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Hidden Markov models are often applied in quantitative �nance to capture the stylised facts of �nancial
returns. They are usually discrete-time models and the number of states rarely exceeds two because
of the quadratic increase in the number of parameters with the number of states. This paper presents
an extension to continuous time where it is possible to increase the number of states with a linear
rather than quadratic growth in the number of parameters. The possibility of increasing the number
of states leads to a better �t to both the distributional and temporal properties of daily returns.
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1. Introduction

The normal distribution is well-known as being a poor �t to most �nancial returns. Mixtures of
normal distributions provide a much better �t as they are able to reproduce both the skewness
and leptokurtosis often observed (Cont 2001). Markov switching mixture models, also referred
to as hidden Markov models (HMMs), are a natural extension in order to also capture the tem-
poral properties of �nancial returns. In an HMM, the distribution that generates an observation
depends on the state of an underlying and unobserved Markov chain.
The ability of an HMM to reproduce most of the stylised facts of daily return series introduced

by Granger and Ding (1995a,b) was illustrated by Rydén et al. (1998). They found that the one
stylised fact that cannot be reproduced by an HMM is the slow decay of the autocorrelation
function (ACF) of squared daily returns, which is of great importance, for instance, in �nancial
risk management.
According to Bulla and Bulla (2006), the lack of �exibility of an HMM to model this temporal

higher order dependence can be explained by the implicit assumption of geometrically distributed
sojourn times in the hidden states. Silvestrov and Stenberg (2004), among others, argued that the
memoryless property of the geometric distribution is inadequate from an empirical perspective,
although it is consistent with the no-arbitrage principle.
Bulla and Bulla (2006) considered hidden semi-Markov models (HSMMs) in which the sojourn

time distribution is modelled explicitly for each hidden state so that the Markov property is
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transferred to the embedded �rst-order Markov chain. They showed that HSMMs with negative
binomial sojourn time distributions are able to reproduce most of the stylised facts comparably
well, and often better, than the HMM. Speci�cally, they found HSMMs to reproduce the long-
memory property of squared daily returns much better than HMMs. However, they did not
consider the complicated problem of selecting the most appropriate sojourn time distributions
and following the approach by Rydén et al. (1998) they only considered models with two hidden
states.
Bulla (2011) later showed that HMMs with t-distributed components reproduce most of the

stylised facts as well or better than the Gaussian HMM, at the same time as increasing the
persistence of the visited states and the robustness to outliers. Bulla (2011) also found that
models with three states provided a better �t than models with two states.
Many di�erent stylised facts have been established for �nancial returns. See, for example,

Granger and Ding (1995a,b), Granger et al. (2000), Cont (2001), Malmsten and Teräsvirta (2004).
This paper focuses on the stylised facts relating to the long memory of the ACF and examines
the importance of the number of hidden states on the ability to �t the slowly decaying ACF
of squared daily returns. An extension of HMMs to continuous time is presented as a �exible
alternative to the discrete-time models.
Two hidden states are found to be too few to reproduce the slowly decaying ACF as well as the

observed skewness and leptokurtosis. A major limitation of discrete-time HMMs and HSMMs is
the quadratic increase in the number of parameters with the number of states. This limitation
does not apply to HMMs in continuous time as it can reasonably be assumed that the only
possible transitions in an in�nitesimally short time interval are to the neighboring states.
This assumption leads to a linear rather than quadratic growth in the number of parameters

with the number of states and consequently a signi�cant reduction in the number of parameters
for higher order models. With the added �exibility, the number of states can be considered
a parameter that needs to be estimated.1 In addition, it is possible to incorporate temporal
inhomogeneity without a dramatic increase in the number of parameters using a continuous-time
formulation.
Section 2 gives an introduction to the main theory relating to HMMs and HSMMs. Section 3

introduces HMMs where the underlying Markov chain is a continuous-time Markov chain. Section
4 contains a description of the data used. The empirical results are reported in section 5 and
section 6 concludes. All parameter estimates can be found in appendix A. The results of the
analysis of the FTSE 100 index can be found in appendix B.

