Changes in cholesterol homeostasis and acute phase response link pulmonary exposure to multi-walled carbon nanotubes to risk of cardiovascular disease

Poulsen, Sarah S.; Saber, Anne T.; Mortensen, Alicja; Szarek, Jozef; Wu, Dongmei; Williams, Andrew; Andersen, Ole; Jacobsen, Nicklas R.; Yauk, Carole L.; Wallin, Hakan; Halappanavar, Sabina; Vogel, Ulla Birgitte

Published in:
Toxicology and Applied Pharmacology

Link to article, DOI:
10.1016/j.taap.2015.01.011

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Changes in cholesterol homeostasis and acute phase response link pulmonary exposure to multi-walled carbon nanotubes to risk of cardiovascular disease

Sarah S. Poulsen a,b,⁎, Anne T. Saber a, Alicja Mortensen c, Józef Szarek d, Dongmei Wu e, Andrew Williams e, Ole Andersen b, Nicklas R. Jacobsen a, Carole L. Yauk e, Håkan Wallin a,f, Sabina Halappanavar e, Ulla Vogel a,g

a National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark
b Department of Science, Systems and Models, Roskilde University, DK-4000 Roskilde, Denmark
c National Food Institute, Technical University of Denmark, Copenhagen, Denmark
d Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
e Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada
f Department of Public Health, University of Copenhagen, DK-1014 Copenhagen K, Denmark
g Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

A R T I C L E I N F O
Article history:
Received 24 October 2014
Revised 7 January 2015
Accepted 12 January 2015
Available online 22 January 2015

Keywords:
Nanotoxicology
Atherosclerosis
Liver
Acute phase response
Histology

A B S T R A C T

Adverse lung effects following pulmonary exposure to multi-walled carbon nanotubes (MWCNTs) are well documented in rodents. However, systemic effects are less understood. Epidemiological studies have shown increased cardiovascular disease risk after pulmonary exposure to airborne particles, which has led to concerns that inhalation exposure to MWCNTs might pose similar risks. We analyzed parameters related to cardiovascular disease, including plasma acute phase response (APR) proteins and plasma lipids, in female C57BL/6 mice exposed to a single intratracheal instillation of 0, 18, 54 or 162 μg/mouse of small, entangled (CNTSmall, 0.8 ± 0.1 μm long) or large, thick MWCNTs (CNTLarge, 4 ± 0.4 μm long). Liver tissues and plasma were harvested 1, 3 and 28 days post-exposure. In addition, global hepatic gene expression, hepatic cholesterol content and liver histology were used to assess hepatic effects. The two MWCNTs induced similar systemic responses despite their different physicochemical properties. APR expression, hepatic cholesterol content and liver histology were used to assess hepatic effects. The two MWCNTs induced similar systemic responses despite their different physicochemical properties. APR proteins SAA3 and haptoglobin, plasma total cholesterol and low-density/very low-density lipoprotein were significantly increased following exposure to either MWCNTs. Plasma SAA3 levels correlated strongly with pulmonary exposure to MWCNTs with risk of cardiovascular disease.

Introduction

Cardiovascular disease (CVD), a broad term used for all diseases of the cardiovascular system, is the leading cause of death worldwide, being responsible for 3 in every 10 deaths in 2008 (World Health Organization et al., 2011). Retrospective and prospective epidemiological studies show that pulmonary exposure to respirable air particulates increases the risk of CVD (Chen and Nadziejko, 2005; Clancy et al., 2002;Dockery et al., 1993; Erdely et al., 2011a; Li et al., 2007; Mikkelsen et al., 2011; Pope et al., 1995, 2004). Recent increases in the development and use of nanomaterials will inevitably increase their presence in the environment and thus enhance the risk of human exposure. Concern has
been raised that this exposure may lead to increased risk of CVD (Saber et al., 2014).

Several studies have linked pulmonary exposure to different types of multi-walled carbon nanotubes (MWCNTs) via inhalation, instillation or aspiration to lung inflammation, sustained interstitial fibrosis, and granuloma formation in rodents (Ma-Hock et al., 2009; Pauluhn, 2010a,b; Porter et al., 2010; Reddy et al., 2010; Wang et al., 2011; Poulsen et al., 2013). In addition, extrapulmonary effects, such as plaque progression in apoE-knock-out mice, increased levels of acute phase response (APR) proteins in the serum, and adverse developmental effects in offspring, have been reported in mice following pulmonary exposure to CNTs (Li et al., 2007; Hougaard et al., 2013; Erdely et al., 2011b).

Systemic effects of MWCNTs may occur by direct translocation from the target tissue. Indeed, several studies have reported translocation of MWCNTs to different organs, suggesting that they are capable of crossing the air–blood barrier. For example, MWCNTs were found in the lymph nodes following instillation (Aiso et al., 2011), in the brain, kidney, heart and liver following inhalation (Mercer et al., 2013; Stapleton et al., 2012), and in the spleen, liver and bone marrow following pharyngeal aspiration (Czarny et al., 2014). It is also possible that secondary effects result from MWCNT-induced release of cytokines and APR proteins into the systemic circulation during pulmonary inflammation. Increased concentrations of plasma APR proteins have been reported by many epidemiological studies investigating the cardiovascular effects of air pollution (Lowe, 2001; Mezaki et al., 2003; Libby et al., 2010; Estabragh and Mamas, 2013; Pussinen et al., 2007). Increased APR has been recognized as an important risk factors for cardiovascular disease (CVD) (Ridker et al., 2000; Saber et al., 2013; Kaptoge et al., 2012; Taubes, 2002; Estabragh and Mamas, 2013; Rivera et al., 2013; Johnson et al., 2004; Pai et al., 2004; Saber et al., 2014).

The APR is characterized by changes in plasma levels of APR proteins, including C-reactive protein (CRP), serum amyloid A (SAA) and fibrinogen, and changes in cholesterol homeostasis following acute and chronic inflammatory states (Bourdon et al., 2012a; Gabay and Kushner, 1999). SAA is a family of conserved and highly homologous high density lipoprotein (HDL) apolipoproteins, which in mice are the predominant APR proteins (Meek et al., 1992). Several tissues, including the lungs, express the Saa3 gene. The two other isoforms, Saa1 and Saa2, are considered liver-specific but are also expressed in lungs (Bourdon et al., 2012a; Hsuan et al., 2013; Uhlar and Whitehead, 1999; Halappanavar et al., 2011; Halappanavar et al., 2014). The most studied APR protein in humans is CRP. Physiologically, the APR is a beneficial response to local or systemic disturbances (e.g. infections); however, a persistent chronic APR is suggested to alter blood lipids and cholesterol biosynthesis, thereby increasing the risk of developing CVD (Bourdon et al., 2012a; Lindhorst et al., 1997). In the circulation, SAA is primarily a part of HDL. During an APR the concentration of SAA can be induced over 1000-fold, whereby SAA replaces ApoA-1 as the major HDL protein. HDL-SAA is cleared faster from systemic circulation than regular HDL (Hoffman and Benditt, 1983; McGillicuddy et al., 2009; Salazar et al., 2000), and SAA remodeling of HDL impairs HDL’s ability to serve as an acceptor for macrophage cholesterol efflux mediated through ABCA1. The consequences are retaining peripheral cholesterol, reduced cholesterol biliary excretion from liver (Arti et al., 2000; Banka et al., 1995; Lindhorst et al., 1997), and macrophage transformation into foam cells (Arti et al., 2000; Lee et al., 2013). Foam cells are a major component of the fatty streak observed during development of atherosclerosis, a multifaceted, endothelial disease. Consistent with this, viral vector-mediated overexpression of Saa1 in ApoE−/− mice leads to increased plaque progression (Dong et al., 2011). Interestingly, nano-sized titanium dioxide (nano-TiO2) from the same batch increased both pulmonary APR in C57BL/6 mice (Halappanavar et al., 2011; Husain et al., 2013), and induced plaque progression in ApoE−/− mice (Mikkelsen et al., 2011) following pulmonary exposure, thus linking nanoparticle exposure to CVD.

