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Optimal Bidding Strategy of Battery Storage in
Power Markets Considering Performance-Based

Regulation and Battery Cycle Life
Guannan He, Qixin Chen, Member, IEEE, Chongqing Kang, Senior Member, IEEE,

Pierre Pinson, Senior Member, IEEE, and Qing Xia, Senior Member, IEEE

Abstract�Large-scale battery storage will become an essential
part of the future smart grid. This paper investigates the optimal
bidding strategy for battery storage in power markets. Battery
storage could increase its pro�tability by providing fast regulation
service under a performance-based regulation mechanism, which
better exploits a battery�s fast ramping capability. However,
battery life might be decreased by frequent charge�discharge
cycling, especially when providing fast regulation service. It is
pro�table for battery storage to extend its service life by limiting
its operational strategy to some degree. Thus, we incorporate
a battery cycle life model into a pro�t maximization model to
determine the optimal bids in day-ahead energy, spinning reserve,
and regulation markets. Then a decomposed online calculation
method to compute cycle life under different operational strate-
gies is proposed to reduce the complexity of the model. This
novel bidding model would help investor-owned battery stor-
ages better decide their bidding and operational schedules and
investors to estimate the battery storage�s economic viability.
The validity of the proposed model is proven by case study
results.

Index Terms�Battery cycle life, battery storage, optimal
bidding strategy, performance-based regulation (PBR), power
markets.

NOMENCLATURE

Indices and Sets

t Time index.
s Scenario index.
k Half cycle index.
H Set of time.
S Set of scenarios.
C Set of half cycles.
e Superscript for energy market.
res Superscript for spinning reserve market.
reg Superscript for regulation market.
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cap Superscript for regulation capability.
perf Superscript for regulation performance.
day Superscript for daily variables.

Parameters and Constants

Rmileage Mileage ratio for regulation resource.
Pmax Rated power capacity of battery storage, MW.
Emax Rated energy capacity of battery storage, MWh.
cm Daily maintenance cost per unit power capacity,

$/MW.
cop Operational cost per unit energy, $/MWh.

P(•)
s,t Market price at time t in scenario s, $/MWh or

$/MW.
� res Probability of spinning reserve deployment.
� Self-discharge rate of battery storage.
�0 Charging/discharging efficiency of battery.
Tfloat Float life of battery storage, year.

Variables

Cap(•)
t Capacity bid in market at time t, MW.

Payreg,(•)
(•),(•) Payment for regulation service, $.

Tservice Service life of battery storage, year.
Tcycle Cycle life of battery storage, year.
Costop

t Operational cost of battery storage at time t, $.
Costm Daily maintenance cost of battery storage, $.
d Depth of discharge (DOD).
Nfail

d Maximum number of charge–discharge cycles at
a DOD of d before the battery’s failure.

nd Number of cycles at a DOD of d.
Et Battery’s energy stored level at time t, MWh.
�Et Battery’s energy level change at time t, MWh.
gres

t Spinning reserve deployment at time t, MW.

I. INTRODUCTION

BATTERY storage will play a critical role along the
entire value chain of the future smart grid [1]. The

largest obstacle that prevents large-scale battery storage from
commercial operation is the relatively high-investment cost
and revenue risk. Thus, how to explore the best cost-
benefit results and more precisely evaluate the economics
of battery storage in power markets have become significant
issues.
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One major application for battery storage is to provide reg-
ulation service. Compared with traditional generators, battery
storage could ramp much more rapidly and respond faster with
better performance. However, for most of the existing reg-
ulation markets, regulation resources are only compensated
based on the committed capacity, with no regard for its actual
performance. Therefore, battery storages’ potential to pro-
vide flexibility is not fully exploited, and the revenue from
regulation markets might be underestimated.