2. Hidden Markov models in discrete time

In hidden Markov models, the probability distribution that generates an observation depends
on the state of an underlying and unobserved Markov process. HMMs are a particular kind of
dependent mixture and are therefore also referred to as Markov switching mixture models.
A sequence of discrete random variables {St : t ∈ N} is said to be a Markov chain if, for all

t ∈ N, it satis�es the Markov property:

Pr (St+1|St, . . . , S1) = Pr (St+1|St) . (1)

The conditional probabilities Pr (Su+t = j|Su = i) = γij (t) are called transition probabilities.
The Markov chain is said to be homogeneous if the transition probabilities are independent of u,
otherwise inhomogeneous.
A Markov chain with transition probability matrix Γ (t) = {γij (t)} has stationary distribution

π if πΓ = π and π1 = 1. The Markov chain is termed stationary if π = δ, where δ is the initial

1See Cappé et al. (2005) for a perspective on order estimation.
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distribution, that is δi = Pr (S1 = i).
If the Markov chain {St} has m states, then {Xt : t ∈ N} is called an m-state HMM. With

X(t) and S(t) representing the sequence of values from time 1 to time t, the simplest model of
this kind can be summarised by

Pr
(
St|S(t−1)

)
= Pr (St|St−1) , t = 2, 3, . . . , (2a)

Pr
(
Xt|X(t−1),S(t)

)
= Pr (Xt|St) , t ∈ N. (2b)

When the current state St is known, the distribution of Xt depends only on St. This causes the
autocorrelation of Xt to be strongly dependent on the persistence of St.
A speci�c observation can usually arise from more than one state as the support of the con-

ditional distributions overlaps. The unobserved state process {St} is, therefore, not directly ob-
servable through the observation process {Xt}, but can only be estimated.
As an example, consider the two-state model with Gaussian conditional distributions:

Xt = µSt
+ εSt

, εSt
∼ N

(
0, σ2

St

)
,

where

µSt
=

{
µ1, if St = 1,

µ2, if St = 2,
σ2
St

=

{
σ2

1, if St = 1,

σ2
2, if St = 2,

and Γ =

[
γ11 1− γ11

1− γ22 γ22

]
.

For this model, the value of the autocorrelation function at lag k is

ρXt
(k| θ) =

π1 (1− π1) (µ1 − µ2)2

σ2
λk

and the autocorrelation function for the squared process is

ρX2
t

(k| θ) =
π1 (1− π1)

(
µ2

1 − µ2
2 + σ2

1 − σ2
2

)2

E
[
X4

t

∣∣ θ
]
− E

[
X2

t

∣∣ θ
]2 λk,

when θ denotes the model parameters, σ2 = Var [Xt| θ] is the unconditional variance, and λ =
γ11 + γ22 − 1 is the second largest eigenvalue of Γ (Frühwirth-Schnatter 2006). It is evident
from these expressions, as noted by Rydén et al. (1998), that HMMs can only reproduce an
exponentially decaying autocorrelation structure.
The ACF of the �rst-order process becomes zero if the means are equal, whereas persistence

in the squared process can be induced either by a di�erence in the mean values, as for a mixed
e�ects model, or by a di�erence in the variances across the states. In both cases, the persistence
increases with the combined persistence of the states as measured by λ (Ang and Timmermann
2011).
The parameters of an HMM are typically estimated using the Maximum Likelihood method.

Under the assumption that successive observations are independent, the likelihood is given by

LT (θ) = Pr
(
X(T ) = x(T )

∣∣∣ θ
)

= δP (x1) ΓP (x2) · · ·ΓP (xT ) 1, (3)

where P (x) is a diagonal matrix with the state-dependent conditional densities pi (x) =
Pr (Xt = x|St = i), i ∈ {1, 2, . . . ,m}, as entries. The conditional distribution of Xt may be

3
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either discrete or continuous, univariate or multivariate. In mixtures of continuous distributions,
the likelihood can be unbounded in the vicinity of certain parameter combinations.1

The likelihood function of an HMM is in general a complicated function of the parameters
with several local maxima. The two most popular approaches to maximising the likelihood are
direct numerical maximisation and the Baum�Welch algorithm, a special case of the Expectation
Maximisation (EM) algorithm (Cappé et al. 2005, Zucchini and MacDonald 2009). All discrete-
time models are estimated using the R-package hsmm due to Bulla et al. (2010) that implements
the EM algorithm in the version presented by Guédon (2003).
In HMMs, the sojourn times are implicitly assumed to be geometrically distributed:

Pr ('staying t time steps in state i') = γt−1
ii (1− γii) . (4)

The geometric distribution is memoryless, implying that the time until the next transition out
of the current state is independent of the time spent in the state.

