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Abstract. Finite element simulation of resistance welding requires coupling between
mechanical, thermal and electrical models. This paper presents the numerical models and their
couplings that are utilized in the computer program SORPAS. A mechanical model based on
the irreducible flow formulation is utilized to simulate plastic deformation and the resulting
distribution of stress, a thermal model based on transient heat transfer is used to determine the
distribution of temperature, and a steady-state electrical model is employed to calculate the
distribution of electrical potential and current density. From a resistance welding point of
view, the most essential coupling between the above mentioned models is the heat generation
by electrical current due to Joule heating. The interaction between multiple objects is another
critical feature of the numerical simulation of resistance welding because it influences the
contact area and the distribution of contact pressure. The numerical simulation of resistance
welding is illustrated by a spot welding example that includes subsequent tensile shear testing.

1 INTRODUCTION
Resistance welding is a widely applied joining technology. Spot welding, one of its

variants, is very important in automotive assembly lines as it is a robust and effective joining
process that is under continuous development to meet new demands due to novel materials,
complex welding geometries and quality requirements. Projection welding is another widely
applied variant of resistance welding which benefits from natural or fabricated projections.
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Numerical simulation methods applied to resistance welding can provide a better
understanding of the joining process and be utilized in the definition of operating parameters
and prediction of the final quality of the welds. The role of numerical simulation in resistance
welding is stated well by Singh [1], who points out that simulation cannot replace or
substitute ingenuity or creativeness, but it can help in gaining understanding of the process,
and hence reduce the amount of time spent during development.

During the 1960s and 1970s, the first models considering resistance welding were
exclusively focused on the temperature history and made use of 1D or 2D axisymmetric
models without mechanical coupling. Early numerical simulations of resistance welding,
starting in the 1980s, include finite element analysis by Nied [2] and application of the finite
difference method by Cho and Cho [3]. The finite element method is more suited for the
analysis of resistance welding due to the deformations involved in the process. Nied [2], who
used the commercial program ANSYS, is recognized as the first to apply finite element
analysis to resistance welding. He setup a rather complete model to study resistance spot
welding that included electro-thermo-mechanical discretization of the electrodes and
workpieces by solid elements and by surface elements at the interfaces between objects to
account for elastic mechanical contact (Herzian contact) and for electrical and thermal contact
resistances. Although the simulation only considered elastic deformation, it was the first ever
to consider the developing contact areas that play a key role in the process. Furthermore, good
agreement between presented experiments and simulations provided motivation and
inspiration for others to continue developments of numerical methods applied to resistance
welding.

Another example of finite elements applied to resistance welding is the numerical
modelling of projection welding of an automotive door hinge with two projections welded to
a sheet that was performed by Zhu et al. [4] using ANSYS with an electro-thermo-mechanical
coupled model that included plastic deformation. Other examples are given by Ma and
Murukawa [5].

The objective of this paper is to present an overview of the numerical methods utilized in
the commercial finite element program SORPAS for the complete simulation of resistance
welding. The program was developed in the 1990s at the Technical University of Denmark to
solve 2D industrial applications and later commercialized, maintained and further developed
by SWANTEC Software and Engineering [6, 7]. In contrast to general purpose finite element
computer programs, SORPAS is a special purpose software dedicated to simulation and
optimization of resistance welding processes. The 3D version of SORPAS has been recently
developed in collaborative partnership between the Technical University of Denmark, the
University of Lisbon and SWANTEC Software and Engineering and has been
commercialized since 2012.

The paper is organized such that Section 2 includes basic numerical models and the
necessary couplings in the electro-thermo-mechanical model. Section 3 presents the numerical
contact implementation as well as the physical contact modeling that are crucial for the
simulation of resistance welding. Section 4 describes the prediction of phase changes and
resulting hardness related to the weld quality. Section 5 presents a resistance welding example
showing the application of the numerical methods to process simulation and subsequent
strength test simulation, and Section 6 concludes.
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2 ELECTRO-THERMO-MECHNICAL NUMERICAL MODEL
This section presents the mechanical, thermal and electrical formulations that give support

to the associated software modules and describes the necessary couplings. Coupled damage
modeling is included as part of the mechanical module, while couplings between the three
core modules are covered subsequently together with material dependencies.