Federal Energy Regulatory Commission (FERC)
Order 755 [2], issued on October 20, 2011, started to
address this problem. It requires market operators to develop
pay-for-performance protocols and tariffs, which compensate
regulation providers according to their actual performance
to remedy undue discrimination [3], [4]. This order has
already been implemented in most independent system
operator/regional transmission organization under FERC. For
example, in PJM, a new performance-based regulation (PBR)
mechanism is instituted in which regulation service providers
receive a two-part payment consisting of a capability payment
and a performance payment. A new fast regulation signal
is introduced that brings approximately three times the
performance revenue of a traditional signal for eligible
resources.

A few papers have evaluated the economics of energy stor-
age considering their participation in power markets. Some of
them only consider participation in energy markets, leaving
out the possible revenues from providing ancillary services.
Though the others well formulate energy storage’s participa-
tion in both energy and ancillary service markets, the PBR
mechanism is not considered. The economic viability and
potential of energy storages’ arbitraging in power markets
is researched in [5]. Storages’ self-scheduling in energy and
ancillary service markets is researched in [6]–[10], some of
which also consider joint operation with wind farms.

Another problem missed by the literature above is that
battery storages’ frequent charge–discharge cycling incurs an
extra cost as it accelerates depreciation. This extra cost of
depreciation might be significant when the regulation signal
is extraordinarily fast. Thus, it is essential to introduce for-
mulations accounting for battery life into an optimal bidding
model in joint energy and ancillary service markets.

Some papers have studied the relations between the bat-
tery’s life and its operation including providing regulation
services. However, none of them introduce formulations
accounting for battery life into the battery’s optimal bid-
ding model. Thus, the battery life’s impact on the battery’s
economic viability has not been totally revealed. A few
papers [11]–[21] have provided some data on different bat-
teries’ cycle lives at different DOD. In [11], the data are
used to calculate the cost per cycle of primary frequency
regulation for the purpose of selecting the cheapest bat-
tery technology. Reference [15] presents a short-term battery
storage scheduling model in conjunction with traditional gen-
erators considering battery cycle life. Reference [16] applies
the battery life model to better manage an energy storage sys-
tem in microgrids. In [20], battery lifetime is calculated to
assess the battery and ultracapacitor ratings in electric vehicles.

Reference [22] calculates a battery’s capacity reduction from
its cycles. Some papers derive formulations on the relation
between battery cycle life and DOD using different fitting
techniques. Reference [20] uses a fourth-order polynomial
function, whereas [21] and [22] used an exponential function.
Another widely used function is the power function [14]–[16],
which also fits the data in [12] and [13] very well.

Regardless of the specific cycle life models, a rain-
flow counting algorithm is commonly used to calculate
a battery’s lifetime, as referenced in [13], [14], [22], and [23].
Most papers above apply this algorithm for static evaluation
with fixed operating strategies. However, because a battery’s
cycle life is affected by its cycling strategy, it is necessary
to incorporate cycle life calculation into dynamic strategy
optimization. Moreover, as the calculation algorithm of cycles
includes some discrete logical judgment and cannot be ana-
lytically expressed with respect to the operation strategies, it
is difficult to embed the calculation algorithm into an analyt-
ical programming model that can be solved by a commercial
optimization solver.

To solve the problems addressed above, this paper proposes
a model that decides the optimal joint bidding strategy of
battery storage in joint day-ahead energy, reserve, and reg-
ulation markets with multi-scenario settings to consider price
uncertainty. The PBR mechanism is included in this model.
A battery cycle life model is embedded into the optimization
scheme to calculate the cycle life under different operational
strategies. Additionally, a decomposition method is introduced
to simplify the battery life calculation with little loss of accu-
racy while largely reducing the complexity of modeling and
computation. By applying the proposed model, investors could
obtain more accurate and realistic economic evaluation results
of battery storage, and storage owners could make better day-
ahead bidding decisions. Case study results prove a significant
impact through considering the PBR mechanism and cycle life
on a battery’s bidding strategy and overall profits.

This paper is organized as follows. Section II introduces the
market mechanisms with PBR settings. Section III presents
the battery life model and calculation method. Section IV for-
mulates the optimal bidding strategy decision-making model.
Case study results are discussed in Section V. Section VI draws
the conclusion.