We recently reported that intratracheal instillation of two MWCNTs, a short, entangled CNTSmall and a longer, thicker CNTLarge, caused similar increases in pulmonary inflammation and APR in mice, characterized by global mRNA changes, increased infiltration of inflammatory cells into the lung lumen and changes in the lung morphology (Poulsen et al., 2014). CNTSmall and CNTLarge were selected by the OECD Working Party on Manufactured Nanomaterials and are available at the EU Joint Research Centre. We chose these two based on their physicochemical differences. In the present study we explore changes in various CVD biomarkers and in hepatic gene expression in mice from the above mentioned study at 1, 3 and 28 days following intratracheal instillation of CNTSmall and CNTLarge.

Materials and methods

Materials. The two MWCNTs used in this study have been described previously (Poulsen et al., 2014). Briefly, the first MWCNT (NRCWE-026) is small and entangled, and was purchased from Nanocyl, Belgium. In this study NRCWE-026 will be referred to as CNTSmall. The other MWCNT (NM-401) was donated by the EU Joint Research Centre and is longer and thicker than CNTSmall. In this study it is referred to as CNTLarge and it is physicochemically similar to Mitsui XNri-7, which was recently classified as possibly carcinogenic to humans (Group 2B) by IARC (Grosse et al., 2014). Another batch of CNTSmall was donated to the EU Joint Research Centre repository, so both MWCNTs are included in the materials of the OECD Working Party on Manufactured Nanomaterials. The physicochemical characterization of CNTSmall and CNTLarge, including thermal gravimetric analyses (TGA), surface area analysis (BET), light microscopy imaging, scanning electron microscopy (SEM) imaging, transmission electron microscopy (TEM) imaging and elemental composition, has been conducted previously (Jackson et al., 2014; Kohler et al., 2015; Poulsen et al., 2014), and the data are summarized in the Results section.

Preparation of instillation medium and exposure stock. MWCNTs were suspended to a concentration of 3.24 mg/ml by sonication using a Branson Sonifier S-450D (Branson Ultrasonics Corp., Danbury, CT, USA) equipped with a disruptor horn (model number: 101-147-037) in NanoPure water containing 2% serum collected from C57BL/6 mice. Total sonication time was 16 min at 40 W with continuous cooling on ice. Vehicle controls contained NanoPure water with 2% serum and were sonicated as described for the MWCNT suspensions.

Animals, exposure and tissue collection. All handling, care taking and experimental procedures involving live animals have been reported previously (Kohler et al., 2014, 2015). Briefly, female C57BL/6 mice (6 per group) aged 5–7 weeks were allowed to acclimatize for 1–3 weeks before exposure. The mice were anesthetized with 4% isoflurane until fully relaxed and with 2.5% during the instillation. They were exposed to 18, 54 or 162 µg/animal of either CNTSmall or CNTLarge via a single intratracheal instillation. Intratracheal instillation was chosen since it allows for control of the deposited doses; this would be difficult with inhalation exposure. Although instillation bypasses the upper respiratory system and results in a rapid bolus deposition, it is a valuable tool for understanding the potential systemic toxicity following MWCNT exposure. Also, comparable inflammation levels following MWCNT administration by pharyngeal aspiration and by inhalation at a similar benchmark-deposited-dose have been demonstrated (Porter et al., 2013), indicating that non-inhalation administration may predict the response following inhalation. The doses used were selected for studying systemic and hepatic mechanisms following a pulmonary exposure to MWCNTs and they are within the dose ranges of other instillation/aspiration studies (Kim et al., 2014; Park et al., 2009; Porter et al., 2010; Shvedova et al., 2008; Snyder-Talkington et al., 2013). They correspond to 1, 3, and 9 days of exposure (8 h/day) to CNTs, assuming 33% deposition rate (Ma-Hock et al., 2009; Jackson 2014).
et al., 2011) and a ventilation rate of 1.8 l/h for mice, at the current Danish occupational exposure level for carbon black (3.5 mg/m³). When considering the recommended exposure limit of CNTs of 1 μg/m³ for 8 hour work shift (NIOSH, 2013), the lowest dose of 18 μg/mouse corresponds to the expected human work life exposure assuming a 10% deposition (Ma-Hock et al., 2009), a ventilation rate of 1.8 l/h, a 40 h working week and a 40 year work life. The dose of 56 μg corresponds to 3 times the life-long dose and 162 μg/mouse corresponds to 9 times the proposed life dose. Work place exposure to CNT are reported in the range of 10–300 μg/m³ (Birch et al., 2011; Dahm et al., 2013; Erdely et al., 2013; Han et al., 2008; Lee et al., 2010; Maynard et al., 2004; Methner et al., 2010b, 2012), thus 10–300 times above the proposed exposure limit. At an air concentration of 10 μg/m³, 162 μg/mouse would correspond to the total dose during a 40-year working life, whereas 162 μg/mouse corresponds to pulmonary deposition during 1.5 work years at 300 μg/m³. Control animals were instilled with vehicle (Nanopure water with 2% serum). The mice were euthanized 1, 3 or 28 days after exposure by exsanguination via intracardiac puncture. Immediately after withdrawal of the heart blood (800–1000 μl), liver tissue was collected and samples were snap-frozen in cryotubes in liquid N₂ and stored at − 80 °C. Whole blood was fractionated by centrifugation and plasma was collected and stored at − 80 °C. Additional liver specimens were taken from 12 to 24 vehicle control mice and from 5 to 6 mice from groups treated with either CNTSmall or CNTLarge. Tissues were fixed in 4% neutral buffered formaldehyde, paraffin-embedded and sections 4–6 μm thick were stained with hematoxylin and eosin (HE) for histological examination.

All animal procedures followed the guidelines for the care and handling of laboratory animals established by Danish law. The Animal Experiment Inspectorate under the Ministry of Justice approved the study (#2010/561-1799).

