubkov, H. Junker, S. Korte, M. Blab, P. Coenen, and
B. Voigtl•ander. Ultra compact multitip scanning tunneling microscope with a diam-
eter of 50 mm. Review of scienti�c instruments, 83(3):033707, March 2012.

[59] O. Kubo, Y. Shingaya, M. Nakaya, M. Aono, and T. Nakayama. Epitaxially grown
wox nanorod probes for sub-100nm multiple-scanning-probe measurement.Applied
Physics Letters, 88(25):{, 2006.

[60] H. Watanabe, C. Manabe, T. Shigematsu, and M. Shimizu. Dual-probe scanning
tunneling microscope: Measuring a carbon nanotube ring transistor.Applied Physics
Letters, 78(19), 2001.

[61] J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, A.-P. Li, Z. Jiang, E. H. Con-
rad, C. Berger, C. Tegenkamp, and W. A. de Heer. Exceptional ballistic transport
in epitaxial graphene nanoribbons. Nature, 506(7488):349{354, February 2014.

[62] K. W. Clark, X.-G. Zhang, I. V. Vlassiouk, G. He, R. M. Feenstra, and A.-P. Li. Spa-
tially resolved mapping of electrical conductivity across individual domain (grain)
boundaries in graphene.ACS nano, 7(9):7956{66, September 2013.

[63] K. W. Clark, X.-G. Zhang, G. Gu, J. Park, G. He, R. M. Feenstra, and A.-P. Li.
Energy Gap Induced by Friedel Oscillations Manifested as Transport Asymmetry at
Monolayer-Bilayer Graphene Boundaries.Physical Review X, 4(1):011021, February
2014.

[64] M. Kim, N. S. Safron, E. Han, M. S. Arnold, and P. Gopalan. Fabrication and
characterization of large-area, semiconducting nanoperforated graphene materials.
Nano letters, 10(4):1125{31, April 2010.



192 Bibliography

[65] F. R. Eder, J. Kotakoski, K. Holzweber, C. Mangler, V. Skakalova, and J. C. Meyer.
Probing from both sides: reshaping the graphene landscape via face-to-face dual-
probe microscopy. Nano Letters, 13(5):1934{40, May 2013.

[66] S.-H. Ji, J. B. Hannon, R. M. Tromp, V. Perebeinos, J. Terso�, and F. M. Ross.
Atomic-scale transport in epitaxial graphene. Nature materials, 11(2):114{9, Febru-
ary 2012.

[67] P. W. Sutter, J.-I. Flege, and E. A. Sutter. Epitaxial graphene on ruthenium. Nature
Materials, 7(5):406{11, May 2008.

[68] J. D. Buron, D. H. Petersen, P. B�ggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway,
P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen. Graphene conductance
uniformity mapping. Nano Letters, 12(10):5074{81, October 2012.

[69] J. D. Buron, F. Pizzocchero, B. S. Jessen, T. J. Booth, P. F. Nielsen, O. Hansen,
M. Hilke, E. Whiteway, P. U. Jepsen, P. Bggild, and D. H. Petersen. Electrically
continuous graphene from single crystal copper veri�ed by terahertz conductance
spectroscopy and micro four-point probe.Nano Letters, 14(11):6348{6355, 2014.

[70] J. Baringhaus, F. Edler, C. Neumann, C. Stampfer, S. Forti, U. Starke, and
C. Tegenkamp. Local transport measurements on epitaxial graphene. Applied
Physics Letters, 103(11):{, 2013.

[71] D. H. Petersen, O. Hansen, R. Lin, and P. F. Nielsen. Micro-four-point probe Hall
e�ect measurement method. Journal of Applied Physics, 104(1):013710, 2008.

[72] S. Datta. Electronic Transport in Mesoscopic Systems. Cambridge University Press,
1997.

[73] H. Haug and A.-P. Jauho. Quantum kinetics in transport and optics of semiconduc-
tors. Springer, 2008.

[74] M. Paulsson. Non Equilibrium Green's Functions for Dummies: Introduction to the
One Particle NEGF equations. arXiv , 2002.

[75] M. Brandbyge, J.-L. Mozos, P. Ordej�on, J. Taylor, and K. Stokbro. Density-
functional method for nonequilibrium electron transport. Physical Review B,
65(16):165401, March 2002.

[76] M. P. L. Sancho, J. M. L. Sancho, and J. Rubio. Quick iterative scheme for the
calculation of transfer matrices: application to mo (100). Journal of Physics F:
Metal Physics, 14(5):1205, 1984.

[77] C. H. Lewenkopf and E. Mucciolo. The recursive greens function method for
graphene. Journal of Computational Electronics, 12(2):203{231, 2013.

[78] K. Kazymyrenko and X. Waintal. Knitting algorithm for calculating Green functions
in quantum systems. Physical Review B, 77(11):115119, March 2008.