2.1 Hidden semi-Markov models

If the assumption of geometrically distributed sojourn times is unsuitable, then hidden semi-
Markov models can be applied. HMMs and HSMMs di�er only in the way that the state process
is de�ned. In HSMMs, the sojourn time distribution is modelled explicitly for each state i:

di (u) = Pr (St+u+1 6= i, St+u−v = i, v = 0, . . . , u− 2|St+1 = i, St 6= i) (5)

and the transition probabilities are de�ned as

γij = Pr (St+1 = j|St+1 6= i, St = i) (6)

for each j 6= i with γii = 0 and
∑

j γij = 1.
The conditional independence assumption for the observation process is similar to a simple

HMM, but the semi-Markov chain associated with HSMMs does not have the Markov property
at each time t. This property is transferred to the embedded �rst-order Markov chain, that is
the sequence of visited states (Bulla and Bulla 2006). In other words, the future states are only
conditionally independent of the past states when the process changes state.

3. Hidden Markov models in continuous time

In continuous-time Markov chains, transitions may occur at all times rather than at discrete and
equidistant time points. There is no smallest time step and the quantities of interest become the
transition probabilities

pij (∆t) = Pr (S (t+ ∆t) = j|S (t) = i) (7)

as ∆t→ 0. Clearly, pij (0) = 0 for di�erent states i and j, and it can be shown that under certain
regularity conditions

lim
t→0

P (t) = I. (8)

1If the conditional distribution is normal, then the likelihood can be made arbitrarily large by setting the mean equal to
one of the observations and letting the conditional variance tend to zero (Frühwirth-Schnatter 2006).
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Assuming that pij (∆t) is di�erentiable at 0, the transition rates are de�ned as

p′ij (0) = lim
∆t→0

pij (∆t)− pij (0)

∆t
= lim

∆t→0

Pr (S (t+ ∆t) = j|S (t) = i)

∆t
= qij (9)

with the additional de�nition qii = qi = −∑j 6=i qij . The transition intensity matrix Q = {qij}
has non-negative o�-diagonal elements qij , non-positive diagonal entries qi, and all rows sum to
zero.
The stationary distribution π, if it exists, is found by solving the system of equations

{
πQ = 0
π1 = 1.

(10)

If it has a strictly positive solution (all elements in π are strictly positive), then the stationary
distribution exists and is independent of the initial distribution.
The matrix of transition probabilities P (t) = {pij (t)} can be found as the solution to Kol-

mogorov's di�erential equation

dP (t)

dt
= P (t) Q (11)

with the initial condition P (0) = I. The solution being

P (t) = eQtP (0) = eQt. (12)

When the process enters state i, it remains there according to an exponential distribution with
parameter −qi > 0 before it instantly jumps to another state j 6= i with probability −qij/qi. A
continuous-time Markov chain is fully characterised by its initial distribution δ and the transition
intensity matrix Q.
It follows that the transition intensity matrix Q can in principle be found by taking the

logarithm of the one-step transition probability matrix

P (t) = eQt ⇒ Q = log P (1) . (13)

Taking the logarithm of a matrix that has a lot of elements that are close to zero or zero is not
a trivial operation. Instead, an intuitive estimate of the transition rate qi can be based on the
discrete transition probability γii as

q̃i = − log γ̂ii. (14)

This estimate does not take into account that the process might change from a given state and
back within the sampling interval. Thus, the simple estimate will underestimate qi, but the error
will be small for qi � 1 (Madsen et al. 1985).
The exponential distribution is memoryless just like its discrete analogue, the geometric distri-

bution. By introducing dummy states that are indistinguishable from one or more of the original
states, it is possible to allow for non-exponentially distributed sojourn times (see e.g. Madsen
et al. 1985, Iversen et al. 2013). The distribution of sojourn times will then be a mixture of
exponential distributions, which is a phase-type distribution, and the Markov property will be
transferred to the embedded Markov chain as for the HSMM. Phase-type distributions can be
used to approximate any positive-valued distribution with arbitrary precision (for details, see
Nielsen 2013). Similarly, Langrock and Zucchini (2011) showed how discrete-time HMMs can be
structured to �t any sojourn time distribution with arbitrary precision.
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It is often convenient to assume that in a short time interval ∆t, the only possible transitions
are to the neighboring states:

pij = o (∆t) , |i− j| ≥ 2,
pii (∆t) = 1− qi∆t+ o (∆t) ,

pi,i−1 (∆t) = wiqi∆t+ o (∆t) ,
pi,i+1 (∆t) = (1− wi) qi∆t+ o (∆t) ,

i ∈ {1, 2, . . . ,m} ,





(15)

where lim∆t→0
o(∆t)

∆t = 0. The notation includes transitions from state 1 to m and reverse with
the de�nition that state 0 = state m and state (m+ 1) = state 1.
It should be noted that, even though, the process cannot go straight from state i to state i+ 2

without going through state i+ 1, there is no limit to how fast a transition from state i to state
i+ 2 can occur.
Under this assumption, the matrix of transition intensities has the structure

Q =




−q1 (1− w1) q1 0 · · · 0 w1q1

w2q2 −q2 (1− w2) q2 · · · 0 0
...