Plasma protein measurements. ELISA analysis specifically targeting plasma SAA3 levels was conducted in accordance with the manufacturer’s instructions (Mouse Serum Amyloid A-3, Cat.#EZM3A03-12K, Millipore). All of the time points and doses were evaluated. Samples were pooled to a final N of 3 per group (representing 6 mouse samples in total). Plasma haptoglobin was determined by ELISA (mouse haptoglobin (Hpt/HP) ELISA kit, Cat. #CSB-E08586m, Cusabio) as described by the manufacturer. The high dose only from all time points was isolated using the EnzyChrom™ AF HDL and LDL/VDL assay kit (EHL-100, BioAssay Systems) according to the manufacturer’s instructions. All time points and doses were evaluated with 6 animals per treatment group. Briefly, a 10-fold serial diluted standard curve was produced from a standard cholesterol reference supplied by the manufacturer. Fifty microliter aliquots of standard and sample were placed in duplicate in a 96-well plate, and 50 μl of a dye reagent–enzyme mix was added. The plate was incubated at room temperature for 30 min. The color intensity of the reaction product was determined spectrophotometrically at OD 570 nm on a Victor™ 1420 Multi label counter (Wallac, Perkin-Elmer), and total cholesterol concentrations were determined by comparison to the standard curve.

All statistical analyses on lipid levels were performed in SAS version 9.2 (SAS Institute Inc., Cary, NC, USA). Statistical significance was calculated using a parametric one-way ANOVA with a post-hoc Tukey-type experimental comparison test.

Total lipid extraction and total hepatic cholesterol analysis. Total lipids were extracted from liver tissue according to the Folch method (Folch et al., 1957). In brief, approximately 4–5 mg of liver tissue was collected from the sample and the weight was noted. The liver tissue was homogenized in 250 μl methanol and 250 μl water. A double volume of 5:1 chloroform/methanol was then added, and phases were separated by centrifugation. The lower layer containing chloroform/lipid was collected, and the chloroform removed under nitrogen gas flow. Lipids were resuspended in 100 μl EnzyChrom assay buffer and stored at − 20 °C until analysis.

Colorimetric quantification of hepatic cholesterol levels was determined with the EnzyChrom™ AF Cholesterol assay kit (BioAssay Systems, EZCH-100) according to the manufacturer’s instructions. All time points and doses were evaluated with 6 animals per treatment group. Briefly, a 10-fold serial diluted standard curve was produced from a standard cholesterol reference supplied by the manufacturer. Fifty microliter aliquots of standard and sample were placed in duplicate in a 96-well plate, and 50 μl of a dye reagent–enzyme mix was added. The plate was incubated at room temperature for 30 min. The color intensity of the reaction product was spectrophotometrically measured at OD 570 nm on a Victor™ 1420 Multi label counter (Wallac, Perkin-Elmer), and total cholesterol concentrations were determined by comparison to the standard curve, with normalization to extracted tissue weight.

Total RNA extraction. Total RNA was isolated from liver tissue of 144 mice in total (N was 6 mice per dose group and time point). The RNA was isolated using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) and purified using RNeasy MiniKits (Qiagen, Mississauga, ON, Canada) as described by the manufacturer. On-column DNase treatment was applied (Qiagen, Mississauga, ON, Canada). All RNA samples showing A260/280 ratios between 2.0 and 2.15 were further analyzed for RNA integrity using an Agilent 2100 Bioanalyzer (Agilent Technologies, Mississauga, ON, Canada). RNA integrity numbers above 7.0 were used in the experiment. If the RNA samples did not fulfill the criteria, new RNA extractions from the liver tissue were performed. Total RNA was stored at − 80 °C until analysis.

Microarray hybridization. We have found changed hepatic gene expression only after pulmonary exposure to high doses of nano-TiO₂ or nanocarbon black (nano-CB) (Bourdon et al., 2012a; Husain et al., 2013). Therefore, microarray analysis was done only for the 0 and 162 μg dose groups in this study. The two lower doses (18 and 54 μg) were included for time points 1 and 3 days in the subsequent RT-PCR confirmation of the microarray results. A total of 200 ng of RNA from
each sample (6 per treatment group) was analyzed by microarray hybridization on Agilent 8 × 60 K oligonucleotide microarrays (Agilent Technologies Inc., Mississauga, ON, Canada) as described previously (Poulsen et al., 2013). Data were acquired using Agilent Feature Extraction software version 9.5.3.1.

Statistical, functional and pathway analysis of microarray data. The microarray data were analyzed as described previously (Poulsen et al., 2013, 2014). Genes showing expression changes of at least 1.5-fold in either direction compared to their matched controls and having false discovery rate adjusted p-values of less than or equal to 0.05 (FDR p ≤ 0.05) were considered significantly differently expressed and were used in the downstream analysis. We used the Database for Annotation, Visualization and Integrated Discovery (DAVID) v6.7 and Ingenuity Pathway Analysis (IPA, Ingenuity Systems, Redwood City, CA, USA) for functional and pathway analyses, as previously described (Poulsen et al., 2014). The gene ontology (GO) classification of the differentially expressed genes was explored; GO consists of three structured controlled vocabularies (ontologies) that describe gene products in terms of their associated biological processes, cellular components and molecular functions in a species-independent manner. In the present study GO biological processes were utilized.

qRT-PCR validation. Eighteen genes were selected for further validation by qRT-PCR in liver tissue using custom RT² Profiler PCR Arrays and a BioRad CFX96 real-time PCR detection system at doses 0, 18, 54 and 162 μg for post-exposure days 1 and 3, and at doses 0 and 162 μg at post-exposure day 28. The selected differentially expressed genes (FDR p ≤ 0.05, FC 1.5 in at least one condition) showed large changes in expression following MWNT exposure, and/or were associated with lipid homeostasis, or inflammatory and acute phase responses. A custom RT² Profiler PCR Array plate, the RT² First Strand Kit and RT² SYBR® Green qPCR Mastermix (QIAGEN Sciences, Maryland, USA) was used. Hypoxanthine-guanine phosphoribosyltransferase (Hprt), actin β (Actb) and glyceraldehyde 3-phosphate dehydrogenase (Gapdh) were used as reference genes for normalization and were selected based on their stable expression levels in the treated and control samples in the microarray analysis. A threshold value was set to 10². The final qRT-PCR validation group consisted of a sample size of 3 per treatment condition.