Bibliography 193

[79] M. Wimmer and K. Richter. Optimal block-tridiagonalization of matrices for co-
herent charge transport. Journal of Computational Physics, 228(23):8548{8565, De-
cember 2009.

[80] C. W. Groth, M. Wimmer, A. R. Akhmerov, and X. Waintal. Kwant: a software
package for quantum transport. New Journal of Physics, 16(6):063065, 2014.

[81] A. Lherbier, S. M. M. Dubois, X. Declerck, Y.-M. Niquet, S. Roche, and J.-C.
Charlier. Transport properties of graphene containing structural defects. Physical
Review B, 86(7):075402, August 2012.

[82] M. O. Goerbig. Electronic properties of graphene in a strong magnetic �eld.Rev.
Mod. Phys., 83:1193{1243, Nov 2011.

[83] C. Bena. Greens functions and impurity scattering in graphene.Physical Review B,
79(12):125427, March 2009.

[84] S. R. Power and M. S. Ferreira. Electronic structure of graphene beyond the linear
dispersion regime.Physical Review B, 83(15):155432, April 2011.

[85] J. A. Lawlor and M. S. Ferreira. Green functions of graphene: An analytic approach.
Physica B: Condensed Matter, 463(0):48 { 53, 2015.

[86] S. R. Power, P. D. Gorman, J. M. Du�y, and M. S. Ferreira. Strain-induced modu-
lation of magnetic interactions in graphene. Phys. Rev. B, 86:195423, Nov 2012.

[87] M. Settnes, S. R. Power, J. Lin, D. H. Petersen, and A.-P. Jauho. Patched Green's
function techniques for two-dimensional systems: Electronic behavior of bubbles and
perforations in graphene. Physical Review B, 91(12):125408, March 2015.

[88] D. A. Areshkin and B. K. Nikoli�c. Electron density and transport in top-gated
graphene nanoribbon devices: First-principles Green function algorithms for systems
containing a large number of atoms.Physical Review B, 81(15):155450, April 2010.

[89] M. Yang, X.-J. Ran, Y. Cui, and R.-Q. Wang. An easy and e�cient way to treat
Green's function for nano-devices with arbitrary shapes and multi-terminal con�g-
urations. Chinese Physics B, 20(9):097201, September 2011.

[90] G. Thorgilsson, G. Viktorsson, and S. Erlingsson. Recursive Greens function method
for multi-terminal nanostructures. Journal of Computational Physics, 261:256{266,
March 2014.

[91] G. Metalidis and P. Bruno. Greens function technique for studying electron ow in
two-dimensional mesoscopic samples.Physical Review B, 72(23):235304, December
2005.

[92] A. Cresti, R. Farchioni, G. Grosso, and G. P. Parravicini. Keldysh-Green func-
tion formalism for current pro�les in mesoscopic systems. Physical Review B,
68(7):075306, August 2003.



194 Bibliography

[93] R. N. Sajjad, C. A. Polanco, and A. W. Ghosh. Atomistic deconstruction of cur-
rent ow in graphene based hetero-junctions.Journal of Computational Electronics,
12(2):232{247, May 2013.

[94] E. Costa Gir~ao and V. Meunier. Patchwork algorithm for the parallel computation
of the Greens function in open systems. Journal of Computational Electronics,
12(2):123{133, March 2013.

[95] F. Libisch, S. Rotter, and J. Burgd•orfer. Coherent transport through graphene
nanoribbons in the presence of edge disorder.New Journal of Physics, 14(12):123006,
2012.

[96] P. Drouvelis, P. Schmelcher, and P. Bastian. Parallel implementation of the recursive
Greens function method. Journal of Computational Physics, 215(2):741{756, July
2006.

[97] E. N. Economou. Green's functions in quantum physics. Springer, 2005.

[98] J. Terso� and D. R. Hamann. Theory and Application for the Scanning Tunneling
Microscope. Physical Review Letters, 50(25):1998{2001, June 1983.

[99] V. Meunier and P. Lambin. Tight-Binding Computation of the STM Image of
Carbon Nanotubes. Physical Review Letters, 81(25):5588{5591, December 1998.

[100] T. Fukuda, H. Oymak, and J. Hong. Electron transport from a one- to a two-
dimensional system: Scanning tunneling microscopy of an adatom on a metal surface.
Physical Review B, 75(19):195428, May 2007.

[101] T. Nakanishi and T. Ando. Conductance images between two STM probes in
graphene.Physica E: Low-dimensional Systems and Nanostructures, 42(4):726{728,
2010.

[102] H. Amara, S. Latil, V. Meunier, P. Lambin, and J.-C. Charlier. Scanning tunnel-
ing microscopy �ngerprints of point defects in graphene: A theoretical prediction.
Physical Review B, 76(11):115423, September 2007.

