Conceptual design of a thorium supplied thermal molten salt wasteburner

Schönfeldt, Troels; Klinkby, Esben Bryndt; Klenø, K.H.; Boje, Peter; Eakes, C.; Pettersen, E.E.; Løvschall-Jensen, A. E.; Jørgensen, M. D.

Publication date: 2015

Conceptual design of a thorium supplied thermal molten salt wasteburner

Troels Schönfeldt1,2
E. Klinkby1,2, K. H. Klenø2, P. Boje3, C. Eakes2, E. E. Pettersen1,2,4,
A. E. Løvschall-Jensen2,4, & M. D. Jørgensen2.

1DTU Nutech, 2Seaborg IVS,
3DTU Diplom, & 4Niels Bohr Institute
The Project

• Me: Troels Schönfeldt: PhDc - Advanced cold neutron moderators @ DTU Nutech and ESS Neutronics
• 168 hours/week. A PhD study is 37.5 hours/week (=> 77.7% spare-time)... So we started a company
• Seaborg IVS:
 – We now consist of 10 unpaid physicist, chemists and engineers
 – We focus on nuclear reactor technologies, with special focus on molten salt reactors and thorium
• Here you will be presented with our, still very preliminary, Seaborg WasteBurner, the SWaB
Kickoff

- In December 2014 we were invited to join the “Feasibility Study for the Development of a Pilot Scale Molten Salt Reactor in the UK”, by:
 - The SWaB design - a single salt thermal molten salt wasteburner
 - The SWaB is currently under evaluation by UK experts
 - Also, it turns out that 130.5 hours/week of spare times is not really a lot
Our constraints

1: No weapons!
- No separation of Pu/Pa from U
- Highly “denatured” U and Pu
- Decreasing weapon “quality”

2: Inherently safe
- Rely on physics
- Any active system must be redundant

3: Wasteburner
- Negative net TRU production
- Evolve towards the closed thorium fuel cycle

4: Thermal spectrum operation
- Because it has tremendous advantages
- Inefficiency of TRU burning should be compensated for by enhanced neutron economy

5: Modular (Economical):
- decrease construction/decommission cost
- Shipyard style manufacturing - mass-production

Early drawing of the “bottle”.
The “product”

Reactor class:
Chemistry

S. Delpech et al., Reactor physic and reprocessing scheme for innovative molten salt reactor system. Journal of fluorine chemistry, 2009

Comments: MS = Molten Salt; LM = Liquid Metal (Bi, Pb...); Cl-MS = Chloride Molten Salt
LM contains different amount of Th in stages 2 and 3 with x<y
MA = Minor Actinides, Ln = Lanthanides
Method

Reactor model

MCNPX (& Cinder)

Degasser

Chemistry

Refueler

Time-evolve SNF

Rebalance 78LiF-22AcF₄ and volume

Material

Neutronics

Spectrum

Initial fuel from LWR

Simi-automatic optimization

DTU Nutech
Center for Nuclear Technologies
Initial fuel and alternatives

Flame reactor:
SNF -> Fluoride salts and removes:
- 99.1% U (as UF$_6$)
- 0.1% other Ac
- 99% FP (extracted)

Initial fuel (10 year storage):
45% U (~1.3% enriched)
45% Pu (~68% fissile)
5% FP (only non-gasses)
5% minor minor Ac (mainly Am)
Salt and moderator

- Iterative optimization of geometry and spent fuel to Th ratio (Ac => xTh+yAc_{SNF} optimized to K_{eff max} ~1.05)
- Using this tool, we were able to analyze several moderator and carrier salt candidates in a matter of days.
Control

1: Huge “instant” negative response, mainly from salt density change.
2: Small “slow” positive response from graphite heating. (Problematic)

Daily control using online chemistry.
Hourly control using 4 graphite fine-tuning rods ($\Delta k_{eff}=0.88\% = 254 \text{ pcm}$)
Absorbing control rods for full shutdown only (= better neutron economy)
Pot outer dimension: 190x190x340 cm3
Blanket thickness: 15-22 cm
Moderator: Graphite (r=75 cm, l=300 cm)
Operation temperature 700$^\circ$C-900$^\circ$C
Flow speed: 38.1 l/s
Salt volume: ~ 6 m3 (~ 5 m3 in core)
Salt composition: 78LiF-22AcF_4 (99.95% ^7Li)
- 100Ac $\sim 87\text{Th}+6\text{U}+6\text{Pu}+1\text{Ac}_m$ (starting)
- Melting point <568$^\circ$C
- Salt evaporation starts: >1300$^\circ$C
Running the cycle with our (thermal-epithermal) spectrum utilizes **83.1%** of the fuel and produce **16.9%** americium waste – but $\text{eta}=0.88$ (sustainable is $\text{eta}>>1$)
Running the cycle with our (thermal-epithermal) spectrum utilizes virtually all the fuel and produce **4.56 ppm** americium waste and **eta=1.06** – however...
Neutron loss

The changing leakage over time, is caused by significant inventory changes from “over-fueling” (and Th removal) to keep the core critical.

<table>
<thead>
<tr>
<th>Actinide component</th>
<th>Initial</th>
<th>30 years</th>
<th>60 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thorium</td>
<td>86.7%</td>
<td>59.6%</td>
<td>39.9%</td>
</tr>
<tr>
<td>Uranium</td>
<td>6.3%</td>
<td>21%</td>
<td>32%</td>
</tr>
<tr>
<td>Plutonium</td>
<td>6.3%</td>
<td>16%</td>
<td>23%</td>
</tr>
<tr>
<td>Minor Ac</td>
<td>0.6%</td>
<td>3.0%</td>
<td>4.8%</td>
</tr>
<tr>
<td>Fissile Pu/Pu</td>
<td>67.8%</td>
<td>53.1%</td>
<td>48.5%</td>
</tr>
</tbody>
</table>

Our thorium cycle has eta=1.06
But we lose 10-13% neutrons.
60 years, at 50 MW\textsubscript{th}:

Net negative transuranic production of ~1 ton!

We do not have an underlying closed thorium fuel cycle. But with the production of 233U we are getting closer.
Next step: SWaB -> CUBE
Seaborg WasteBurner -> Compact Used fuel BurnEr

Fix reactivity feedback from graphite expansion
- graphite slabs instead of salt pipes

Increase fine-tuning rods reactivity span
- move rods to a more central position

Reduce Pu (and Ac\text{m}) inventory
- minimize salt volume (double blanket?)
- optimize moderator configuration
- remove Am online
- increase UF6 evaporation in fuel processing

Increase neutron economy
- reduce leakage (ultra compact)
- add outer reflector

Funding needed for two activities:
System engineering and multi physics
Chemistry system design and verification