Results

MWCNT

Detailed physicochemical characterization of the materials has been published elsewhere (Kolber et al., 2014; Jackson et al., 2014; Kolber et al., 2015; Poulsen et al., 2014). In brief, CNTsmall were 847 ± 102 nm long and 11 (6–17) nm wide. They contained 87% carbon and had a BET surface area of 245.8 m²/g. A chemical analysis of CNTsmall from the same batch showed that main components of CNTsmall (NRCWE-026) included the following: C (84.4%), Al₂O₃ (14.9%), Fe₂O₃ (0.29%) and CoO (0.11%) (Jackson et al., 2014). CNTsmall appeared curly and highly entangled when visualized by TEM and SEM. CNTLarge were 4048 ± 366 nm in length and had an average width of 67 (24–138) nm. CNTLarge Consisted of 97% carbon and the BET surface area was 14.6 m²/g. The chemical composition of CNTlarge from the same batch showed that the main components of CNTlarge (NM-401) included the following: C (99.7%), P₂O₅ (0.14%), CO₂ (0.08%) and Fe₂O₃ (0.05%) (Jackson et al., 2014). CNTlarge appeared large and straight when visualized by TEM and SEM.

Plasma protein analysis

Plasma levels of SAA3 were statistically significantly increased in mice exposed to both types of MWCNTs. This was observed following CNTsmall exposure in the high dose group on post-exposure day 1 and day 28, and at all doses on post-exposure day 3 (4.3-, 7.0-, 2.5-, 10.4-, and 32.8-fold increase, respectively) (Fig. 1A), CNTlarge exposure resulted in increased SAA3 levels following high dose exposure on day 1, and at the medium and high dose on post-exposure day 3 (6.9, 3.2 and 61.0 fold increase, respectively) (Fig. 1A). There were no changes at 28 days after CNTlarge exposure. One observation in the control group on day 28 was an outlier (more than 2 SD difference from the other values), resulting in a relatively high control SAA3 plasma protein content. If this observation was excluded, the difference was statistically significant for both medium and high dose exposures 28 days post-exposure. Interestingly, we observed large increases in pulmonary Saa3 mRNA levels in the same animals after pulmonary exposure to CNTsmall and CNTlarge (Poulsen et al., 2014). Pulmonary Saa3 mRNA levels correlated strongly with SAA3 protein levels in the plasma (Fig. 1B) (linear regression; p < 0.0005 across time points and MWNT dose). The haptoglobin plasma levels were statistically significantly increased 3 days after exposure to 162 μg CNTsmall and CNTlarge compared to vehicle controls (Fig. 1C), but were not changed at other time points.

Alterations in cholesterol homeostasis

Compared to the controls, total cholesterol levels were greatly increased after exposure to either type of MWNT on day 3 at the high dose (58% and 51% for CNTsmall and CNTlarge, respectively) (Fig. 2A) and on post-exposure day 1 for CNTlarge (28%). Significantly higher LDL/VLDL plasma levels were found for the high dose 3 days post-exposure groups for both MWCNTs (153% and 128% for CNTsmall and CNTlarge, respectively) (Fig. 2B). HDL levels were increased following high dose exposure to CNTsmall on day 3 (42%). A similar but statistically non-significant increase was observed for CNTlarge under the same exposure conditions (31%) (Fig. 2C). The ratios between plasma HDL and LDL/VLDL levels in the controls (CNTsmall: 3.56, CNTlarge: 3.22) compared to the high dose exposed mice at day 3 (CNTsmall: 1.92, CNTlarge: 1.94) showed that the increase in the LDL/VLDL level was greater than the increase in HDL following exposure. Plasma triglyceride levels were unaffected by CNTsmall and CNTlarge exposure (results not shown). No change in total hepatic cholesterol levels was observed for CNTsmall, but a statistically significant 47% increase was observed for CNTlarge on post-exposure day 3 (Fig. 2D).

Microarray analysis

The experiments and analyses adhered to MIAME standards (Edgar and Barrett, 2006). All microarray data have been deposited in the NCBI Gene Expression Omnibus database and can be accessed through the accession number GSE61366.

Alterations in global hepatic gene expression

Global hepatic gene expression was assessed for the highest dose of both MWNT exposures for all three time points. For CNTsmall exposed mice, a total of 4028 of the 60,000 probes were differentially expressed in hepatic tissue. On day 1, day 3 and day 28 the expression of 2505, 2401, and 255 genes, respectively, was changed (Supplementary Table 1). Fig. 3A shows the overlap of differentially expressed genes across time points. CNTlarge had a slightly smaller effect on hepatic gene expression than CNTsmall exposed mice, but still caused a significant effect; a total of 3089 probes were differentially expressed compared to controls. On day 1, the expression of 2128 genes was changed, and on day 3, 1667 gene expressions were altered. No genes were significantly differentially expressed on day 28. As observed after exposure to CNTsmall, many of the same genes were differentially expressed on day 1 and day 3 (Fig. 3B).

GO classification analysis in DAVID (Huang et al., 2009a,b) revealed statistically significant perturbations in biological processes in the liver at the early time points (day 1 and 3) only. The common GO biological
processes affected following CNT_{small} and CNT_{large} exposure are shown in Fig. 3C. We observed a high degree of concordance between the two MWCNTs for enriched GO biological processes, especially for oxidation reduction [GO:0055114], steroid metabolic process [GO:0008202], lipid biosynthetic process [GO:0006660], fatty acid metabolic process [GO:0006631], cofactor metabolic process [GO:0051186] and immune response [GO:0006955], which were differentially enriched both 1 and 3 days following CNT_{small} and CNT_{large} exposure. The uniquely differentially regulated biological processes are shown in Supplementary Table 2 and revealed few major differences. Several of the highly enriched processes in common for the two MWCNTs were associated with lipid homeostasis. Remarkably similar and pronounced effects on gene expression for both MWCNTs were observed by functional annotation clustering (Supplementary Table 3). As recently reported, strong pulmonary inflammation and acute phase response signaling (SAA3, haptoglobin) were found in these mice following same exposure to CNT_{small} and CNT_{large} (Poulsen et al., 2014).

IPA was employed to relate the functional significance of the GO changes to biological functions and pathways. The individual enriched functions in IPA were filtered by 1) removing redundant functions with overlapping genes, and 2) removing functions that were not directly relevant to the present study (e.g. renal diseases, ophthalmic diseases etc.). By using these criteria, we identified the top 5 most significantly affected functions after CNT_{large} exposure, and we compared these to the corresponding functions following CNT_{small} exposure (Supplementary Fig. 1). The top-regulated functions were similar for both MWCNTs, with 3 out of 5 of the most regulated functions being the same. ‘Lipid metabolism' was the most enriched function, in agreement with the observed changes in the GO biological processes involving lipid homeostasis. The third most perturbed function after CNT_{small} exposure was ‘cardiovascular disease', and the fifth was ‘carbohydrate metabolism'.

Inflammation and acute phase response signaling

Inflammatory processes were among the most perturbed processes in the liver. These were in part driven by changes in the mRNA levels of several cytokines, including the following: Cxcl11, Cxcl9, Cxcl10, Cxcl13, Ccl6, Ccl27a and Ccl25. We also found differential expression of APR genes in the liver following MWCNT exposure including the following: Saa1, Saa2, Saa3, Saa4, Orm1, Orm2, Orm3, Mt1 and Mt2 (Supplementary Table 4). As recently reported, strong pulmonary inflammatory and APR, both as increased neutrophil influx and increased expression of cytokines and APR genes, were found in these mice following same exposure to CNT_{small} and CNT_{large} (Poulsen et al., 2014).