[103] M. Settnes, S. R. Power, D. H. Petersen, and A.-P. Jauho. Theoretical analysis of
a dual-probe scanning tunneling microscope setup on graphene.Phys. Rev. Lett.,
112:096801, Mar 2014.

[104] V. Barone, O. Hod, and G. E. Scuseria. Electronic structure and stability of semi-
conducting graphene nanoribbons.Nano Letters, 6(12):2748{54, December 2006.

[105] A. Deshpande, W. Bao, F. Miao, C. N. Lau, and B. J. LeRoy. Spatially resolved
spectroscopy of monolayer graphene on SiO2.Physical Review B, 79(20):205411,
May 2009.

[106] I. Brihuega, P. Mallet, C. Bena, S. Bose, C. Michaelis, L. Vitali, F. Varchon, L. Mag-
aud, K. Kern, and J. Veuillen. Quasiparticle Chirality in Epitaxial Graphene Probed
at the Nanometer Scale.Physical Review Letters, 101(20):206802, November 2008.



Bibliography 195

[107] T. O. Wehling, A. V. Balatsky, M. I. Katsnelson, A. I. Lichtenstein, K. Scharnberg,
and R. Wiesendanger. Local electronic signatures of impurity states in graphene.
Phys. Rev. B, 75:125425, Mar 2007.

[108] V. M. Pereira, F. Guinea, J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Cas-
tro Neto. Disorder induced localized states in graphene.Phys. Rev. Lett., 96:036801,
Jan 2006.

[109] A. B�acsi and A. Virosztek. Local density of states and Friedel oscillations in
graphene. Physical Review B, 82(19):193405, November 2010.

[110] K. Wakabayashi, Y. Takane, and M. Sigrist. Perfectly Conducting Channel and Uni-
versality Crossover in Disordered Graphene Nanoribbons.Physical Review Letters,
99(3):036601, July 2007.

[111] J. M. Du�y, P. D. Gorman, S. R. Power, and M. S. Ferreira. Variable range of
the rkky interaction in edged graphene. Journal of Physics: Condensed Matter,
26(5):055007, 2014.

[112] C. Casiraghi, A. Hartschuh, H. Qian, S. Piscanec, C. Georgi, A. Fasoli, K. S.
Novoselov, D. M. Basko, and A. C. Ferrari. Raman spectroscopy of graphene edges.
Nano Letters, 9(4):1433{41, April 2009.

[113] Y. Kobayashi, K.-i. Fukui, T. Enoki, K. Kusakabe, and Y. Kaburagi. Observation
of zigzag and armchair edges of graphite using scanning tunneling microscopy and
spectroscopy.Phys. Rev. B, 71:193406, May 2005.

[114] M. Settnes, S. R. Power, D. H. Petersen, and A.-P. Jauho. Dual-probe spectroscopic
�ngerprints of defects in graphene. Phys. Rev. B, 90:035440, Jul 2014.

[115] J. P. Robinson, H. Schomerus, L. Oroszl�any, and V. I. Fal'ko. Adsorbate-limited
conductivity of graphene. Phys. Rev. Lett., 101:196803, Nov 2008.

[116] T. O. Wehling, S. Yuan, A. I. Lichtenstein, A. K. Geim, and M. I. Katsnelson.
Resonant scattering by realistic impurities in graphene.Phys. Rev. Lett., 105:056802,
Jul 2010.

[117] B. Uchoa, L. Yang, S. W. Tsai, N. M. R. Peres, and A. H. Castro Neto. Theory
of Scanning Tunneling Spectroscopy of Magnetic Adatoms in Graphene.Physical
Review Letters, 103(20):206804, November 2009.

[118] U. Fano. E�ects of con�guration interaction on intensities and phase shifts. Phys.
Rev., 124:1866{1878, Dec 1961.

[119] F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson,
and K. S. Novoselov. Detection of individual gas molecules adsorbed on graphene.
Nature Materials, 6(9):652{5, September 2007.



196 Bibliography

[120] A. Cagliani, D. Mackenzie, L. Tschammer, F. Pizzocchero, K. Almdal, and
P. B�ggild. Large-area nanopatterned graphene for ultrasensitive gas sensing.Nano
Research, 7(5):743{754, 2014.

[121] N. M. R. Peres, F. Guinea, and A. H. Castro Neto. Electronic properties of disordered
two-dimensional carbon. Physical Review B, 73(12):125411, March 2006.

[122] T. G. Pedersen, C. Flindt, J. G. Pedersen, N. A. Mortensen, A.-P. Jauho, and
K. Pedersen. Graphene Antidot Lattices: Designed Defects and Spin Qubits.Phys-
ical Review Letters, 100(13):136804, April 2008.

