A Scientific Basis for the Development of the Next Generation of Biodust Burners

Johansen, Joakim Myung; Jensen, Peter Arendt; Clausen, Sønnik; Fateev, Alexander; Nielsen, Karsten Lindorff; Thomsen, J.; Gadsbøll, Rasmus Østergaard; Mitchell, R.; Weber, R.; Mancini, M.; Tonell, M.; Andersen, J.; Myllerup, L.; Glarborg, Peter

Publication date:
2015

Citation (APA):
A Scientific Basis for the Development of the Next Generation of Biodust Burners

J.M. Johansena, b, P.A. Jensena, S. Clausena, A. Fateeva, K.L. Nielsena, J. Thomsena, R. Gadsbølla, R. Mitchella, R. Webera, M. Mancinib, M. Tonellb, J. Andersena, L. Myllerupb and P. Glarborga

aTechnical University of Denmark, bStanford University, cClausthal University of Technology, dVattenfall, eDONG Energy, fBurmeister and Wain Energy

Devolatilization kinetics play an important role especially when considering thermal conversion of high volatile content biomass in pulverized fuel combustion. This study combines small scale laminar flow reactor conversion experiments with corresponding computational fluid dynamic (CFD) calculations making it possible to evaluate the devolatilization kinetics taking the particle temperature history into account, cf. figure 1.

Effective quenching and well defined fuel trajectories makes it possible to collect partially converted particles at residence times in the order of milliseconds. A scarce necessity when fitting conversion models. Using a global, single step, first order Arrhenius type model to describe devolatilization leads to temperature history dependent kinetic parameters:

\begin{align*}
A &= 625 \text{ s}^{-1} \\
E_a &= 6 \text{ kJ} \times \text{mol}^{-1}
\end{align*}

*Vessel of probabilistic predictions. Parameters are subject to change in conversion times.

Scale-up issues are known to be challenging and thus making the balance between accuracy and complexity difficult.

This study aims to provide a common thread through CFD simulations all the way from small particle behavior to industrial application. Evaluation of the validity of small-scale result extrapolation is made by gradual experimental scale-up from lab- to bench-scale. Using a 15 kW drop tube reactor the devolatilization kinetics derived in lab-scale are validated by comparing measurements to the corresponding CFD simulations.

The devolatilization kinetics are validated in a 15 kW drop tube reactor, comparing measurements with CFD predictions.

Combining measurement and simulation results from lab-, bench-, and full-scale systems provides a common thread in developing guidelines for novel burner designs.

Full-scale measurements are conducted at Amager (318 MW\textsubscript{th}) and Herning (288 MW\textsubscript{th}) power stations in Denmark. Both power stations are 100 % biodust fueled (primarily woody fuels) with 30 MW individual front wall mounted, low NO\textsubscript{x}, swirl stabilized burners. A series of analytical methods have been applied, thoroughly characterizing the full-scale flames.

In-flame measurements:

\begin{itemize}
 \item Gas phase temperatures (FTIR and suction pyrometry)
 \item Gas phase chemical composition including radical concentration quantification (UV/IR)
 \item Seeded laser doppler anemometry (LDA) velocimetry measurements in the axial and tangential direction
 \item Particle extraction
\end{itemize}

Additional analyses:

\begin{itemize}
 \item High speed imaging in the infrared spectrum
 \item Video imaging
 \item Particle cloud surface temperature assessment (two-line thermometry)
 \item Particle cloud intrusion and trajectory (IR imaging)
\end{itemize}

Summary

A set of simple kinetic parameters for biomass devolatilization has been derived and validated by tying together experimental setups of different thermal throughputs by measurements and CFD simulations. Scaling up combustion processes for qualitative trend assessment all the way from single particle behavior to full-scale industrial application is well on the way.

Acknowledgment

The Danish Council for Strategic Research is gratefully acknowledged for the funding.

Contact

Joakim M. Johansen, PhD-Student, jjoha@kt.dtu.dk

Figure 1: Gas phase and particle temperature history used to derive the intrinsic devolatilization kinetics at heating rates in the order of 103\textdegree K/s.

Figure 2: Kinetic fit of a global, single step, first order Arrhenius type equation describing the devolatilization of woody biomass as high heating rates and low residence times.

Figure 3: Comparison of oxygen and carbon dioxide measurements and CFD simulation results using the devolatilization derived from figure 3.