2.1 Mechanical module
The mechanical module is based on the irreducible flow formulation, which takes the

following weak variational form,

0Ci

tS
i

V
jjii

V

dSutdVKdV (1)

where the first term covers the energy rate due to plastic deformation in domain volume V ,
the second term imposes the incompressibility constraint, the third term applies surface
tractions over surface tS  and the fourth term is due to the contact contribution to be described
in Section 3.1. Variations with respect to velocities iu  are identified by  while  is the
effective stress,  is the effective plastic strain rate, the penalty factor K  is a large positive
number, ii  is the volumetric strain rate, and it  are prescribed surface tractions.

The plastic deformation is generally assumed to follow the isotropic von Mises yield
criterion,

2
2 3J (2)

where 2J  is the second invariant of the deviatoric stress tensor ij' . When simulating quasi-
static mechanical strength tests the accumulation of damage is accounted for by utilizing
constitutive equations of metallic materials with porosity. The formation of porosity is
associated with generation and coalescence of voids in average terms over each element. The
yield criterion,

12
2 IBJA
R

(3)

where 1I  is the first invariant of the stress tensor ij , is capable of handling the volumetric
changes due to variations in relative density. The effective stress response R  for a given
relative density R  is given by 22 C

R
, where  is the effective stress response of the fully

dense material. The material constants A B  and C  are dependent on the relative density and
are assumed to follow the porous plasticity theory by Shima and Oyane [8]. The constant

1
13/49.21 028.12

5

R
RC  is responsible for the decrease in flow stress when the relative

density decreases ( 1R ). The accumulated damage D  is formulated as,
RD 1 (4)

This expression is zero for fully dense materials and increases linearly with decreasing
relative density.
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2.2 Thermal module
The thermal module is based on the classical Galerkin treatment of the heat transfer

equation giving the following governing equation for the temperature T ,

0,, T
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V
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V
m

V
ii dSqdVTqdVTTcdVTkT (5)

where the first term is due to heat conduction, the second term is due to stored energy
associated with a temperature rate T , the third term includes the heat generation rate in the
volume Vq  and the fourth term covers the rate of heat generation (or loses) at the surface Sq .
The last term includes thermal contact between objects as described in Section 3.2.

In equation (5), k  is the thermal conductivity, m  is the mass density, mc  is the heat
capacity, and  is used for the arbitrary variations with respect to temperature.

The contributions to Vq  stem from plastic work and Joule heating, as follows,

plasticq
2JqJoule

(6)

where  is the fraction of mechanical energy transformed into heat and is usually assumed to
be in the range between 0.85 to 0.95,  is the electrical resistivity and J  is the current
density calculated in the electrical module (Section 2.3).

The rate of heat generation Sq  along surfaces is due to friction, convection and radiation,
where the latter two are heat loses during the welding process,

rffriction vq

fsconvection TThq
44
fsSBemisradiation TTq

(7)

In the above equations, the heat due to friction is obtained from the product of the friction
shear stress f  and the relative sliding speed rv  between two surfaces in contact. The
convection is associated with the heat transfer coefficient h, the surface temperature sT  and
the temperature fT  of the surroundings. The parameters expressing the radiation are the
emissivity coefficient emis  and the Stefan-Boltzmann constant SB .

2.3 Electrical module
The electric potential  is the major variable in the electrical module. The governing

equation is the Laplace equation, which for an arbitrary variation of the electric potential
and application of the divergence theorem can be written as,

0,,,
S

n
V

ii dSdV (8)

with the addition of the last term accounting for electrical contact between objects to be
presented in Section 3.2. Equation (8) simplifies by the cancellation of the second term
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because of the gradient of the potential along free surfaces n,  being zero.
As it was early stated by Greenwood and Williamson [9], the electric field has a much

faster reaction rate than the temperature field, and therefore the steady state approximation,
0 , behind (8) is generally considered a very good approach. This means that the electric

potential is determined solely by geometry.
The current density J  is available from the ratio of the potential gradient and the electrical

resistivity, iiJ , .