[123] T. Gunst, T. Markussen, A.-P. Jauho, and M. Brandbyge. Thermoelectric properties
of �nite graphene antidot lattices. Phys. Rev. B, 84:155449, Oct 2011.

[124] S. S. Gregersen, J. G. Pedersen, S. R. Power, and A.-P. Jauho. Graphene on graphene
antidot lattices: Electronic and transport properties. Phys. Rev. B, 91:115424, Mar
2015.

[125] S. R. Power and A.-P. Jauho. Electronic transport in disordered graphene antidot
lattice devices. Phys. Rev. B, 90:115408, Sep 2014.

[126] J. Bai, X. Zhong, S. Jiang, Y. Huang, and X. Duan. Graphene nanomesh.Nature
nanotechnology, 5(3):190{4, March 2010.

[127] M. Kim, N. S. Safron, E. Han, M. S. Arnold, and P. Gopalan. Electronic trans-
port and raman scattering in size-controlled nanoperforated graphene.ACS Nano,
6(11):9846{9854, 2012.

[128] J. Eroms and D. Weiss. Weak localization and transport gap in graphene antidot
lattices. New Journal of Physics, 11(9):095021, September 2009.

[129] Q. Xu, M.-Y. Wu, G. F. Schneider, L. Houben, S. K. Malladi, C. Dekker, E. Yucelen,
R. E. Dunin-Borkowski, and H. W. Zandbergen. Controllable atomic scale patterning
of freestanding monolayer graphene at elevated temperature.ACS Nano, 7(2):1566{
1572, 2013.

[130] F. Oberhuber, S. Blien, S. Heydrich, F. Yaghobian, T. Korn, C. Sch•uller, C. Strunk,
D. Weiss, and J. Eroms. Weak localization and Raman study of anisotropically
etched graphene antidots.Applied Physics Letters, 103(14):143111, 2013.

[131] X. Jia, M. Hofmann, V. Meunier, B. G. Sumpter, J. Campos-Delgado, J. M. Romo-
Herrera, H. Son, Y.-P. Hsieh, A. Reina, J. Kong, M. Terrones, and M. S. Dresselhaus.
Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons.
Science, 323(5922):1701{1705, 2009.

[132] F. Pizzocchero, M. Vanin, J. Kling, T. W. Hansen, K. W. Jacobsen, P. B�ggild,
and T. J. Booth. Graphene Edges Dictate the Morphology of Nanoparticles during
Catalytic Channeling. The Journal of Physical Chemistry C, 118(8):4296{4302,
2014.



Bibliography 197

[133] G. F. Schneider, S. W. Kowalczyk, V. E. Calado, G. Pandraud, H. W. Zandber-
gen, L. M. K. Vandersypen, and C. Dekker. DNA translocation through graphene
nanopores.Nano letters, 10(8):3163{7, August 2010.

[134] C. A. Merchant, K. Healy, M. Wanunu, V. Ray, N. Peterman, J. Bartel, M. D.
Fischbein, K. Venta, Z. Luo, A. T. C. Johnson, and M. Drndi�c. DNA translocation
through graphene nanopores.Nano letters, 10(8):2915{21, August 2010.

[135] Y. I. Latyshev, a. P. Orlov, V. a. Volkov, V. V. Enaldiev, I. V. Zagorodnev, O. F.
Vyvenko, Y. V. Petrov, and P. Monceau. Transport of Massless Dirac Fermions in
Non-topological Type Edge States.Scienti�c reports , 4:7578, January 2014.

[136] J. Kling, J. S. Vestergaard, A. B. Dahl, N. Stenger, T. J. Booth, P. B�oggild,
R. Larsen, J. B. Wagner, and T. W. Hansen. Pattern recognition approach to
quantify the atomic structure of graphene. Carbon, 74(0):363 { 366, 2014.

[137] J. S. Vestergaard, J. Kling, A. B. Dahl, T. W. Hansen, J. B. Wagner, and R. Larsen.
Structure identi�cation in high-resolution transmission electron microscopic images:
An example on graphene.Microscopy and Microanalysis, 20:1772{1781, 12 2014.

[138] T. Low and J. Appenzeller. Electronic transport properties of a tilted graphenep-n
junction. Phys. Rev. B, 80:155406, Oct 2009.

[139] R. R. Hartmann, N. J. Robinson, and M. E. Portnoi. Smooth electron waveguides
in graphene. Phys. Rev. B, 81:245431, Jun 2010.

[140] C. E. P. Villegas and M. R. S. Tavares. Comment on "guided modes in graphene
waveguides" [Appl. Phys. Lett. 94, 212105 (2009)]. Applied Physics Letters,
96(18):2009{2011, 2010.

[141] P. Rickhaus, P. Makk, M.-H. Liu, E. T�ov�ari, M. Weiss, R. Maurand, K. Richter, and
C. Sch•onenberger. Snake trajectories in ultraclean graphene pn junctions.Nature
Communications, 6:6470, 2015.