Regulation of cholesterol homeostasis

Analysis of the global hepatic gene expression revealed consistent perturbation of lipid homeostasis related functions and pathways. Genes involved in the HMG-CoA reductase pathway were substantially down-regulated in the liver for both MWCNTs, which is consistent with perturbations in lipid processes identified using DAVID (Fig. 3C) and functional analysis in IPA (Supplementary Fig. 1 and Supplementary Table 3). CNT_{small} was the most effective in perturbing the HMG-CoA reductase pathway (Hmgcr, Mvk, Pmvk, Mvd, Fdps, Sqs, Sqle, Dhcr7) in the liver. The changes in gene expression were similar on days 1 and 3 (Table 1). In addition to the HMG-CoA reductase pathway, other genes
involved in lipid homeostasis were also affected by MWCNT exposure. Low density lipoprotein receptor (Ldlr) was down-regulated after CNTSmall exposure on day 1 (−1.79-fold) and day 3 (−1.7-fold), and after CNTLarge exposure at day 3 (−1.56-fold) (Table 1). Gene expression of another membrane protein, scavenger receptor class B, member 1 (Scarb1), was also down-regulated for CNTSmall day 1 (−1.53-fold), whereas expression of low density lipoprotein receptor-related protein 1 (Lrp1) was up-regulated on day 3 for both MWCNTs (CNTSmall 1.84-fold, CNTLarge 2.09-fold). Scarb1 and Lrp1 are involved in the transport of HDL and LDL, respectively, over the hepatocyte cell membrane. A small up-regulation in the expression of Abca1 was identified 3 days post-exposure for CNTSmall (1.68-fold).

Besides the HMG-CoA reductase pathway, analysis of canonical pathways in IPA (Supplementary Fig. 2) also revealed enrichment of LXL/RXR activation, glutathione-mediated detoxification, acute phase response signaling, nicotine degradation III, hepatic cholestasis and xenobiotic metabolism signaling pathways. Analysis of the LXL/RXR activation pathway on day 3 for both MWCNTs revealed that most up-stream and downstream genes related to the LXL/RXR heterodimer complex show changes in expression (Supplementary Fig. 3), including cholesterol transporter Abca1. As observed for the HMG-CoA pathway, CNTSmall exposure induced the largest change in gene expression of genes in this pathway.

qRT-PCR validation

We validated 18 differentially expressed genes in liver tissue following pulmonary exposure to 162 μg CNTSmall or CNTLarge at post-exposure day 1, 3 or 28. These genes were chosen due to their involvement in lipid homeostasis (Hmgcr, Pmvk, Mvd, Fdps, Dhcr7, Ldlr, Lrp1, Cyp7a1, Abca1), inflammatory and APR (Cxcl1, S100a9, Saa1, Saa2, Saa3, Il1r1) or due to large changes in their expression following MWCNT exposure (Sult1e1, Scd1, Dbp). In addition to this validation, we evaluated the 18 and 54 μg exposure groups on post-exposure days 1 and 3 in order to assess hepatic changes following lower dose MWCNT exposure. The qRT-PCR results are provided in Table 2 and are consistent with the DNA microarray results. The lipid homeostasis genes Hmgcr, Ldlr and Cyp7a1 were differentially expressed at all doses on days 3 and 28 after CNTSmall exposure, but not following CNTLarge exposure. In contrast, there was a tendency towards greater enrichment of inflammatory and APR genes following exposure to CNTLarge compared to CNTSmall. The expression of Dbp, a PAR leucine zipper transcription factor involved in circadian rhythm regulation, was consistently down-regulated at all doses and time points following exposure to CNTSmall, whereas CNTLarge exposure resulted in up-regulation of the expression at the high and medium dose on post-exposure day 1.

Liver histology

Different doses of CNTSmall or CNTLarge induced histological changes in the liver at different times (Fig. 4 and Supplementary Table 5) with no apparent dose- or time-dependence. No translocation of MWCNTs from lungs to liver was observed. Changes such as vacuolar degeneration (Figs. 4C–J), granulomas (Figs. 4C and G–J), necrosis of hepatocytes (Figs. 4D and I–J), increased number and/or hypertrophy of Kupffer cells (Figs. 4A and I–J) were frequent in CNT-treated mice. For both MWCNT types the incidence of lesions was higher 3 and 28 days after exposure than on post-exposure day 1. The sites of vacuolar degeneration in the cytoplasm of hepatocytes within the hepatic lobule differed between CNTSmall and CNTLarge exposure. Whereas the vacuolar degeneration...
after CNT\textsubscript{Large} exposure was distributed throughout the whole area of the hepatic lobule regardless of the time after instillation, after CNT\textsubscript{Small} exposure it was located in the centrilobular zone (i.e. near the central vein) 1 day after exposure, mid-zonal three days after exposure and in the periportal zone 28 days after exposure. Although liver granulomas were observed after exposure to both MWCNTs, they were larger and more frequent following CNT\textsubscript{Large} exposure (Figs. 4C and G–J). Microfoci of necrosis, eosinophilic necrosis and hepatocytes with pyknotic nuclei were seen following exposure to either MWCNT and were located close to granulomas; however, they were more frequent after CNT\textsubscript{Large} exposure. Eosinophilic necrotic hepatocytes surrounding the central vein were observed in the livers of mice 1 or 3 days after exposure to 162 µg CNT\textsubscript{Large}. Increased number and hypertrophy of Kupffer cells were observed more frequently in livers from mice exposed to CNT\textsubscript{Large} (Figs. 4D and I–J). Binucleate hepatocytes were more frequent in the livers of exposed mice than in the controls. Overall, pulmonary exposure to CNT\textsubscript{Large} was associated with increased incidence and severity of morphological liver lesions compared to exposure to CNT\textsubscript{Small}.

![Hepatic transcriptomic changes](image)

Fig. 3. Hepatic transcriptomic changes. (A) Venn diagram of differentially expressed genes following exposure to 162 µg CNT\textsubscript{Small}. p < 0.05 and fold change ±1.5. (B) Venn diagram of differentially expressed genes following exposure to 162 µg CNT\textsubscript{Large}. p < 0.05 and fold change ±1.5. (C) Changes in GO biological processes in the liver following exposure to CNT\textsubscript{Small} and CNT\textsubscript{Large}. Determined through DAVID Bioinformatics Resources 6.7.

Table 1
Differentially expressed hepatic genes involved in lipid metabolism processes following exposure to CNT\textsubscript{Small} or CNT\textsubscript{Large}.