2.4 Electro-thermo-mechanical couplings
The three modules are coupled as schematically shown by Figure 1. The mechanical

module is run at the beginning of each step to establish the velocity field and geometry
change, the contact areas and the overall stress response. Besides the new geometry, the direct
influences in other modules are the deformation heat (6) and friction generated heat (7) in the
thermal module. Another important influence is on the electrical and thermal contact
properties that depend on the contact stresses.

Figure 1: Numerical couplings between the electro-thermo-mechanical simulation of resistance welding.

After convergence of the mechanical module, the electrical and thermal modules are run
until individual and mutual convergence. The output from the electrical module is the current
density giving rise to Joule heating (6) characterizing the resistance welding process. The
resulting temperatures in the thermal module are used to update all temperature dependent
material properties. Among the most important influences by the material property updates
are the mechanical softening, the increasing electrical resistivity and the changes in thermal
properties themselves.

The coupling with the mechanical module is weaker than the coupling between the
electrical and thermal modules. This is justified by simulating with very small time steps
ensuring that the error in the mechanical module due to temperatures of the previous step is
minimal. On the other hand, the time savings by weakening the coupling to the mechanical
module is large. The coupling between the electrical and thermal modules is relatively
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cheaper due to having only one third (in 3D) of the degrees of freedom for the two scalar
fields (potential and temperature) and due to the linear and inexpensive solution of the
electrical module. The limitation to using very small time steps is natural in resistance
welding in order to capture all physical effects of the welding process. When, for example,
simulating 50 Hz alternating current (AC), each half period corresponds to 10 ms and a
minimum number of ten simulation points along each half period therefore requires time steps
of maximum 1 ms. The time step should preferably be even smaller, especially when noting
that alternating current in resistance welding machines typically has a conduction angle
ranging from 50-90% (meaning that only 50-90% of the half period is active, and hence the
time step should also be scaled to 50-90% to have the same resolution of the active current
profile). Further details of the numerical implementation can be found elsewhere [10].

3 CONTACT
The contact implementation is based on the penalty method with identification of contact

pairs by a two-pass node-to-face algorithm. The faces in the contact pairs are quadrilateral
surface elements of the hexahedral volume meshes of the objects. The normal directions in the
contact pairs are determined uniquely by one of the four triangles appearing when introducing
a temporary center node in the quadrilateral surface element. The choice of the triangle is
determined by the projection point of the contacting node. This method was also adopted by
Doghri et al. [11] to overcome symmetry loss that appear with the alternative, and not unique,
division of the quadrilateral surface into two triangles by one of the two diagonals.

3.1 Mechanical contact
The last term in Equation (1) due to mechanical contact by the penalty method is given by

cN

c

c
t

c
t

cN

c

c
n

c
nC ggPggP

11

(9)

which selectively penalizes normal gap velocities c
ng  by the first term and tangential gap

velocities c
tg  by the second term. The penalty factor P  is a large positive number applied to

cN  contact pairs. The first term is selective in the sense that it is generally active when
otherwise leading to penetration and inactive when the two contacting surfaces are separating.
However, in contact pairs identified as already welded, the term is always active. The second
term is likewise active in welded contact pairs and also when simulating full sticking
conditions. During frictionless or frictional sliding, the second term is inactive.

The frictional stress f  during frictional sliding is applied in the contact pairs as surface
tractions by the third term in (1) and is modeled by a combination of the Amonton-Coulomb
law, nf , and the law of constant friction, mkf  where  is the friction coefficient, m
is the friction factor, n  is the normal pressure and k  is the shear flow stress. Using the von
Mises yield criterion, the flow stress is k3 , and the relation am 3/  between the two
friction laws is therefore valid when the transition between the two models take place at a
normal pressure normalized by the flow stress ka n 3/ , where a  is typically 1.5 to 3.
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The frictional stress is applied in the direction opposite to the relative sliding velocity rv
through the following expression by Chen and Kobayashi [12],

0

arctan2
v
r

f
v (10)

where the ‘arctan’ function is introduced to ensure a continuous derivative for the finite
element implementation. It resembles the direction sufficiently fine when 0v  is an arbitrary
constant much smaller than the relative speed. The surface integration of (10) over each
contact element face is performed by 5x5 Gauss quadrature following Barata Marques and
Martins [13] who applied the procedure to contact between finite elements and rigid tools.