...
...

. . .
...

...
(1− wm) qm 0 0 · · · wmqm qm


 . (16)

The number of parameters increases linearly with the number of states. Thus, a continuous-
time Markov chain yields a parameter reduction over its discrete-time analogue if the number of
states exceeds three. The higher the number of states, the larger the reduction. In addition, it is
possible to incorporate inhomogeneity without a dramatic increase in the number of parameters
using splines, harmonic functions, or similar.1

Another advantage of a continuous-time formulation is the �exibility to use data with any
sampling interval as the data is not assumed to be equidistantly sampled. In a discrete-time
model, weekends and bank holidays are ignored so that the trading days are aggregated, meaning
that Friday is followed by Monday in a normal week. Using a continuous-time model, it is possible
to model the sampling times and thereby recognise that there is a longer time span between Friday
and Monday. The so-called weekend e�ect in returns have been studied empirically for decades
(see e.g. French 1980, Rogalski 1984, Asai and McAleer 2007). There are two main e�ects, �rst
that returns are higher on Fridays and lower on Mondays than on other days and secondly that
the variance is larger on Fridays and lower on Mondays. There are several plausible explanations
for this, but all of them are more complicated to model than just treating Saturdays and Sundays
as missing observations. Below, the observations are assumed to be equidistantly sampled in order
to facilitate a comparison to the discrete-time models using model selection criteria.
The continuous-time hidden Markov models (CTHMMs) are estimated using the R-package

msm due to Jackson (2011) that is based on direct numerical maximisation of the likelihood
function.

4. The data

The data analysed is daily log-returns of the S&P 500 and the FTSE 100 total return index
covering the period from 23 July 1993 to 22 July 2013. The log-returns are calculated using
rt = log (Pt)− log (Pt−1), where Pt is the closing price of the index on day t and log is the natural
logarithm. The focus will be on the log-returns of the S&P 500 index as the analysis of the FTSE

1See Iversen et al. (2013) for an example of the use of splines to reduce the number of parameters in an inhomogeneous
Markov model.
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Figure 1. The daily log-returns of the S&P 500 total return index and a kernel estimate of the density of the
standardised daily log-returns together with the density function for the standard normal distribution.

Table 1. The �rst four moments of the S&P 500 log-returns and the Jarque�Bera test statistic together with
bootstrapped 95%-con�dence intervals.

Mean Std. deviation Skewness Kurtosis JB
0.00034 0.0121 -0.24 11.3 14372

[0.00001; 0.00068] [0.0116; 0.0127] [−0.75; 0.30] [8.5; 14.1] [6356; 25803]

100 index showed similar results. The results of the analysis of the FTSE returns can be found
in appendix B.
The 5040 log-returns of the S&P 500 index are shown in �gure 1. The volatility is seen to form

clusters as large price movements tend to be followed by large price movements and vice versa.
Volatility clustering is a consequence of the persistence of the ACF of the squared returns (Cont
2001).
The �rst four moments of the daily log-returns are shown in table 1 together with approximate

95%-con�dence intervals based on bootstrapping 500,000 series of length 5040 from the log-
returns with replacement. The con�dence intervals for the mean and skewness are very wide,
whereas the estimates of the standard deviation and kurtosis are more certain. The distribution
is left skew and leptokurtic with an excess kurtosis of 8.3 compared to the normal distribution.
The Jarque�Bera test statistic1 rejects the normal distribution at a 0.1% level of signi�cance.
The excess kurtosis is evident from the plot of the density function in �gure 1. There is too much

mass centered right around the mean and in the tails compared to the normal distribution. There
are 81 observations that deviate more than three standard deviations from the mean compared
to an expectation of 14 if the returns were normally distributed.
Figure 2 shows the ACF of the absolute returns raised to di�erent positive powers. It is a

stylised fact that autocorrelations of positive powers of absolute returns are highest at power
one. This is called the Taylor e�ect. The results generally agree with the Taylor e�ect although
the e�ect is not clear-cut at the lowest lags.