<table>
<thead>
<tr>
<th>Gene name</th>
<th>CNT\textsubscript{Small}</th>
<th>CNT\textsubscript{Large}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day 1 FC p-Value</td>
<td>Day 3 FC p-Value</td>
</tr>
<tr>
<td>HMG-CoA reductase (HMGCRR)</td>
<td>-2.18 0.013</td>
<td>-3.0 0.001</td>
</tr>
<tr>
<td>Mevalonate kinase (MVK)</td>
<td>-1.98 0.006</td>
<td></td>
</tr>
<tr>
<td>Phosphomevalonate kinase (PMVK)</td>
<td>-3.05 0.0</td>
<td>-1.75 0.001</td>
</tr>
<tr>
<td>Mevalonate-5-pyrophosphate (MVD)</td>
<td></td>
<td>-2.22 0.012</td>
</tr>
<tr>
<td>Farnesyl-PP synthase (FDPS)</td>
<td>-2.31 0.000</td>
<td>-1.89 0.017</td>
</tr>
<tr>
<td>Squalene synthase (SQS)</td>
<td>-1.75 0.009</td>
<td></td>
</tr>
<tr>
<td>Squalene epoxidase (SQUE)</td>
<td>-2.05 0.025</td>
<td></td>
</tr>
<tr>
<td>7-Dehydrocholesterol reductase (DHCRR7)</td>
<td>-2.22 0.0</td>
<td>-1.99 0.0</td>
</tr>
<tr>
<td>Low density lipoprotein receptor (LDLR)</td>
<td>-1.79 0.002</td>
<td>-1.70 0.006</td>
</tr>
<tr>
<td>Low density lipoprotein receptor-related protein 1 (LRP1)</td>
<td>-2.67 0.0</td>
<td></td>
</tr>
<tr>
<td>Scavenger receptor class B, member 1 (SCARB1)</td>
<td>-1.53 0.0</td>
<td></td>
</tr>
<tr>
<td>Cytochrome P450, family 7, subfamily a, polypeptide 1 (CYP7A1)</td>
<td>-20.16 0.0</td>
<td></td>
</tr>
<tr>
<td>Heparin lipase (LIPC)</td>
<td>-1.50 0.002</td>
<td></td>
</tr>
<tr>
<td>ATP-binding cassette, sub-family A, member 1 (ABCA1)</td>
<td>-1.68 0.0</td>
<td></td>
</tr>
</tbody>
</table>

FC: Fold change. –: Not significantly differentially expressed. Numbers are statistically significant at least at the p < 0.05 level.
In the present study, we observed a strong and statistically significant linear relationship between the pulmonary Saa3 mRNA levels and SAA3 plasma levels (Fig. 1B), indicating a probable pulmonary origin of plasma SAA3. The hepatic expression levels of Saa3 following CNTsmall and CNTlarge exposure were 10 to 100 times lower than the expression levels of pulmonary Saa3, thus indicating that the observed systemic APR may be a secondary response to the pulmonary APR induced by MWCNTs. This is in agreement with previous reports showing that pulmonary exposure to CB, diesel exhaust particle and MWCNTs induced little or no hepatic APR, but a large pulmonary APR (up to a 600-fold increase) (Bourdon et al., 2012a,b; Saber et al., 2009, 2013, 2014).

Elevated plasma levels of APR proteins are a recognized risk factor for CVD (Estabragh and Mamas, 2013; Johnson et al., 2004; Kaptoge et al., 2012; Libby et al., 2010; Lowe, 2001; Mezaki et al., 2003; Pai et al., 2004; Pussinen et al., 2007; Rickard et al., 2000; Rivera et al., 2013; Saber et al., 2013; Taubes, 2002). Epidemiological studies have established associations between particulate air pollution exposures and blood levels of CRP (Elliott et al., 2009; Barregard et al., 2006; Estabragh and Mamas, 2013; Johnson et al., 2004; Kaptoge et al., 2012; Libby et al., 2010; Lowe, 2001; Mezaki et al., 2003; Pai et al., 2004; Pussinen et al., 2007; Rickard et al., 2000; Rivera et al., 2013; Saber et al., 2013; Taubes, 2002). Epidemiological studies have established associations between particulate air pollution exposures and blood levels of CRP (Elliott et al., 2009; Barregard et al., 2006; Estabragh and Mamas, 2013; Johnson et al., 2004; Kaptoge et al., 2012; Libby et al., 2010; Lowe, 2001; Mezaki et al., 2003; Pai et al., 2004; Pussinen et al., 2007; Rickard et al., 2000; Rivera et al., 2013; Saber et al., 2013; Taubes, 2002). Epidemiological studies have established associations between particulate air pollution exposures and blood levels of CRP (Elliott et al., 2009; Barregard et al., 2006; Estabragh and Mamas, 2013; Johnson et al., 2004; Kaptoge et al., 2012; Libby et al., 2010; Lowe, 2001; Mezaki et al., 2003; Pai et al., 2004; Pussinen et al., 2007; Rickard et al., 2000; Rivera et al., 2013; Saber et al., 2013; Taubes, 2002). Epidemiological studies have established associations between particulate air pollution exposures and blood levels of CRP (Elliott et al., 2009; Barregard et al., 2006; Estabragh and Mamas, 2013; Johnson et al., 2004; Kaptoge et al., 2012; Libby et al., 2010; Lowe, 2001; Mezaki et al., 2003; Pai et al., 2004; Pussinen et al., 2007; Rickard et al., 2000; Rivera et al., 2013; Saber et al., 2013; Taubes, 2002). Epidemiological studies have established associations between particulate air pollution exposures and blood levels of CRP (Elliott et al., 2009; Barregard et al., 2006; Estabragh and Mamas, 2013; Johnson et al., 2004; Kaptoge et al., 2012; Libby et al., 2010; Lowe, 2001; Mezaki et al., 2003; Pai et al., 2004; Pussinen et al., 2007; Rickard et al., 2000; Rivera et al., 2013; Saber et al., 2013; Taubes, 2002). Epidemiological studies have established associations between particulate air pollution exposures and blood levels of CRP (Elliott et al., 2009; Barregard et al., 2006; Estabragh and Mamas, 2013; Johnson et al., 2004; Kaptoge et al., 2012; Libby et al., 2010; Lowe, 2001; Mezaki et al., 2003; Pai et al., 2004; Pussinen et al., 2007; Rickard et al., 2000; Rivera et al., 2013; Saber et al., 2013; Taubes, 2002). Epidemiological studies have established associations between particulate air pollution exposures and blood levels of CRP (Elliott et al., 2009; Barregard et al., 2006; Estabragh and Mamas, 2013; Johnson et al., 2004; Kaptoge et al., 2012; Libby et al., 2010; Lowe, 2001; Mezaki et al., 2003; Pai et al., 2004; Pussinen et al., 2007; Rickard et al., 2000; Rivera et al., 2013; Saber et al., 2013; Taubes, 2002). Epidemiological studies have established associations between particulate air pollution exposures and blood levels of CRP (Elliott et al., 2009; Barregard et al., 2006; Estabragh and Mamas, 2013; Johnson et al., 2004; Kaptoge et al., 2012; Libby et al., 2010; Lowe, 2001; Mezaki et al., 2003; Pai et al., 2004; Pussinen et al., 2007; Rickard et al., 2000; Rivera et al., 2013; Saber et al., 2013; Taubes, 2002). Epidemiological studies have established associations between particulate air pollution exposures and blood levels of CRP (Elliott et al., 2009; Barregard et al., 2006; Estabragh and Mamas, 2013; Johnson et al., 2004; Kaptoge et al., 2012; Libby et al., 2010; Lowe, 2001; Mezaki et al., 2003; Pai et al., 2004; Pussinen et al., 2007; Rickard et al., 2000; Rivera et al., 2013; Saber et al., 2013; Taubes, 2002).
these two murine studies may increase the risk of CVD in humans.