3.2 Electrical and thermal contact
The numerical contact ensuring the same potential and temperature on both sides of

contact interfaces are described by the following two penalty terms,
cN
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c
d

c
dP

1
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d

c
dT TTP

1

(11)

by penalization of potential difference c
d  and temperature difference c

dT  in the cN  contact
pairs. The two terms are added in equations (8) and (5), respectively.

Physical contact in the electrical and thermal modules is included through thin layers of
elements on the object surfaces. The electrical contact resistivity is higher than the bulk
resistivities of the two contacting surfaces due to current restriction and eventual surface
contaminants such as oil, dirt and grease. The contact resistivity in SORPAS is modeled as
follows [7],

tcontaminan
n

soft
c 2

3
21

(12)

with the fraction of real contact area to the apparent area in front of the parenthesis being
expressed through the flow stress of the softer material soft  and the contact normal pressure

n , as also performed by Bowden and Tabor [14]. The fraction of real contact area describes,
in conjunction with the two bulk resistivities of the materials in contact 1  and 2 , the
overall current restriction. The additional resistance due to contaminants is included through
the resistivity tcontaminan . The high electrical contact resistivity expressed by (12) is one of the
main contributions to the heat generation by Joule heating as it enters in Equation (6).

Thermal contact resistivity is formulated in a similar way with the exception that the
thermal resistance of the surface contaminants is considered negligible. Hence, the thermal
contact resistance c  is expressed through the ratio of real contact area to the apparent area
and the average thermal resistance (inverse conductivity) of the two materials, 1  and 2 ,
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2
3 21

n

soft
c

(13)

4 PHASE CHANGES AND HARDNESS PREDICTION
The phase changes during resistance welding involve melting and solidification as well as

metallurgical changes of the solid materials due to microstructural changes. Besides the
changing material properties of the solid or molten material, the latent heat L  also needs to be
taken into account when simulating in the temperature range between the solidus temperature
solT  and the liquidus temperature liqT . The latent heat is included by replacing the heat

capacity in (5) by an effective heat capacity mc~  [15],

solliq
mm TT

Lcc~
(14)

Another effect of melting that needs to be taken into account is volume mixing of material
properties when molten materials of different objects contribute to a molten volume.

As regards microstructural phase changes, the following is based on typical automotive
steel grades. Austenitization is considered during heating without consideration of the
temperature rate such that zero austenite is formed below the Ac1 temperature, 100%
austenitization is assumed above the Ac3 temperature and linear interpolation is assumed
between the Ac1 and the Ac3 temperatures. Formation of subsequent phases upon cooling
takes the formed austenite as the starting point and is then calculated based on critical cooling
rates as defined in the continuous cooling transformation (CCT) diagram of Figure 2. The
critical cooling rates Mv  for formation of martensite, Bv  for formation of bainaite and FPv  for
formation of ferrite/pearlite are calculated from the chemical compositions by the formulas
presented by Blondeau et al. [16].

The hardness of each of the phases are calculated by the formulas given in the work by
Maynier et al. [17] based on the chemical compositions and the actual cooling rates calculated
in the finite element simulations. Having calculated the fractions of each of the phases
together with their hardness, the total hardness of the material is calculated by applying
volume mixing.