5. Empirical results

The empirical autocorrelation function of the squared log-returns is shown in �gure 3 together
with ACFs of simulated squared returns from the �tted models. Of the two-state models, the
HMM with normal conditional distributions is seen to be the best �t at the lowest lags, whereas
the HSMM with normal conditional distributions is the best �t from lag 40 and upwards. The

1The Jarque�Bera test statistic is de�ned as JB = T
(
Skewness

2

6
+

(Kurtosis−3)2

24

)
, where T is the number of observations.
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Figure 2. The empirical autocorrelation function of the absolute log-returns of the S&P 500 total return index
raised to di�erent positive powers.
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Figure 3. The empirical autocorrelation function of the squared log-returns at lag 1�100 together with simulated
autocorrelation functions for the �tted models.

HSMM with t components is seen to be very persistent, but at too low of a level and it provides
a poor �t overall.
As the HSMM with normal conditional distributions provides the best �t at the highest lags,

this is also the model that best reproduces the stylised fact relating to the persistence of the
ACF. This is true when looking at two-state models, as concluded by Bulla and Bulla (2006),
but a much better �t can be obtained by increasing the number of states to three.
The HSMM with normal conditional distributions is also a better �t than the HMM when

looking at the three-state models in �gure 3, as the ACF for the HMM decays too fast. The ACF
for the HSMM with conditional t distributions is again at too low of a level.
The �t of a CTHMM with three states with normal conditional distributions is similar to

that of the three-state HMM. This appears from the mean squared error and the weighted mean
squared error of the ACF of the squared returns for the �tted models in table 2. The weighted
mean squared error reweights the error at lag k by 0.95(100−k) to increase the in�uence of higher
order lags following the approach by Bulla and Bulla (2006).
A CTHMM with four states with normal conditional distributions is seen to provide a better

�t to the ACF of the squared returns than the three-state HSMM with normal conditional
distributions. This observation is supported by the computed mean squared errors and weighted
mean squared errors.
The �rst four moments of the log-returns are shown in table 3 together with the estimated

moments for the �tted models based on 500,000 Monte Carlo simulations. Two states with normal
conditional distributions are not enough to adequately capture the excess kurtosis of the log-
returns. The two-state model with conditional t distributions is able to reproduce the excess
kurtosis, but this model was not a good �t to the ACF.

8



March 17, 2015 Quantitative Finance Stylised_facts_of_�nancial_time_series_and_hidden_Markov_models_in_continuous_time

Table 2. The mean squared error and the weighted mean squared error of the autocorrelation function of the
squared returns and the outlier-corrected squared returns for the �tted models.

Original data Outlier-corrected data
MSE×103 WMSE×103 MSE×103 WMSE×103

HMMN (2) 7.9 4.6 13.1 9.7
HSMMN (2) 9.1 3.6 14.0 8.0
HSMMt (2) 15.7 4.6 15.1 6.5
HMMN (3) 4.4 3.2 6.1 6.7
HSMMN (3) 3.3 2.0 4.1 4.2
HSMMt (3) 9.2 3.4 5.1 4.0
CTHMMN (3) 4.2 3.2 6.1 6.5
HMMN (4) 4.0 2.2 3.4 3.3
HSMMN (4) 2.4 1.0 1.8 2.0
HSMMt (4) 3.4 1.1 1.4 1.2
CTHMMN (4) 1.9 1.3 1.3 1.6

Table 3. The �rst four moments of the log-returns together with bootstrapped 95%-con�dence intervals and
simulated moments for the �tted models.

Model Mean Std. dev. Skewness Kurtosis
rt 0.00034 0.0121 -0.24 11.3

[0.00001; 0.00068] [0.0116; 0.0127] [−0.75; 0.30] [8.5; 14.1]
HMMN (2) 0.00034 0.0122 -0.17 5.6
HSMMN (2) 0.00035 0.0121 -0.24 6.5
HSMMt (2) 0.00042 0.0122 -0.14 12.0
HMMN (3) 0.00036 0.0120 -0.18 8.2
HSMMN (3) 0.00032 0.0121 -0.26 8.4
HSMMt (3) 0.00037 0.0123 -0.19 14.0
CTHMMN (3) 0.00025 0.0120 -0.20 8.7
HMMN (4) 0.00033 0.0122 -0.34 10.3
HSMMN (4) 0.00033 0.0122 -0.30 10.5
HSMMt (4) 0.00035 0.0125 -0.33 11.5
CTHMMN (4) 0.00037 0.0124 -0.30 10.7

The three-state models all provide a reasonable �t to the empirical moments. The kurtosis is
still a little too low, with the exception of the HSMM with t components. The four-state models
all provide a good �t to the empirical moments.