[142] J. Cserti, A. P�alyi, and C. P�eterfalvi. Caustics due to a negative refractive index in
circular graphenep-n junctions. Phys. Rev. Lett., 99:246801, Dec 2007.

[143] A. Matulis and F. M. Peeters. Quasibound states of quantum dots in single and
bilayer graphene. Phys. Rev. B, 77:115423, Mar 2008.

[144] R. L. Heinisch, F. X. Bronold, and H. Fehske. Mie scattering analog in graphene:
Lensing, particle con�nement, and depletion of klein tunneling. Phys. Rev. B,
87:155409, Apr 2013.

[145] A. Pieper, R. L. Heinisch, G. Wellein, and H. Fehske. Dot-bound and dispersive
states in graphene quantum dot superlattices.Phys. Rev. B, 89:165121, Apr 2014.

[146] A. Pieper, R. L. Heinisch, and H. Fehske. Electron dynamics in graphene with
gate-de�ned quantum dots. EPL (Europhysics Letters), 104(4):47010, 2013.



198 Bibliography

[147] T. Low, F. Guinea, and M. I. Katsnelson. Gaps tunable by electrostatic gates in
strained graphene.Physical Review B, 83(19):195436, May 2011.

[148] G. W. Jones and V. M. Pereira. Designing electronic properties of two-
dimensional crystals through optimization of deformations. New Journal of Physics,
16(9):093044, September 2014.

[149] Z. Qi, A. L. Kitt, H. S. Park, V. M. Pereira, D. K. Campbell, and A. H. Castro
Neto. Pseudomagnetic �elds in graphene nanobubbles of constrained geometry: A
molecular dynamics study. Phys. Rev. B, 90:125419, Sep 2014.

[150] M. Neek-Amal and F. M. Peeters. Strain-engineered graphene through a nanostruc-
tured substrate. i. deformations. Phys. Rev. B, 85:195445, May 2012.

[151] J. Lu, A. H. Castro Neto, and K. P. Loh. Transforming Moir�e blisters into geometric
graphene nano-bubbles.Nature communications, 3(may):823, January 2012.

[152] R. Carrillo-Bastos, D. Faria, A. Latg�e, F. Mireles, and N. Sandler. Gaussian de-
formations in graphene ribbons: Flowers and con�nement. Physical Review B,
90(4):041411, July 2014.

[153] F. D. Juan, A. Cortijo, M. A. H. Vozmediano, and A. Cano. deformations in
graphene. Nature Physics, 7(10):810{815, 2011.

[154] M. Neek-Amal, L. Covaci, K. Shakouri, and F. M. Peeters. Electronic structure
of a hexagonal graphene ake subjected to triaxial stress. Physical Review B,
88(11):115428, September 2013.

[155] M. Neek-Amal and F. M. Peeters. Strain-engineered graphene through a nanostruc-
tured substrate. II. Pseudomagnetic �elds. Physical Review B, 85(19):195446, May
2012.

[156] V. M. Pereira and A. H. Castro Neto. Strain engineering of graphene's electronic
structure. Phys. Rev. Lett., 103:046801, Jul 2009.

[157] V. M. Pereira, R. M. Ribeiro, N. M. R. Peres, and A. H. Castro Neto. Optical
properties of strained graphene.EPL (Europhysics Letters), 92(6):67001, 2010.

[158] D. Moldovan, M. Ramezani Masir, and F. M. Peeters. Electronic states in a graphene
ake strained by a Gaussian bump. Physical Review B, 88(3):035446, July 2013.

[159] F. M. D. Pellegrino, G. G. N. Angilella, and R. Pucci. Strain e�ect on the optical
conductivity of graphene. Physical Review B, 81(3):035411, January 2010.

[160] H. Suzuura and T. Ando. Phonons and electron-phonon scattering in carbon nan-
otubes. Phys. Rev. B, 65:235412, May 2002.

[161] N. Levy, S. A. Burke, K. L. Meaker, M. Panlasigui, A. Zettl, F. Guinea, A. H. Castro
Neto, and M. F. Crommie. Strain-induced pseudo-magnetic �elds greater than 300
tesla in graphene nanobubbles.Science, 329(5991):544{7, July 2010.



Bibliography 199

[162] J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G.
Craighead, and P. L. McEuen. Impermeable atomic membranes from graphene
sheets.Nano Letters, 8(8):2458{2462, 2008.

[163] A. Reserbat-Plantey, D. Kalita, Z. Han, L. Ferlazzo, S. Autier-Laurent, K. Ko-
matsu, C. Li, R. Weil, A. Ralko, L. Marty, S. Guron, N. Bendiab, H. Bouchiat, and
V. Bouchiat. Strain superlattices and macroscale suspension of graphene induced
by corrugated substrates. Nano Letters, 14(9):5044{5051, 2014. PMID: 25119792.