II. MARKET FRAMEWORK

A. Basic Market Mechanism

Without loss of generality, common settings of power
market mechanisms are implemented in this paper, which
include day-ahead energy, spinning reserve, and regulation
markets [7], [9].

We assume that battery storage simultaneously bids in the
three day-ahead markets, treated as a normal market par-
ticipant like traditional generators. Considering its relatively
small capacity, battery storage is reasonably assumed to be
price-taker. Multi-scenario settings are established to consider
price uncertainty. As a price-taker, the storage has to make an
optimal allocation of its resources in the three markets based
on price prediction to maximize the expected total profit while
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Fig. 1. 3-h sample profiles of RegA and RegD.

ensuring all operational constraints are satisfied. The bidding
strategy has to be decided every day before the closure of the
day-ahead market for the next day.

B. Performance-Based Regulation

The PBR mechanism is included in this model, typically ref-
erenced from the PJM [24]. This mechanism provides incen-
tives for high-performing regulation resources and reduces the
overall regulation capacity requirement in PJM [3].

Under PBR, a dynamic regulation signal (RegD) is added
as a supplement to the traditional regulation signal (RegA).
Derived from the area control error with a low-pass filter,
RegA is used for resources with a limited ramp rate, whereas
RegD, derived with a high-pass filter, results in much faster
movement, as shown in Fig. 1. Regulation resources receive
a two-part payment that consists of capability payment and
performance payment. The system operator calculates the two
payments based on the regulation market capability clearing
price Preg,cap and the regulation market performance clearing
price Preg,perf, respectively, as in the following [25]:

Payreg,cap = Preg,capCapregScoreperf (1)

Payreg,perf = Preg,perfCapregRmileageScoreperf. (2)

Capreg is the hourly committed regulation capacity. The
performance score Scoreperf reflects the accuracy of a reg-
ulation resource’s response to PJM’s regulation signal [26].
The mileage ratio Rmileage is the ratio between the requested
mileage (absolute summation of movement) of one signal to
that of RegA. Because RegD’s mileage is approximately three
times that of RegA, the mileage ratio of RegD is approximately
three times larger as well. Thus, qualified resources following
RegD would earn three times the performance revenue.

Most battery storages are capable of ramping from zero
power output to full capacity within seconds or even millisec-
onds, such as the vanadium redox flow battery, and thus could
provide fast regulation service following RegD. RegD’s other
favorable characteristic for battery storage is that it requires
net zero energy over a 15-min time period [4], which reduces
the amount of obligated reserved energy.

III. BATTERY LIFE MODEL AND CALCULATION METHOD

In this section, a battery life model is introduced and a rea-
sonably simplified online calculation method is proposed to
compute a battery’s service life based on its cycling strategy.

Fig. 2. Curves of cycle life versus DOD with different kP values.

A. Life Model

A battery’s service life (calendar life) Tservice is deter-
mined by its cycle life Tcycle or float life Tfloat, whichever
is shorter [19].

The battery’s cycle life is related to the cycling aging and
dependent on its cycling behavior. Frequent and deep cycles
accelerate cyclic aging and reduce the cycle life. It can be
derived as

Tcycle =
Nfail

d

W • nday
d

(3)

where Nfail
d is the maximum number of charge–discharge

cycles at a specific DOD before the battery’s failure, nday
d is the

number of daily cycles at the DOD, and W denotes the aver-
age number of operating days in one year for battery storage,
considering 20% time allotted for necessary maintenance.

The battery’s float life corresponds to the normal corrosion
processes. It is independent of its cycling behavior, and thus
regarded as a constant. Temperature’s impact on battery life
is assumed to be under consideration and beyond the scope of
this paper.