5.1 Correcting for outliers

Figure 4 shows the empirical ACF of the squared outlier-corrected log-returns together with the
ACFs of the squared outlier-corrected simulated log-returns for the �tted models. Following the
approach by Granger and Ding (1995a), values outside the interval r̄t ± 4σ̂ are set equal to the
nearest boundary.
Restraining the impact of outliers reduces the amount of noise in the empirical ACF signi�-

cantly. The noise reduction reveals a weekly variation that could suggest the need for an inho-
mogeneous, yet continuous, Markov model. The �exibility of a continuous-time model would be
necessary to incorporate inhomogeneity without a dramatic increase in the number of parameters.
The conclusions regarding the �t of the di�erent models to the empirical ACF are still valid

when looking at the outlier-corrected returns. The outperformance of the HSMMs relative to the
HMMs at the high lags is even more apparent when looking at the outlier-corrected data. What
is also more apparent is the outperformance of the four-state CTHMM with normal conditional
distributions relative to the three-state HSMMs. The ACF for the four-state CTHMM still decays

9
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Figure 4. The empirical autocorrelation function of the squared outlier-corrected log-returns at lag 1�100 together
with autocorrelation functions of the squared outlier-corrected simulated log-returns for the �tted models.

Table 4. Model selection based on the Akaike information criterion and the Bayesian information criterion.

Model No. of parameters Log-lik AIC BIC
HMMN (2) 7 15984 -31954 -31908
HSMMN (2) 9 16062 -32107 -32048
HSMMt (2) 11 16137 -32251 -32180
HMMN (3) 14 16214 -32400 -32309
HSMMN (3) 17 16227 -32419 -32308
HSMMt (3) 20 16245 -32449 -32319
CTHMMN (3) 13 16209 -32391 -32306
HMMN (4) 23 16262 -32478 -32328
HSMMN (4) 27 16273 -32492 -32316
HSMMt (4) 31 16284 -32505 -32303
CTHMMN (4) 19 16256 -32474 -32350

too fast from lag 40 and onwards, but it clearly provides a better �t than the HSMMs with a
similar number of parameters.

5.2 Model selection

Model selection involves both the choice of an appropriate number of states and the choice
between competing state-dependent distributions. Likelihood ratio tests cannot be applied to
models with di�erent numbers of states as these are not hierarchically nested. Instead, penalised
likelihood criteria can be used to select the model that is estimated to be closest to the 'true'
model, as suggested by Zucchini and MacDonald (2009). The disadvantage is that model selection
criteria provide no information about the con�dence in the selected model relative to others.
A four-state HSMM �ts the data as well as the four-state CTHMM with normal conditional dis-

tributions but it has 8 or 12 more parameters (see table 4). The four-state CTHMM is, therefore,
preferred to both the three and the four-state HSMMs according to the Bayesian information
criterion1. Akaike's information criterion2 selects the four-state HSMM with t components as it
puts less emphasis on the number of parameters. However, various simulation studies have shown
that AIC tends to select models with too many states (Bacci et al. 2014).
The parameter estimates are more uncertain the higher the number of states because of the

quadratic increase in the number of parameters for the discrete-time models. Rydén et al. (1998)

1The Bayesian information criterion is de�ned as BIC = −2 logL + p log T , where T is the number of observations and p is
the number of parameters.
2The Akaike information criterion is de�ned as AIC = −2 logL + 2p.
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Figure 5. The autocorrelation function of the absolute value of 500,000 returns simulated from the estimated
four-state CTHMM raised to di�erent positive powers.

investigated HMMs with two and three states and found that the three-state models were �less
similar to each other� and that �the estimation results seemed heavily dependent on outlying
observations�. That was also the reason why Bulla and Bulla (2006) only considered HSMMs
with two-states. There is a strong preference for models with fewer parameters as a four-state
HSMM with over 30 parameters is likely to be over�tting the data.
It is problematic to �t a �ve-state CTHMM to the log-returns. The likelihood function appears

to be highly multimodal and it is easy to �nd several local maxima by using di�erent starting
values. This indicates that the model is over�tting the data. It was not possible to �nd a �ve-state
CTHMM with a lower BIC-value than the four-state CTHMM.
The ability of the four-state CTHMM to capture the Taylor e�ect is illustrated in �gure 5.

The ACF of the absolute value of 500,000 simulated returns raised to di�erent positive powers
is seen to be highest at power one.