Occupational studies have reported human CNT exposure levels of 10–300 μg/m³ (Birch et al., 2011; Dahm et al., 2013; Erdely et al., 2013; Han et al., 2008; Lee et al., 2010; Maynard et al., 2004; Methner et al., 2010a, 2012). The highest dose in the present study corresponds to pulmonary deposition during a 40 year working life at 10 μg/m³, or to pulmonary deposition during 1.5 work years at 300 μg/m³. Furthermore, based on the observed strong correlation between plasma SAA3 levels and pulmonary Saa3 mRNA levels, and the reported correlation between pulmonary neutrophil influx and pulmonary Saa3 mRNA levels (Saber et al., 2013), pulmonary Saa3 expression or neutrophil influx may be used as sensitive biomarkers of nanomaterial-induced acute phase response and may be used to group and rank nanomaterials in relation to possible CVD inducing potential.

The APR, and SAA in particular, affect blood lipid homeostasis and regulation of cholesterol biosynthesis (Bourdon et al., 2012a; Lindhorst et al., 1997; Saber et al., 2013, 2014). We show that pulmonary exposure to two very different MWCNTs induces changes in blood lipid composition that are similar to changes observed after systemic induction of APR (Lindhorst et al., 1997). The data indicate that both MWCNTs cause perturbations in lipid-related processes as early as 1 day post-exposure, reaching their peak increases on day 3 and
completely reversed to basal levels by day 28 post-exposure. Thus, blood levels of HDL and LDL/VLDL cholesterol followed a time-course similar to what has been described for a strong APR in mice subcutaneously injected with silver nitrate (Lindhorst et al., 1997). During APR, SAA becomes incorporated into HDL thereby replacing ApoA-1 (Feingold and Grunfeld, 2010). Acute phase HDL is defective in reverse cholesterol transport, resulting in reduced cholesterol efflux from macrophages and lowered hepatic cholesterol excretion (Lindhorst et al., 1997; Banka et al., 1995; Artl et al., 2000; Annema et al., 2010).

We found that pulmonary exposures to the two very different MWCNTs elicited similar hepatic gene expression patterns. Whereas Saa3 primarily drives the pulmonary APR (Bourdon et al., 2012a; Halappanavar et al., 2011; Saber et al., 2013, 2014), both Saa1 and Saa2 were differentially expressed as part of the hepatic APR. This is in agreement with previous observations (Uhlar and Whitehead, 1999). Functional analyses revealed that GO biological processes and IPA functions involved in hepatic homeostasis and lipid metabolism were perturbed following exposure to both types of MWCNTs. This was driven, in part, by a uniform down-regulation of genes across the entire HMG-CoA reductase pathway (Hmgcr, Mvkr, Pmvk, Mvd, Fdps, Sip, Sipr, Dhhcr7). Interestingly the opposite was observed in the lungs. In lungs, CNTSmall and CNTLarge induced consistent up-regulation of several genes involved in the HMG-CoA reductase pathway. The HMG-CoA reductase pathway is activated during low-sterol conditions and plays a central role both in the synthesis of cholesterol and in the production of intermediates for terpenoid synthesis, actin cytoskeleton remodeling, proteins and protein prenylation (Liao, 2002). However, the down-regulated expression levels of Sip and Dhhcr7 in the liver indicate that MWCNT specifically targets cholesterol synthesis. The HMG-CoA reductase pathway is regulated by a negative feedback loop; the down-regulation is most likely due to the increased cholesterol levels in plasma (CNTSmall and CNTLarge) and liver (CNTLarge only).

In the present study, the systemic effects of MWCNT exposure were evaluated in female mice. Similarly increased plasma levels of SAA were recently reported for male mice exposed to MWCNTs (Kim et al., 2014). Lipoprotein profiles among pre-menopausal women differ from men’s, as they have lower LDL cholesterol levels while HDL cholesterol levels are higher. Also, LDL cholesterol levels in post-menopausal women are equal to, or higher than, those in age-matched males, and can be lowered by hormone replacement therapy (Skafar et al., 1997). Thus, a cardioprotective effect of female sex hormones, particularly estrogen, has been proposed (Skafar et al., 1997; De Marinis et al., 2008). It is therefore possible that the differences in systemic HDL levels following MWCNT exposure observed between the study of (Kim et al., 2014) and our study are related to the gender of the experimental animals. A study in rats reported gender-related differences in the HMG-CoA reductase pathway, with females having lower activity and expression of 3-hydroxy 3-methylglutaryl coenzyme A reductase (Hmgcr), the rate-limiting enzyme in the HMG-CoA reductase pathway, compared to age-matched males (De Marinis et al., 2008). Similar differences were observed when comparing non-treated males with males treated with 17β-estradiol, indicating an estrogen-reduction of the HMG-CoA reductase pathway. Thus, the present study adds to the overall weight of evidence of systemic acute phase response in mice following MWCNT exposure in both genders.

Studies in rodents have shown that severe inflammation, initiated through intraperitoneal injection of LPS, induces the hepatic HMG-CoA reductase pathway (Feingold et al., 1993, 1995; Memon et al., 1993). Perturbations in the hepatic HMG-CoA reductase pathways were also observed following pulmonary exposure to nano-CB (Bourdon et al., 2012a). However, the directions of the observed effects were opposite. HMG-CoA was up-regulated following nano-CB exposure, whereas, it was down-regulated following exposures to both types of MWCNTs. Another difference includes the down-regulation of Ldr in the livers of MWCNTs exposed mice in the present study, but no effects following LPS and nano-CB exposure (Bourdon et al., 2012a; Feingold et al., 1993, 1995). Ldr and Hmgrp are regulated in a coordinated fashion with parallel increases or decreases in mRNA levels in response to stimuli (Goldstein and Brown, 1990), as observed in the present study. Ldr primarily facilitates the transport of VLDL, intermediate-density lipoproteins and LDL across the membrane (Lagor and Millar, 2010), and the hepatic down-regulation of Ldr could in part explain the increased plasma levels of LDL/VLDL. Thus, the observed dissimilarities between our results and those of others (Bourdon et al., 2012a; Feingold et al., 1993, 1995) indicate that MWCNT exposure may elicit hepatic and systemic responses related to their structures, that differ from responses seen following LPS and nano-CB exposure.