For any type of battery, Nfail
d is a function of DOD (%), as

Nfail
d = f (d). (4)

f (d) can be obtained by a fitting technique using detailed
experimental data provided by manufacturers. The cycle life
loss Losscycle for nd cycles at d DOD is calculated as

Losscycle(%) =
nd

f (d)
× 100%. (5)

In this paper, f (d) is adopted to be a power function for its
good applicability in different kinds of batteries, as

f (d) = Nfail
100 • d�kP (6)

where kP is a constant ranging from 0.8 to 2.1 [12]–[16] and
Nfail

100 is the number of cycles to failure at 100% DOD.
Fig. 2 shows the curves of cycle life versus DOD with dif-
ferent kP, assuming the Nfail

100 to be 10 000. In practice, kP can
be obtained by a fitting technique using detailed experimental
data provided by battery manufacturers.

By keeping the loss of cycle life a constant, the equiva-
lent 100%-DOD cycle number neq

100 of nd cycles at d DOD is
derived as

neq
100 = nd • dkP . (7)
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A larger kP means fewer equivalent 100%-DOD cycles for
nd cycles at d DOD, as d is always no more than 100%.

Taking a vanadium redox flow battery as an example, the
cell stack’s float life Tfloat can be expected to last more than
ten years [27], and its number of 100%-DOD cycles to failure
Nfail

100 usually exceeds 10 000 [1]. After replacing some com-
ponents such as the cell stack and pumps, the vanadium redox
flow battery storage station can operate another Tservice years,
totaling 2Tservice years.

B. Battery Cycle Life Calculation Method

For a given bidding strategy and regulation signal, there
exists a corresponding energy changing curve of battery
storage. The first step of cycle life calculation is to iden-
tify each half cycle by picking out every local extreme point
on the curve with corresponding energy level Em

k , as in
Fig. 3.

The battery storage completes a half cycle between every
two adjacent local extreme points. Em

k is just the energy level
at the end of the kth half cycle. Then, the DOD of every half
cycle dhalf

k is calculated as

dhalf
k =

����
Em

k � Em
k�1

Emax

����. (8)

According to (3) and (7), a battery’s daily equiva-
lent 100%-DOD cycle number and cycle life are derived,
respectively

neq,day
100 =

�

k�C

0.5 •
�

dhalf
k

�kP
(9)

Tcycle =
Nfail

100

W • neq,day
100

. (10)

This DOD calculating approach is similar to the rainflow
counting algorithm [23]. However, as the decision variables
would affect the local extreme points on the energy curve and
then the identification of the half cycle, extreme point pick-
ing should be conducted for each feasible bidding strategy
to calculate the battery cycle life. The relation between the
decision variables and the local extreme points can be only
analytically expressed in a very complicated form, so it is dif-
ficult to embed the identification of the half cycle into a model
that can be solved by a commercial optimization solver. Thus,
a decomposition calculation method is proposed to separate
the decision variables from the identification of the half cycle,
while precisely approximating the cycle life.

For a battery storage participating in joint energy, spinning
reserve, and regulation markets, its total energy changing pro-
cess, as shown in Fig. 3, can be decomposed into two parts,
as shown in Fig. 4(a) and (b). The time range in Fig. 4(a) is
24 h, whereas it is 1 h in Fig. 4(b).

The first part is related to the bids in markets in each time
period, typically 1 h, denoted by �Et, as shown in Fig. 4(a).
The causes of this part of the energy change include charging
and discharging in the energy market, reserve deployment, and
energy loss in providing regulation service.

The other part of energy changing is caused by regula-
tion up and down, according to the RegD with 4-s resolution.

Fig. 3. Energy curve of battery storage’s operation.

Fig. 4. Decomposition of the energy changing process. (a) Energy change
between hours. (b) Intra-hour energy change.