6. Conclusion

HSMMs were found to be better at reproducing the slowly decaying ACF of squared daily returns
of the S&P 500 and the FTSE 100 total return index than HMMs when looking at two and three-
state models in agreement with the �nding by Bulla and Bulla (2006). A much better �t to the
slowly decaying ACF and the empirical moments was obtained by increasing the number of
hidden states from two to three.
An extension to continuous time was presented and it was shown that a CTHMM with four

states provides a better �t than the discrete-time models with three states with a similar number
of parameters and, even more so, after restraining the impact of outliers. There was no indication
that the memoryless property of the sojourn time distribution is inconsistent with the long-
memory property of the squared returns.
Di�erent models were preferred by the di�erent selection criteria, but the four-state CTHMM

with normal conditional distributions was selected by the Bayesian information criterion that was
believed to be the most reliable. Finally, it was argued that the four-state CTHMM is preferred
to the four-state HSMMs due to the signi�cantly lower number of parameters resulting from the
continuous-time formulation that makes the model less likely to be over�tting the data.
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Appendix A: Parameter estimates

Table A1. Parameter estimates for the �tted m-state HMMs with normal conditional distributions together
with bootstrapped standard errors based on 250 simulations of the model.

m Γ µ× 104 σ2 × 104 δ

2

0.990 0.010
(0.002)

0.021 0.979
(0.004)

8.3
(1.1)
−6.9
(4.9)

0.52
(0.01)
3.47

(0.14)

1.0
(0.2)
0.0

3

0.982 0.018 0.000
(0.004) (0.001)

0.015 0.978 0.006
(0.003) (0.002)
0.000 0.030 0.970

(0.003) (0.010)

10.1
(1.3)
0.5

(2.5)
−12.4
(12.8)

0.32
(0.01)
1.28

(0.04)
7.08

(0.50)

1.0
(0.1)
0.0

(0.1)
0.0

4

0.979 0.021 0.000 0.000
(0.005) (0.006) (0.00)

0.020 0.970 0.009 0.001
(0.005) (0.003) (0.001)
0.000 0.017 0.976 0.007

(0.000) (0.006) (0.004)
0.000 0.000 0.049 0.951

(0.000) (0.002) (0.026)

10.8
(1.5)
3.3

(2.7)
−2.9
(5.7)
−29.9
(31.2)

0.29
(0.01)
0.96

(0.05)
2.39

(0.14)
12.16
(1.73)

1.0
(0.2)
0.0

(0.2)
0.0

(0.1)
0.0

Table A2. Parameter estimates for the �tted m-state HSMMs with normal conditional distributions together
with bootstrapped standard errors based on 250 simulations of the model. p and r are the parameters of the

negative binomial sojourn time distribution.

m Γ 1− p r × 10 µ× 104 σ2 × 104 δ

2

0 1

1 0

0.994
(0.002)
0.975

(0.010)

0.4
(0.1)
0.5

(0.2)

9.0
(1.3)
−10.8
(5.7)

0.48
(0.01)
4.00

(0.18)

1.0
(0.4)
0.0

3

0 1.000 0.000
(0.000)

0.972 0 0.028
(0.013)
0.000 1.000 0

(0.000)

0.993
(0.003)
0.945

(0.037)
0.983

(0.052)

0.3
(0.1)
1.7

(1.7)
5.5

(33.0)

10.5
(1.3)
−1.0
(3.0)
−14.3
(12.7)

0.31
(0.01)
1.51

(0.07)
7.26

(0.54)

1.0
(0.3)
0.0

(0.3)
0.0

4

0 1.000 0.000 0.000
(0.000) (0.000)

0.970 0 0.022 0.008
(0.022) (0.020)
0.000 0.675 0 0.325

(0.000) (0.161)
0.000 0.000 1.000 0

(0.000) (0.000)

0.985
(0.006)
0.965

(0.024)
0.937

(0.124)
0.977

(0.098)

0.5
(0.5)
1.0

(0.7)
31.2

(124.8)
4.2

(68.9)

11.6
(1.4)
2.1

(2.8)
−2.4
(5.2)
−30.6
(31.8)

0.25
(0.01)
1.05

(0.06)
2.38

(0.17)
11.81
(2.26)

1.0
(0.3)
0.0

(0.2)
0.0

(0.2)
0.0
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Table A3. Parameter estimates for the �tted m-state HSMMs with Student t conditional distributions together
with bootstrapped standard errors based on 250 simulations of the model. p and r are the parameters of the
negative binomial sojourn time distribution and t is the degrees of freedom for the conditional t distributions.

m Γ 1− p r × 10 µ× 104 σ2 × 104 t δ

2

0 1

1 0

0.997
(0.002)
0.984

(0.008)

0.2
(0.1)
0.5

(0.2)

9.5
(1.2)
−6.0
(4.8)

0.34
(0.02)
2.10

(0.17)