[164] L. D. Landau and E. M. Lifshitz. Theory of elasticity, third edition: volune 7 (course
of theoretical physics). Springer, 1986.

[165] A. L. Kitt, V. M. Pereira, A. K. Swan, and B. B. Goldberg. Lattice-corrected
strain-induced vector potentials in graphene. Phys. Rev. B, 85:115432, Mar 2012.

[166] J. L. Ma~nes, F. de Juan, M. Sturla, and M. A. H. Vozmediano. Generalized e�ective
hamiltonian for graphene under nonuniform strain. Phys. Rev. B, 88:155405, Oct
2013.

[167] M. R. Masir, D. Moldovan, and F. Peeters. Pseudo magnetic �eld in strained
graphene: Revisited. Solid State Communications, 175176(0):76 { 82, 2013. Spe-
cial Issue: Graphene V: Recent Advances in Studies of Graphene and Graphene
analogues.

[168] F. de Juan, J. L. Ma~nes, and M. A. H. Vozmediano. Gauge �elds from strain in
graphene. Phys. Rev. B, 87:165131, Apr 2013.

[169] D. Faria, A. Latg�e, S. E. Ulloa, and N. Sandler. Currents and pseudomagnetic �elds
in strained graphene rings.Physical Review B, 87(24):241403, June 2013.

[170] C. Poli, J. Arkinstall, and H. Schomerus. Degeneracy doubling and sublattice polar-
ization in strain-induced pseudo-landau levels.Phys. Rev. B, 90:155418, Oct 2014.

[171] C. W. J. Beenakker. Colloquium : Andreev reection and klein tunneling in
graphene. Rev. Mod. Phys., 80:1337{1354, Oct 2008.

[172] M. Ramezani Masir, P. Vasilopoulos, and F. M. Peeters. Graphene in inhomoge-
neous magnetic �elds: bound, quasi-bound and scattering states.Journal of physics.
Condensed matter : an Institute of Physics journal, 23(31):315301, August 2011.

[173] S. T. Gill, J. H. Hinnefeld, S. Zhu, W. T. Swanson, T. Li, and N. Mason. Mechanical
control of graphene on engineered pyramidal strain arrays.ACS Nano, 0(ja):null, 0.

[174] K. Yue, W. Gao, R. Huang, and K. M. Liechti. Analytical methods for the mechanics
of graphene bubbles.Journal of Applied Physics, 112(8):083512, 2012.

[175] S. Timoshenko and S. Woinowsky-Krieger.Theory of plates and shells. Mcgraw-Hill,
1989.



200 Bibliography

[176] M. Schneider, D. Faria, S. Viola Kusminskiy, and N. Sandler. Local sublattice
symmetry breaking for graphene with a centrosymmetric deformation. Phys. Rev.
B, 91:161407, Apr 2015.

[177] F. M. D. Pellegrino, G. G. N. Angilella, and R. Pucci. Transport properties
of graphene across strain-induced nonuniform velocity pro�les. Phys. Rev. B,
84:195404, Nov 2011.

[178] D. A. Bahamon, Z. Qi, H. S. Park, V. M. Pereira, and D. K. Campbell. Conductance
signatures of electron con�nement induced by strained nanobubbles in graphene.
arXiv:1503.08488v1, (i):1{13, 2015.

[179] T. Low and F. Guinea. Strain-induced pseudomagnetic �eld for novel graphene
electronics. Nano letters, 10(9):3551{4, September 2010.

[180] Z. Qi, D. A. Bahamon, V. M. Pereira, H. S. Park, D. K. Campbell, and A. H. Castro
Neto. Resonant tunneling in graphene pseudomagnetic quantum dots.Nano letters,
13(6):2692{7, June 2013.

[181] A. Rycerz, J. Tworzydo, and C. W. J. Beenakker. Valley �lter and valley valve in
graphene. Nature Physics, 3(3):172{175, February 2007.

[182] Z. Wu, F. Zhai, F. M. Peeters, H. Q. Xu, and K. Chang. Valley-dependent brewster
angles and goos-h•anchen e�ect in strained graphene.Phys. Rev. Lett., 106:176802,
Apr 2011.

[183] L. Jiang, X. Lv, and Y. Zheng. Valley polarized electronic transport through a line
defect in graphene: An analytical approach based on tight-binding model.Physics
Letters A, 376(2):136 { 141, 2011.

[184] D. Gunlycke and C. T. White. Graphene valley �lter using a line defect. Phys. Rev.
Lett. , 106:136806, Mar 2011.

[185] M. Ramezani Masir, a. Matulis, and F. Peeters. Quasibound states of Schr•odinger
and Dirac electrons in a magnetic quantum dot. Physical Review B, 79(15):155451,
April 2009.