The change in hardness due to the temperature history is taken into account by scaling the
flow stress curves approximated by nC 0 , where the pre-strain 0  and strain
hardening exponent n  of the original flow stress curve are kept constant while scaling the
factor C . The scaling is performed with the objective of obeying the new tensile strength that
can be approximated based on the new hardness. A number of simplified analytical
approaches as well as empirical relations between the tensile strength and the hardness are
available in literature, e.g. [18-21]. The often applied relation, VTS H3 , is utilized in
SORPAS, where TS  is the nominal tensile stress at the instability point corresponding to an
effective strain 0ninst  and VH  is the Vickers hardness, which is calculated in the finite
element simulation as explained above. Introducing the relation between the flow stress curve
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(expressing the true stress) and the nominal tensile stress results in the following relation
between the (true) flow stress at instability and the hardness,

V
n

inst He 03 (15)

which needs to be obeyed for the corresponding effective strain 0n , and hence the new C -
value becomes,

n
V

n nHeC /3 0 (16)

The new flow stress curves due to the calculated hardness distribution influence the
simulation of strength testing.

Figure 2: Schematic CTT diagram with indication of critical cooling rates at 700 C for formation of martensite,
bainaite and ferrite/pearlite.

5 RESISTANCE SPOT WELDING AND TENSILE SHEAR STRENGTH TESTING
This section presents an example of a resistance spot welding experiment that includes

subsequent tensile shear testing up to failure. The simulation is compared to the
corresponding experiment to show the capabilities of the finite element implementation in
prediction of overall morphology and quality of the weld. Figure 3 includes sheet dimensions,
sheet material, electrode type, welding parameters and tensile shear testing speed and
direction. The tensile shear testing is in compliance with the ISO standard 14273:2000(E).
The initial finite element mesh utilizing one symmetry plane is shown in Figure 3, where the
thin layers of elements on both sides of the sheets take into account the coating and interface
properties. The electrodes are modeled during the welding simulation but are automatically
removed before the tensile shear test simulation.

Experimental and simulated results are included in Figures 4 and 5. The simulated weld
nugget diameter is 6.8mm (Figure 4a at the end of the welding time) in comparison with the
experimentally observed diameter 6.9mm (Figure 4b). The final shape after tensile shear
testing can be compared in Figure 4b and Figure 4c, where the latter includes the simulated
damage according to Equation (4). The agreement with the located crack initiation observed
in the experiment is good. Both simulation and experiments show full plug failure in the
tensile shear tests. Figure 4e shows photographs of the spot weld after failure in one of the

log(time)

Martensite

Pearlite
Ferrite

Bainaite

Mv Bv FPv
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experiments. Figure 4d shows the simulated hardness Vickers that is influencing the tensile
shear test simulation by the scaling of the flow stress curves according to Equation (16).

Figure 3: Resistance spot welding case represented by the initial finite element mesh and the welding
parameters in terms of electrode force F and welding current I as function of process time t. Subsequent tensile
testing velocity is denoted v.

Figure 4: Simulation and experiments. (a) Simulated peak process temperature [ C] during welding and
resulting weld nugget. (b) Experimental cross-section after welding and tensile shear testing. (c) Simulated
deformation and damage resulting from tensile shear testing. (d) Simulated hardness Vickers distribution. (e)
Photographs of spot weld after tensile shear testing until failure. (b,c,e) Arrows identify loaded sheets.

Figure 5 shows the final results of the tensile shear test simulation together with the results
of five repetitions of the same experiment. The level of maximum load is captured by the
implemented damage model, which is of most industrial relevance, while the sudden drop in
load due to fracture does not appear in the simulation due to absence of crack propagation in
the finite element model. Good agreement between the simulation and the experiments are
observed in the prediction of the tensile shear strength.
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Figure 5: Comparison of simulation and experiments by load-elongation curves for tensile shear testing [22].

6 CONCLUSIONS
The individual modules of the electro-thermo-mechanical finite element implementation in

SORPAS 3D and the necessary couplings as well as the level of coupling were
comprehensively described. Accurate modeling of contact, phase changes, hardness
prediction and resulting new strength of the material in the welded zone allows simulation to
be extended into the post-welding destructive tests that are commonly employed to evaluate
the overall quality and strength of the resulting weld nuggets.

Comparisons of the weld nugget size, weld strength and failure mode in a test case
consisting of a single spot weld of two high strength steels are included to show the overall
good agreement between experimental values and observations and numerical predictions.
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