It is reasonable to simulate the real up-coming day’s regu-
lation signal based on the historical regulation signal when
making day-ahead decisions. The simulated signal serves as
a parameter in optimization, and its local extreme points could
be picked out in advance, as shown in Fig. 4(b). RegDmin

k and
RegDmax

k denote the energy levels of the kth local minimum
and maximum points on the energy curve of RegD signal,
respectively. tmin

k and tmax
k denote the corresponding time of

RegDmin
k and RegDmax

k .
When the capacity bid in the regulation market is much

larger than that in the energy and spinning reserve markets, the
second part of the energy change is usually larger than the first
part, as is the corresponding impact on cycle life calculation.
Then, for most adjacent local extreme points in the same hour
that satisfy t�1 < tmin

k < tmax
k < t, the DOD of corresponding

half cycles can be simplified as

dup
k =

�Et
�
tmax
k � tmin

k

��
h + Capreg

t
�
RegDmax

k � RegDmin
k

�

Emax
(11)

ddown
k =

��Et
�
tmax
k � tmin

k

��
h + Capreg

t
�
RegDmax

k � RegDmin
k+1

�

Emax
(12)

where dup
k denotes the DOD of the kth regulation-up move-

ment; ddown
k denotes the DOD of the kth regulation-down

movement; Capreg
t denotes the capacity bid in the regula-

tion market at time t; h denotes the time interval, which is
equal to 1 h in this paper. In (11) and (12), the two parts
of the energy change are arrayed in order. For the remain-
ing adjacent local extreme points at different hours, Capreg

t
and �Et should be adjusted to be hourly weighted aver-
ages. Then, the battery’s daily equivalent 100%-DOD cycle
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number can be derived as

neq,day
100 =

�

k�C

0.5 •
	����dup

k

���
�kP

+
����ddown

k

���
�kP



. (13)

The proposed algorithm using the decomposition method,
described in (11)–(13), separates decision variables from
extreme point picking, and thus we do not have to pick again
when decision variables change. This simplifies the cycle life
calculation with little loss of accuracy and enables the model
to be solved by commercial solvers because the local extreme
points only serve as parameters.

To guarantee the rigorousness of the above proposed
method, we could re-identify the half cycles on the total
energy curve of the optimal result and compute the cycle life
again using the original calculation method without decom-
position. If the first part of the energy change exceeds the
second part in some time intervals, there will be a slight dif-
ference between the local extreme points picked in advance
and those re-picked. Then, an iteration process could be imple-
mented by re-optimize the bidding strategy using the re-picked
local extreme points to get a more accurate result. As tested,
this iteration could be usually skipped because the results are
very close.

IV. MODEL FORMULATION

In this section, the proposed model of battery storage bid-
ding in the joint power markets is presented in detail. The
decision variables are Cape

t , Capres
t , and Capreg

t , the optimal
capacity bids in the energy, reserve, and regulation markets
for each hour in the next day. We assume the storage to be
a price-taker and to play no tricks to seize profit.

A. Objective Function

The bidding model is an income maximizing problem,
as described in (14). It is nonlinear because the cycle life
calculation is embedded.

max Incometotal = min(Tcycle, Tfloat) • W • Incomeday. (14)

The battery storage’s total income Incometotal is dependent
on the daily income Incomeday and cycle life Tcycle. Tcycle is
calculated using (10)–(13). The daily income is equal to the
sum of the revenues from each market minus the operational
and maintenance costs. To take price uncertainty into account,
we generate some scenarios based on historical price data.
Then, the expected value of the daily income is calculated as

Incomeday =
�

s�S

�s

�
�

t�H

�
Incomee

s,t + Incomeres
s,t

+ Incomereg
s,t � Costop

t
�
�

� Costm. (15)

The energy market income comes from two parts, the
day-ahead energy bid and the real-time spinning reserve
deployment

Incomee
s,t = Pe

s,tCape
t h + Pe

s,tg
res
t h. (16)

In (16), Pe
s,t is the energy price at time t in scenario s. The

spinning reserve deployment gres
t is calculated by assuming

a probability � res of its occurrence [9] as

gres
t = � resCapres

t . (17)

The reserve market income is determined by the spinning
reserve capacity price Pres

s,t and the capacity bid Capres
t

Incomeres
s,t = Pres

s,t Capres
t . (18)

In (19), the regulation market income consists of the
capability payment and the performance payment, calculated
in (20) and (21), respectively.

