Scalable nanostructuring on polymer by a SiC stamp
optical and wetting effects

Argyraki, Aikaterini; Lu, Weifang; Petersen, Paul Michael; Ou, Haiyan

Publication date:
2015

Document Version
Peer reviewed version

Citation (APA):
Scalable nanostructuring on polymer by a SiC stamp: optical and wetting effects

Aikaterini Argyraki, Weifang Lu, Paul Michael Petersen, Haiyan Ou
Department of Photonics Engineering, Technical University of Denmark
Outline

Motivation
- Wafer-Scale nanostructuring of SiC stamp
- Replication of nanostructures on a polymer surface

Fabrication
- Optical effects
- Wetting properties

Conclusions
Motivation

Push performance of devices towards their optimum limits by controlable fabrication of interfaces at the nanoscopic level.

Polymer materials gain interest both as semiconductors and conductors due to their low cost.
Prerequisites

Fabrication of nanostructures that result in macroscale effects with reproducibility!

and...nanopattern definition must be:

• Rapid
• Low-cost
• Applicable on wafer scale-high throughput
SiC nanostructuring: summary table

<table>
<thead>
<tr>
<th>Type of structures</th>
<th>Method</th>
<th>Average Reflectance (%)</th>
<th>Luminescence enhancement (from 10 to 80 degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periodic</td>
<td>E-beam</td>
<td>1.01</td>
<td>104%</td>
</tr>
<tr>
<td>Semi-periodic</td>
<td>Self-assembly</td>
<td>1.62</td>
<td>67%</td>
</tr>
</tbody>
</table>

*Reference:
A cost effective method for SiC aperiodic nanostructuring
Combinatory masking

200nm
Ramping:
RIE conditions+

Al thickness

*Reference:
A. Argyraki et al., Optical Materials Express 8(3) 2013.
Fabrication of different nanotopographies

Color texture changes due to nanostructuring
Optical properties: Reflection, Transmission

- Average 25% Reflectance
- Average 5% Reflectance
- Average 0.5% Reflectance
- Average 37% Transmission
- Average 33% Transmission
- Average 13% Transmission

Technical University of Denmark
Aikaterini Argyraki
Scalability
Summary table

<table>
<thead>
<tr>
<th>Type of structures</th>
<th>Method</th>
<th>Average Reflectance (%)</th>
<th>Luminescence enhancement (from 10 to 80 degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periodic</td>
<td>E-beam</td>
<td>1.01</td>
<td>104%</td>
</tr>
<tr>
<td>Semi-periodic</td>
<td>Self-assembly*</td>
<td>1.62</td>
<td>67%</td>
</tr>
<tr>
<td>Stochastic</td>
<td>Combinatory masking</td>
<td>0.50</td>
<td>165%</td>
</tr>
</tbody>
</table>

Reference: Ou, H., Advances in wide bandgap SiC for optoelectronics, The European Physical Journal B
Replication of nanostructures on polymer

- Hot embossing
- Polymer foil by SiC master stamp
- Galvanization process
- Ni Shim and following generations
- Hot embossing
- Hot embossed polymer by Ni shim
- Thin film deposition
- Thin Al coated nanostructure

Process flow

Technical University of Denmark
Aikaterini Argyraki
Ni shim: generation
Nanostructured polymer surface
Color textures after nanostructuring on polymer

A thin Al layer (~40nm)
Optical and wetting properties after nanostructuring on polymer
Conclusions

• Demonstrated 2 inch wafer nanostructuring on polymer by a SiC stamp

• Color texture and transmittance of SiC surface was controlled by nanotopography applied

• Color texture and reflectance of polymer surface was significantly altered by nanostructuring and additional deposition of a thin Al layer

• Wetting properties of surfaces shifted after nanostructuring from hydrophilic to hydrophobic
Acknowledgment

Weifang Lu Yiyu Ou Paul Michael Petersen Haiyan Ou
Thank you for your attention

Contact info: aikar@fotonik.dtu.dk