7.2
(1.2)
5.6

(1.0)

1.0
(0.4)
0.0

3

0 1.000 0.000
(0.042)

0.630 0 0.370
(0.144)
0.000 1.000 0

(0.045)

0.990
(0.009)
0.979

(0.047)
0.983

(0.055)

7.4
(7.8)
10.5

(22.2)
5.2

(28.5)

10.5
(1.1)
1.3

(2.7)
−12.2
(13.1)

0.25
(0.01)
1.16

(0.07)
4.96

(0.75)

6.7
(1.4)
22.4

(467.9)
7.2

(7.4)

1.0
(0.3)
0.0

(0.3)
0.0

4

0 1.000 0.000 0.000
(0.000) (0.000)

0.610 0 0.296 0.094
(0.103) (0.106)
0.000 0.724 0 0.276

(0.000) (0.148)
0.000 0.000 1.000 0

(0.000) (0.000)

0.987
(0.013)
0.957

(0.052)
0.931

(0.115)
0.981

(0.110)

8.9
(10.2)
18.6

(34.2)
34.3

(115.9)
3.9

(61.9)

10.6
(1.4)
4.1

(2.2)
−1.9
(5.2)
−29.3
(31.6)

0.23
(0.01)
0.86

(0.05)
2.22

(0.16)
9.56

(2.44)

6.8
(1.5)
24.8

(16.4)
49.0

(98.2)
13.8

(11968)

1.0
(0.2)
0.0

(0.2)
0.0

(0.0)
0.0

Table A4. Parameter estimates for the �tted m-state CTHMMs with normal conditional distributions together
with approximate standard errors based on the Hessian. The three-state model has a dummy state as the second
and the third state are indistinguishable. No standard errors are given for the initial distributions as the Hessian

is unreliable for this purpose.

m Q µ× 104 σ2 × 104 δ

3

−0.014 0.014 0 0
(0.003)

0 −0.020 0.020 0
(0.003)

0.048 0 −0.068 0.020
(0.019)
0.005 0.019 0 −0.024

(0.003) (0.003)

10.6
(1.4)
0.8

(2.5)
0.8

−14.6
(12.1)

0.32
(0.01)
1.29

(0.03)
1.29

7.12
(0.26)

1.0

0.0

0.0

0.0

4

−0.018 0.017 0 0.001
(0.005) (0.001)

0.015 −0.020 0.005 0
(0.004) (0.002)

0 0.010 −0.015 0.005
(0.003) (0.002)

0.005 0 0.029 −0.034
(0.005) (0.013)

11.1
(1.6)
3.6

(2.6)
−3.2
(5.2)
−29.2
(25.9)

0.29
(0.01)
0.95

(0.03)
2.39

(0.10)
12.29
(0.82)

1.0

0.0

0.0

0.0
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Appendix B: FTSE results
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Figure B1. The empirical autocorrelation function of the squared FTSE 100 log-returns at lag 1�100 together
with simulated autocorrelation functions for the �tted models.

Table B1. The �rst four moments of the FTSE 100 log-returns together with bootstrapped 95%-con�dence
intervals and simulated moments for the �tted models.

Model Mean Std. dev. Skewness Kurtosis
rt 0.00031 0.0118 -0.16 8.9

[−0.00002; 0.00063] [0.0113; 0.0123] [−0.56; 0.24] [7.0; 10.9]
HMMN (2) 0.00026 0.0119 -0.16 5.4
HSMMN (2) 0.00032 0.0115 -0.18 6.0
HSMMt (2) 0.00038 0.0116 -0.19 8.5
HMMN (3) 0.00028 0.0116 -0.21 7.2
HSMMN (3) 0.00026 0.0118 -0.23 7.1
HSMMt (3) 0.00037 0.0118 -0.15 9.1
CTHMMN (4) 0.00026 0.0123 -0.33 8.0
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Figure B2. The empirical autocorrelation function of the squared outlier-corrected FTSE 100 log-returns at lag
1�100 together with autocorrelation functions of the squared outlier-corrected simulated log-returns for the �tted
models.
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Table B2. Model selection based on the Akaike information criterion and the Bayesian information criterion.

Model No. of parameters Log-lik AIC BIC
HMMN (2) 7 16054 -32093 -32047
HSMMN (2) 9 16093 -32167 -32108
HSMMt (2) 11 16125 -32227 -32156
HMMN (3) 14 16220 -32413 -32321
HSMMN (3) 17 16224 -32414 -32303
HSMMt (3) 20 16235 -32429 -32299
CTHMMN (4) 19 16252 -32466 -32342
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