[186] S. Roche and D. Mayou. Conductivity of quasiperiodic systems: A numerical study.
Phys. Rev. Lett., 79:2518{2521, Sep 1997.

[187] T. Markussen, R. Rurali, M. Brandbyge, and A. P. Jauho. Electronic transport
through Si nanowires: Role of bulk and surface disorder.Physical Review B - Con-
densed Matter and Materials Physics, 74(24):1{11, 2006.

[188] Z. Fan, A. Uppstu, T. Siro, and A. Harju. E�cient linear-scaling quantum transport
calculations on graphics processing units and applications on electron transport in
graphene. Computer Physics Communications, 185(1):28 { 39, 2014.



Bibliography 201

[189] D. Van Tuan, J. Kotakoski, T. Louvet, F. Ortmann, J. C. Meyer, and S. Roche.
Scaling properties of charge transport in polycrystalline graphene. Nano Letters,
13(4):1730{1735, April 2013.

[190] A. W. Cummings, A. Cresti, and S. Roche. Quantum hall e�ect in polycrystalline
graphene: The role of grain boundaries.Phys. Rev. B, 90:161401, Oct 2014.

[191] N. Leconte, A. Lherbier, F. Varchon, P. Ordejon, S. Roche, and J.-C. Charlier.
Quantum transport in chemically modi�ed two-dimensional graphene: From mini-
mal conductivity to anderson localization. Phys. Rev. B, 84:235420, Dec 2011.

[192] T. M. Radchenko, A. A. Shylau, and I. V. Zozoulenko. Inuence of correlated
impurities on conductivity of graphene sheets: Time-dependent real-space Kubo
approach. Physical Review B - Condensed Matter and Materials Physics, 86(3):1{
13, 2012.

[193] S. Yuan, H. De Raedt, and M. I. Katsnelson. Modeling electronic structure and
transport properties of graphene with resonant scattering centers.Physical Review
B, 82(11):115448, September 2010.

[194] F. Ortmann, A. Cresti, G. Montambaux, and S. Roche. Magnetoresistance in disor-
dered graphene: The role of pseudospin and dimensionality e�ects unraveled.EPL
(Europhysics Letters), 94(4):47006, 2011.

[195] A. Lherbier, B. Biel, Y.-M. Niquet, and S. Roche. Transport length scales in dis-
ordered graphene-based materials: Strong localization regimes and dimensionality
e�ects. Phys. Rev. Lett., 100:036803, Jan 2008.

[196] A. Lherbier, S. M.-M. Dubois, X. Declerck, S. Roche, Y.-M. Niquet, and J.-C.
Charlier. Two-dimensional graphene with structural defects: Elastic mean free path,
minimum conductivity, and anderson transition. Phys. Rev. Lett., 106:046803, Jan
2011.

[197] J. G. Pedersen, A. W. Cummings, and S. Roche. Anisotropic behavior of quan-
tum transport in graphene superlattices: Coexistence of ballistic conduction with
anderson insulating regime.Phys. Rev. B, 89:165401, Apr 2014.

[198] D. van Tuan. Charge and spin transport in disordered graphene-based materials.
PhD thesis, Catalan institute of nanoscience of nanotechnology, 2014.

[199] R. Haydock. The recursive solution of the schrdinger equation.Computer Physics
Communications, 20(1):11 { 16, 1980.

[200] A. Wei�e, G. Wellein, A. Alvermann, and H. Fehske. The kernel polynomial method.
Reviews of Modern Physics, 78(1):275{306, March 2006.

[201] J. G. Pedersen, A. W. Cummings, and S. Roche. Anisotropic behavior of quan-
tum transport in graphene superlattices: Coexistence of ballistic conduction with
anderson insulating regime.Phys. Rev. B, 89:165401, Apr 2014.



202 Bibliography

[202] S. Roche, N. Leconte, F. Ortmann, A. Lherbier, D. Soriano, and J.-C. Charlier.
Quantum transport in disordered graphene: A theoretical perspective. Solid State
Communications, 152(15):1404 { 1410, 2012. Exploring Graphene, Recent Research
Advances.

[203] N. Leconte, F. Ortmann, A. Cresti, J.-C. Charlier, and S. Roche. Quantum transport
in chemically functionalized graphene at high magnetic �eld: defect-induced critical
states and breakdown of electron-hole symmetry.2D Materials, 1(2):021001, 2014.

[204] F. Ortmann, N. Leconte, and S. Roche. E�cient linear scaling approach for com-
puting the kubo hall conductivity. Phys. Rev. B, 91:165117, Apr 2015.

[205] P. Soven. Coherent-potential model of substitutional disordered alloys.Physical
Review, 1017, 1967.

