DFT-NEGF calculations of gated graphene nano-structures

Papior, Nick Rübner; Gunst, Tue; Stradi, Daniele; Brandbyge, Mads

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
DFT-NEGF calculations of gated graphene nano-structures
Nick Papior Andersen, Tue Gunst, Daniele Stradi, Mads Brandbyge
DTU Dept. of Micro- and Nanotechnology & Center for Nanostructured Graphene, DK-2800 Kgs. Lyngby, Denmark

Abstract
Two dimensional (2D) materials such as graphene are expected to be prominent candidates for nanoscale electronics applications. In particular the possibility to electrostatically gate 2D atomic scale structures is a key feature. Here we present non-equilibrium simulations of graphene nanostructures to illustrate a novel electrostatic gating implementation in SIESTA [1]. We test this model on a graphene nanocostruction and investigate the doping and the applied bias dependence on the transmission.

Implementation details
- Different gate geometries possible
- 2D materials only
- Electric field obtained from Poisson
- Self-consistent solution in SIESTA [1]

Transmission properties of gating nanoconstriction [2]
- Intrinsic transmission at 0 V
 - 1st peak
 - 2nd peak
- \(n = -2e^- \) transmission at different applied bias \((V \text{ shifted vertically}) \), symmetric about applied bias
- 0.5 V transmission at different doping levels \((n \text{ shifted vertically}) \)
- Transmission peak doping compared to graphene doping

Doping via adsorbates
- New electrostatic gating model implemented for SIESTA/TransSIESTA
- Investigating the model on a graphene nanocostruction
 - Gating is not the same as shifting Fermi-level
 - Features of transmission spectra does not shift linearly with \(\Delta V \)
 - Electronic structure can be tuned via doping
 - Potential drop across construction changes with doping, we can therefore tune the local potential drop by gating

Conclusion
- Localised potential drop could influence the reactivity
- Gating other graphene nanostructures could also show non-linear effects
- Currently investigating oxygen terminated nanocostruction

DTU Nanotech
Department of Micro- and Nanotechnology
nickpapior@gmail.com