The dissimilarities observed between nano-CB relative to MWCNT exposures may result from greater and more prolonged APR (observed at both mRNA and protein levels) following MWCNT exposure than those observed following nano-CB. Plasma SAA levels were at least 30-fold increased following MWCNT exposure, whereas a maximum increase of 15.6% has previously been observed following a similar nano-CB exposure (Bourdon et al., 2012a). The greater and prolonged APR would lead to a higher proportion of circulating HDL-SAA. Besides having decreased cholesterol efflux ability, HDL-SAA is also able to transform peripheral macrophages into foam cells, and to promote plaque progression in APOE−/− mice (Artl et al., 2000; Lee et al., 2013). Thus, our results indicate that increased HDL-SAA levels may present a significant risk factor for CVD following MWCNT exposure.

Supplementary Fig. 4 depicts the observed pulmonary, systemic and hepatic changes following pulmonary MWCNT exposure. In particular, we note that down-regulation of hepatic expression of Abcg5 and Abcg8 occurs following exposure to both types of MWCNTs (Supplementary Table 1). Abcg5 and Abcg8 encode biliary transporters that facilitate cholesterol excretion into the bile (Yu et al., 2002). Biliary excretion is a major function in reverse cholesterol transport, and decreased expression of Abcg5 and Abcg8 has been linked to retention of cholesterol in the liver (McGillicuddy et al., 2009). Due to the perturbations observed for many steps in the reverse cholesterol transport, it is possible that the observed increased APR may have a direct or indirect effect on biliary excretion of cholesterol, which, in part, could explain the observed increase in hepatic cholesterol levels. In addition, our toxicogenomics analysis of hepatic gene expression revealed a general inflammatory response in the liver, which is known to affect bile excretion (McGillicuddy et al., 2009).

Intratracheal instillation of either type of MWCNTs in mice caused histological changes in the liver. An increased number of binucleate hepatocytes in MWCNT treated mice were observed, indicating hepatocytic regeneration typically seen after a toxic insult (Kostka et al., 2000). Similar increases in binucleated hepatocytes have previously been reported following nanoparticle-exposure (Hougaard et al., 2013; Kostka et al., 2000; Saber et al., 2012). Other indications of systemic MWCNT-induced mild liver injury in our study include the following: microfoci of necrosis, eosinophilic necrosis of single hepatocytes, and hepatocytes with pyknotic nuclei (Fig. 4 and Supplementary Table 5), which all are frequent sequel to liver injury (Haschek et al., 2010). MWCNT also induces hepatic inflammatory changes. Small foci of inflammatory cells, polymorphonuclear cell foci, macrophages, and granulomas were observed. Although scattered inflammatory cell accumulations are commonly observed in untreated mice (Haschek et al., 2010), these were more frequent in the MWCNT-treated mice. Increased numbers and/or hypertrophy of Kupffer cells could be related to one of their functions in the liver, production of mediators of inflammation (Harrada et al., 1999). Hepatic focal necrosis, single cell necrosis, inflammatory changes and hyperplasia or hypertrophy of Kupffer cells have been observed in mice after intratracheal instillation of other nanoparticles (Hougaard et al., 2013; Saber et al., 2012) and in rats exposed by inhalation to nanoparticles (Sung et al., 2009; Ji et al., 2007). The histological hepatic effects of exposure to the two MWCNTs are similar in types of lesions induced, but CNTLarge exposure causes larger granulomas, and the incidence of vacuolar degeneration tended to be

higher. Vacular degeneration was distributed throughout the whole area of the hepatic lobule and its location did not change with time. Also the eosinophilic necrosis of hepatocytes of a single row of hepatocytes surrounding the central vein was characteristic for livers from the CNTlarge exposure groups. In general the histological changes were not indicative of strong toxicity.

Although the gene expression patterns were highly similar after exposure to either CNT, our data also indicated subtle differences in gene expression and lipid concentrations following CNTsmall or CNTlarge exposure. Only CNTsmall exposure resulted in changes in hepatic gene expression at day 28 and the number of differentially expressed genes was greater than that in the CNTlarge groups. CNTsmall caused an earlier onset in the down-regulation of the HMG-CoA reductase pathway than CNTlarge, the expression of Ldr was differentially down-regulated even at the lowest dose at days 1 and 3 following CNTsmall Exposure (Table 2). Exposure to CNTlarge on the other hand, seemed to induce a greater hepatic APR in accordance with the recorded morphological inflammatory changes. However, despite these functional differences and different physicochemical properties, the responses following CNTsmall and CNTlarge exposures were more similar than different.

MWCNTs are HARN (high aspect ratio nanoparticles) and have, as such, been extensively discussed in relation to asbestos toxicity. Our results show that pulmonary exposure to MWCNT induces a pulmonary-based systemic APR resulting in changes in cholesterol homeostasis and liver morphology. We observed a close correlation between plasma SAA3 levels and pulmonary Saa3 mRNA levels. We have previously demonstrated a close correlation between pulmonary Saa3 levels and neutrophil influx (Saber et al., 2013, 2014; Halappanavar et al., 2014; Poulsen et al., 2014). The observed APR and increased cholesterol levels link MWCNT exposure to risk of CVD. Since Teegarden et al. (2011) identified the same APR proteins in the lungs of mice following exposure to single-walled carbon nanotubes or asbestos, this suggests that asbestos exposure is likely to induce a similar pulmonary APR. In accordance with this, prospective studies on smoking-adjusted, occupational asbestos exposure have reported an association between exposure to asbestos and increased risk of ischaemic heart disease (Harding et al., 2012; Sanden et al., 1993). Thus, our findings in parallel with others suggest that MWCNT exposure increases the risk of CVD.

The present work has established a correlation between pulmonary and systemic APR following pulmonary exposure to MWCNTs, and suggests that pulmonary APR can be used to group and rank different nanomaterials in relation to CVD inducing potential.

Conclusion

We show that pulmonary exposure to two very different MWCNTs induced very similar systemic APR, with induced alterations in plasma levels of APR proteins, cholesterol, LDL/VLDL and HDL, and changes in hepatic gene expression and liver morphology. Furthermore, we found a close correlation between plasma SAA3 levels and pulmonary Saa3 mRNA levels. Taken together, the results link pulmonary exposure to MWCNTs with risk of CVD.

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.taap.2015.01.011.

Conflict of interests

The authors declare that they have no competing interests.

Funding

The project was supported by grants from the National Research Centre for the Working Environment in Denmark and the Danish NanoSafety Center, grant# 20110092173-3, the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreement # 247989 (Nanosustain), and Health Canada’s Chemical Management Plan-2 Nano research funds and Genomics Research and Development Initiative. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Acknowledgments

The authors thank Michael Gulbrandsen, Lisbeth M Petersen, Marianne Lauridsen, Lourdes Petersen and Elzbieta Christiansen for their technical assistance.

References