Incomereg
s,t = Payreg,cap

s,t + Payreg,perf
s,t (19)

Payreg,cap
s,t = Preg,cap

s,t Capreg
t Scoreperf (20)

Payreg,perf
s,t = Preg,perf

s,t Capreg
t R

mileage

s,t Scoreperf. (21)

The operational cost is proportional to the amount of energy
change in storage, as derived in (22). �t indicates the average
energy consumed in regulation up or down within hour t for
1-MW committed regulation capacity, as determined by the
generated RegD signal.

Costop
t = cop


�
Cape,sell

t + Cape,buy
t

�
h + 2�tCapreg

t + gres
t h

�

(22)

Cape
t = Cape,sell

t � Cape,buy
t (23)

0 � Cape,sell
t � Pmax (24)

0 � Cape,buy
t � Pmax. (25)

The capacity bid in the energy market is split into the sell-
ing part Cape,sell

t and the buying part Cape,buy
t , as described

in (23). A positive Cape
t indicates the storage selling energy

to the market, and a negative value indicates purchasing.
Equations (24) and (25) set bounds for bidding capacities in
the energy market.

The maintenance cost Costm is proportional to the rated
power capacity of the battery as

Costm = cmPmax. (26)

B. Constraints

Equations (27)–(34) model the operational constraints of the
battery storage.

1) Capacity Constraints: The sum of the capacity bids of
battery storage must be kept within its upper and lower limits

Cape
t � �Capreg

t � �Pmax (27)

Cape
t + Capres

t + �Capreg
t � Pmax. (28)

For 1-unit capacity committed in the regulation market, stor-
age should hold capacity of � unit for both regulation up and
down. Since the battery’s full power response time is several
milliseconds, which is much shorter than the RegD signal’s
4-s resolution, there is no ramping rate constraint.
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2) Energy Constraints: Battery storage is also required to
hold energy to provide ancillary service in response to the
system operator’s order

Et �
�
Cape

t h + Capres
t h + Capreg

t hreg���0 (29)

Et � Emax +
�
Cape

t h � Capreg
t hreg��0. (30)

A battery must be able to maintain the fully-deployed out-
put level for at least h (typically 1 h) for spinning reserve
service and hreg (typically 15 min) for regulation service [4],
considering the energy loss.

3) State of Charge Constraints: Et+1, the state of
charge (SOC) at hour t + 1, depends on the SOC at hour t
and the charge–discharge behavior during hour t

Et+1 = (1 � �)Et + �Et. (31)

�Et represents the amount of energy change due to energy
selling and purchasing, reserve deployment, and energy loss
in providing regulation service Lreg

t , as

�Et = �
1

�0
Cape,sell

t h + �0Cape,buy
t h �

1

�0
gres

t h � Lreg
t (32)

Lreg
t =

�tCapreg
t

�0
� �tCapreg

t �0. (33)

Despite the energy-neutral characteristic of the RegD sig-
nal, there exists energy loss in the battery providing regulation
service, resulted from the battery’s energy loss in both charg-
ing and discharging. As in (33), this energy loss in providing
regulation service, Lreg

t , depends on the average energy con-
sumed in regulation up or down per unit committed capacity,
the committed regulation capacity and energy efficiency. The
first part on the right side of (33) represents the energy dis-
charged from the battery during regulation up in hour t, while
the second part represents the energy charged to the battery
during regulation down in hour t.

E0 = Etmax . (34)

The initial and final SOC are set to be equal during the
optimization period, as described in (34). tmax represents the
end of the day.

V. CASE STUDY

We used GAMS and MATLAB to solve the model on a PC
with an Intel Core 7 CPU (2.4 GHz) and 8.0 GB RAM.

A. Basic Data

We used historical market data in May 2014 from PJM and
Electric Reliability Council of Texas (ERCOT) to generate
scenarios. Day-ahead prices for energy and spinning reserve
were obtained from ERCOT and regulation market data from
PJM. The reason that we used the spinning reserve price
from ERCOT rather than PJM is that PJM’s price of spinning
reserve is very low because it has a capacity market to compen-
sate, which is beyond the scope of this paper. The probability
of reserve deployment � res is chosen to be 5% [9]. � is set
to be 1. A 4-s simulated RegD signal was generated based
on real RegD signal data in May 4–10, 2014. As tested, the

TABLE I
AVERAGE PRICE AND REGD PARAMETERS

Fig. 5. Average generated hourly market prices.