[206] T. Aktor, A.-P. Jauho, and S. R. Power. Electronic transport in graphene nanorib-
bons with sublattice-asymmetric doping. page 5, April 2015.

[207] B. Velicky. Theory of Electronic Transport in Disordered Binary Alloys: Coherent-
Potential. Physical Review, 321(3), 1969.

[208] B. Velicky. Single-Site Approximations in the Electronic Theory of Simple Binary
Alloys. Physical Review, 1(3), 1968.

[209] Y. Zhu, L. Liu, and H. Guo. Quantum transport theory with nonequilibrium coherent
potentials. Physical Review B, 88(20):205415, November 2013.

[210] Y. Ke, K. Xia, and H. Guo. Disorder scattering in magnetic tunnel junctions: Theory
of nonequilibrium vertex correction. Phys. Rev. Lett., 100:166805, Apr 2008.

[211] Z. Wang, Y. Ke, D. Liu, H. Guo, and K. H. Bevan. Low bias short channel impurity
mobility in graphene from �rst principles. Applied Physics Letters, 101(9):093102,
2012.

[212] Z. Wang, H. Guo, and K. H. Bevan. First principles modeling of disorder scattering
in graphene. Journal of Computational Electronics, 12(2):104{114, February 2013.

[213] A. Lherbier, X. Blase, Y.-M. Niquet, F. M. C. Triozon, and S. Roche. Charge
transport in chemically doped 2d graphene.Phys. Rev. Lett., 101:036808, Jul 2008.

[214] E. R. Mucciolo, A. H. Castro Neto, and C. H. Lewenkopf. Conductance quantization
and transport gaps in disordered graphene nanoribbons.Phys. Rev. B, 79:075407,
Feb 2009.

[215] L. Zhao, R. He, K. T. Rim, T. Schiros, K. S. Kim, H. Zhou, C. Gutirrez, S. P. Chock-
alingam, C. J. Arguello, L. Plov, D. Nordlund, M. S. Hybertsen, D. R. Reichman,
T. F. Heinz, P. Kim, A. Pinczuk, G. W. Flynn, and A. N. Pasupathy. Visualizing
individual nitrogen dopants in monolayer graphene. Science, 333(6045):999{1003,
2011.



Bibliography 203

[216] R. Lv, Q. Li, A. R. Botello-M�endez, T. Hayashi, B. Wang, A. Berkdemir, Q. Hao,
A. L. El��as, R. Cruz-Silva, H. R. Guti�errez, Y. A. Kim, H. Muramatsu, J. Zhu,
M. Endo, H. Terrones, J.-C. Charlier, M. Pan, and M. Terrones. Nitrogen-doped
graphene: beyond single substitution and enhanced molecular sensing.Scienti�c
reports, 2:586, January 2012.

[217] L. Zhao, M. Levendorf, S. Goncher, T. Schiros, L. Plov, A. Zabet-Khosousi, K. T.
Rim, C. Gutirrez, D. Nordlund, C. Jaye, M. Hybertsen, D. Reichman, G. W. Flynn,
J. Park, and A. N. Pasupathy. Local atomic and electronic structure of boron
chemical doping in monolayer graphene. Nano Letters, 13(10):4659{4665, 2013.
PMID: 24032458.

[218] A. Zabet-Khosousi, L. Zhao, L. Plov, M. S. Hybertsen, D. R. Reichman, A. N.
Pasupathy, and G. W. Flynn. Segregation of sublattice domains in nitrogen-doped
graphene. Journal of the American Chemical Society, 136(4):1391{1397, 2014.

[219] J. A. Lawlor, P. D. Gorman, S. R. Power, C. G. Bezerra, and M. S. Ferreira. Sub-
lattice imbalance of substitutionally doped nitrogen in graphene. Carbon, 77(0):645
{ 650, 2014.

[220] A. Lherbier, A. R. Botello-Mndez, and J.-C. Charlier. Electronic and transport
properties of unbalanced sublattice n-doping in graphene.Nano Letters, 13(4):1446{
1450, 2013.

[221] I. Deretzis and A. La Magna. Origin and impact of sublattice symmetry breaking
in nitrogen-doped graphene.Phys. Rev. B, 89:115408, Mar 2014.

[222] J. A. Lawlor and M. S. Ferreira. Sublattice asymmetry of impurity doping in
graphene: A review. Beilstein journal of nanotechnology, 5:1210{7, January 2014.

[223] S. Timoshenko.Theory of elasticity. Mcgraw-Hill, 1970.

[224] E. Ventsel and T. Krauthammer. Thin plates and shells. Marcel Dekker, 2001.



Copyright: Mikkel Settnes

All rights reserved

Published by:
DTU Nanotech
Department of Micro- and Nanotechnology
Technical  University of Denmark
Ørsteds Plads, building 345B
DK-2800 Kgs. Lyngby


	Abstract
	Resumé - Danish