TABLE II
BATTERY STORAGE PARAMETERS

TABLE III
COST PARAMETERS

cycle life calculation result of the simulated signal was very
close to that of the real signal. Table I summarizes the price
data and the RegD’s parameters, averaged across all scenarios
and hours. Fig. 5 shows the hourly prices in energy, spinning
reserve, and regulation markets, averaged over all generated
scenarios.

A 30-MW, 1-h vanadium flow battery with 70% round trip
efficiency was considered in the base case. kP is fitted to 0.85,
based on the cycle life data of the vanadium flow battery
from [13]. Table II summarizes the battery’s parameters.

A vanadium redox flow battery’s cost is introduced in [27]
based on investigation. The total investment cost is derived as

Costinvest = (1 + µ) • (ICP • Pmax + ICE • Emax + ICF)
(35)

where µ denotes the component replacement cost as a propor-
tion of initial investment cost, ICP and ICE are the unit costs
related to power and energy capacity, respectively, and ICF

is the fixed cost part. All cost parameters are summarized in
Table III [27].

B. Results and Comparisons

Fig. 6 shows the optimal bidding strategies and energy
curves of battery storage in different cases. The optimal
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Fig. 6. Optimal bidding strategies and energy curves of battery storage.
(a) Base case considering PBR payment and cycle life. (b) Case without
considering PBR payment. (c) Case without considering cycle life.

bidding strategy and corresponding energy curve of battery
storage in the base case are shown in Fig. 6(a). The results in
the other cases when PBR payment or battery cycle life is not
considered are shown in Fig. 6(b) and (c), respectively. The
blue, orange, and gray bars represent energy, spinning reserve,
and regulation bids, respectively. The length of bar denotes the
amount of bid. The green curves represent the energy levels
in storage at different hours.

In all three cases, regulation capacity dominates most of
the day. When regulation prices are comparatively low, battery
storages purchase in the energy market to balance the energy
loss, which can be observed by comparing Figs. 5 and 6.
The regulation capacity bids must be reduced at that time
to make charging possible, and the spinning reserve can be
supplied then.

The impact of considering PBR payment on battery stor-
age’s optimal bidding strategy can be observed by comparing
Fig. 6(b) with Fig. 6(a). There are more spinning reserve bids
and fewer regulation bids in Fig. 6(b) compared with those in
Fig. 6(a) during some hours. This is because the income from
the regulation market is comparatively lower without consid-
ering PBR payment, making increasing of the spinning reserve
bids profitable.

Embedding battery cycle life into bidding strategy optimiza-
tion has a significant impact on the optimal bidding strategy
of battery storage, which can be clearly observed by compar-
ing Fig. 6(c) with Fig. 6(a). It is beneficial for the battery to

TABLE IV
DEVIATIONS IN BIDDING STRATEGY

TABLE V
BASE CASE RESULTS

TABLE VI
RESULTS OF A COMPARISON BETWEEN THE BASE CASE AND CASES

NOT CONSIDERING PBR PAYMENT OR BATTERY CYCLE LIFE

slow degradation by not providing regulation service in some
periods such as hours 1–6 and 20 in the base case as compared
to the case of not considering battery cycle life in optimization.
We summarize the hourly deviations in the optimal bidding
strategy in Table IV, averaged across all 24 h in the day. The
relative deviations of energy, spinning reserve, and regulation
bids are 97.6%, 68.2%, and 57.4%, respectively.

Table V summarizes the cost-benefit analysis results of the
base case. We can see that the income from the PBR market is
the major income of battery storage. Income from providing
the spinning reserve also contributes over 10%. Income from
the energy market is negative, as the battery has to purchase
electricity to balance energy consumption and loss. This indi-
cates that in a market with a PBR mechanism, battery storage
would be deeply involved in ancillary service markets, espe-
cially the regulation market, while taking advantage of the
comparatively low price in off-peak periods to compensate for
the energy loss in providing ancillary services. Under the opti-
mal bidding strategy, the battery could make a 26.3% profit
in total, and the daily equivalent 100%-DOD cycle number is
limited to 3.42 to keep cycle life no less than ten years.

Table VI compares the profit and cycle life results of the
three cases. The results indicate that considering PBR payment
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Fig. 7. Sensitivity analysis on cases with different battery durations.

increases the battery storage’s gross income and profit rate
by approximately 25%. As for considering battery cycle life,
though the daily income is lower, the profit rate is improved by
nearly 30% because the battery’s life is extended by limiting
battery’s cycling strategy. This improvement might be even
more significant when the battery has a smaller kP or number
of 100%-DOD cycles to failure.

The accuracy of the proposed decomposition method is val-
idated by comparing the daily equivalent 100%-DOD cycle
numbers calculated using the simplified decomposition method
and the original method, summarized in Table VI. In all
the three cases, the deviation ratios in the cycle number are
below 5%. Most of the deviations come from the hours when
the capacity bid in the regulation market is not much larger
than that in the other markets, such as hours 8, 9, 11, 15, 17,
18, 20, and 24.

The comparison results above prove that the proposed model
considering the PBR mechanism and battery cycle life pro-
vides a different but more effective bidding strategy for storage
owners, as well as a more realistic and accurate cost-benefit
result for investors.

C. Sensitivity Analysis

The energy capacity of battery storage has an impact on its
total profit. We examine cases with different battery durations,
as shown in Fig. 7.

The result indicates that the optimal battery duration is
approximately 1.5 h, with the largest profit rate. For batteries
with a duration of less than 1.5 h, the profit rate increases as
the duration increases, as shown by the red line in Fig. 7. This
is because the energy constraints’ limitations on the profit are
relaxed when the storage has a longer duration. Additionally,
the DOD of a certain bidding strategy is smaller for a battery
with larger energy capacity, which allows for a wilder cycling
strategy and thereby a higher daily income, while maintaining
the same battery cycle life as the blue line in Fig. 7. These
two factors that contribute to total profit are less significant for
batteries with durations of more than 1.5 h. The cycle life has
become even larger than the float life and thus has no impact
on total profit. When we continue to raise the energy capacity,
the increase of the investment cost dominates and causes the
decrease in the profit rate.

The battery storage parameters concerning cycle life also
have significant impact on its profit. Fig. 8 presents how
the profit rate changes with variations in kP and the

Fig. 8. Sensitivity analysis of profit rate with different kP and Nfail
100.

number of 100%-DOD cycles to failure Nfail
100, assuming the

same investment cost. A larger kP or Nfail
100 means a higher

tolerance in frequent and shallow cycles for fast regulation
service and usually brings higher profit. For the same battery
technology, a larger kP or Nfail

100 requires more investment cost,
so that investors need to consider the tradeoff between the
extra profit and investment cost. In the deep red area of Fig. 8,
improvement of battery cycle life performance is unnecessary,
as it brings no additional profit.

VI. CONCLUSION

Better bidding and operating strategies in power markets
could remarkably improve the prospects and economic via-
bility of battery storage. This paper proposes a model for
investor-owned battery storage to optimally bid in power mar-
kets implementing a PBR mechanism. Considering providing
fast regulation service largely affects battery life, a battery life
model and a simplified battery cycle life calculation method
are incorporated into the profit maximization model to take
into account the battery life’s impact on the total profit.
Numerical results suggest that considering the PBR mecha-
nism and battery cycle life could significantly improve battery
storage’s overall economics. Batteries with different durations
and cycle life parameters are compared in sensitivity analyses,
which could help decide its optimal configuration.

The regulation market is small compared to the energy and
reserve markets. One remaining issue for future research is
how to decide a battery storage’s bidding strategy when it is
no longer a price-taker in the regulation market.
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