Back-illuminated Si photocathode
a combined experimental and theoretical study for photocatalytic hydrogen evolution

Bae, Dowon; Pedersen, Thomas; Seger, Brian; Malizia, Mauro; Kuznetsov, Andrej; Hansen, Ole; Chorkendorff, Ib; Vesborg, Peter Christian Kjærgaard

Published in:
Energy & Environmental Science

Link to article, DOI:
10.1039/c4ee03723e

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):
1. Introduction

The development of semiconductor photocatalytic water splitting devices has attracted recent interest because the direct conversion of solar energy into hydrogen is an attractive route to produce a clean chemical fuel.

In order to be competitive with fossil fuels, artificial photosynthesis must be efficient and cheap. The overall process consists of two parts: (i) light absorption resulting in charge carrier generation and (ii) the utilization of excited photo carriers to drive catalytic reactions at the surface. It is thus essential to harvest a large fraction of the solar spectrum while ensuring efficient charge separation. Dual-absorber systems (sometimes called Z-scheme), represent an efficient way to achieve wide spectral coverage using two semiconductors of different band gaps (E_g) as shown in Fig. 1. Effectively, the dual-absorber system works by series-connecting the high bandgap- and low bandgap-cells enabling a higher total voltage at the expense of current density.

In the case where silicon is used as the low-gap absorber (and as a photocathode in a dual-absorber arrangement) the flat-band potential of p-type silicon places severe restrictions on the voltage in an aqueous electrolyte. However, by replacing the semiconductor–liquid junction with a pn$^+$-junction at the surface the flat-band limitation is mitigated. Such pn$^+$-Si electrodes have shown efficient electron–hole pair separation and increased open circuit voltage along with a higher current density compared to p-Si electrodes.
work10,11 it was found that pn-Si photocathodes with TiO\(_2\) as a protection layer showed an open circuit voltage \((V_{oc}) \geq 0.5\) V for the Hydrogen Evolution Reaction (HER). These electrodes also showed a maximum photocurrent \((J_L)\) of 23 mA cm\(^{-2}\) under frontal illumination using the red spectrum shown in Fig. 1. This non-standard “red light only” illumination serves to simulate a real dual-absorber system where the blue light has been absorbed by the overlying (top) photode electrode. In that case, 23 mA cm\(^{-2}\) corresponds to an Incident Photon to Current Efficiency (IPCE) of nearly 90%, while p-Si photocathodes (without the n- layer, but otherwise similar) showed \(V_{oc}\) of just 0.05 V with \(J_L\) of 17 mA cm\(^{-2}\) (IPCE of 61%).9

To date, various dual absorber water splitting devices have been demonstrated experimentally such as pn-GaInP\(_2\)/pn-GaAs,13 pnp-GaInP\(_2\)/pn-GaAs.14 These high-efficiency devices, however, are currently too expensive for large-scale applications. It seems that these materials also have severe scalability issues because Ga and In are elements which are by-products (of aluminum and zinc, respectively) and ultimately price-inelastic.15 Various approaches have been demonstrated to substitute these high-cost materials with earth-abundant materials. A Si photocathode coupled to a metal oxide photoanode is one example.16–18 However, the modest photocurrent density level of such structures \((J_{L,max} \approx 0.4\) mA cm\(^{-2}\)) result in a low efficiency for water splitting. Nevertheless, progress is being made using oxides of lower band gap. A respectable state-of-the-art 3.6% solar-to-hydrogen (STH) efficiency tandem water splitting device based on a doped BiVO\(_4\) photoanode in combination with single junction a-Si solar cell was recently demonstrated.19 Despite recent progress,3,20 developing a relatively simple dual absorber tandem structure is still an unsolved engineering challenge.

Using silicon as the bottom cell (i.e. under back-illumination – where light is incident from the “dry” side of the photo-electrode), a series of experiments showed that the photocurrent of a Si bottom cell was limited. The reason is that under back-illumination the electrode–electrolyte interface, which is the electron drain, is on the opposite side with respect to the incident light and since the wafer thickness is larger than the carrier diffusion length most electrons are lost to recombination near the back surface.21-23 This problem of opposed light absorption and electrochemistry under back-illumination thus dictates a different approach to maximize the charge carrier utilization.

In this work we evaluate the experimental and theoretical maximum photocurrent \((J_{L,max})\) limit from the Si based photo-electrochemistry (PEC) system for hydrogen production under the back side illumination. The main focus is on maximum charge utilization of the Si photocathode under the assumption that it is used as a bottom cell in a tandem water splitting device. First we conducted experiments by using Czochralski (CZ) Si based cells with a pn-junction at the electrode/electrolyte interface side (type I configuration,23 see Fig. S1a in ESI†), but varying the thickness to quantify the effect of the \(L_{el}/L_{oct}\) ratio on current–voltage (\(I-V\)) performance. We employed a light-permeable Al/p+ charge collection backside layer, which allows illumination from the side opposing the solid/liquid interface while minimizing series resistance. A “buried junction” design (type II configuration,23 see Fig. S1b in ESI†), whose pn-junction is on the illuminated side, can collect charge more efficiently. But the buried junction design requires a very highly doped layer \((p^\prime)\) near the electrode–electrolyte interface to form an ultrathin space-charge region which allows electron tunneling through the interface from the n-type bulk silicon to the electrocatalyst. Without such a layer the charge separation becomes very inefficient.24 A key benefit of the type I structure is its ability to reduce the recombination loss of charge carriers by moving the pn-junction to opposite side with respect to the incident light since the presence of dopants increase local bulk recombination which can lead to reduced voltage loss.25-26 Many state-of-art photovoltaic (PV) devices employ the same principle to enhance the blue-light response of the cells.26,27 In addition, a shallow doped pn-junction formed at electrode–electrolyte interface provides band bending in the silicon independent of the electrolyte. On the other hand – moving the pn junction to the shadow-side of the device requires excellent surface passivation of the light incident side, as we shall see. Most devices in the literature are of a type I configuration, whereas a type II configuration has been demonstrated successfully by using multi-junction III–V 11–14 and by using a-Si PV devices.19 In addition, we discuss a simplified model of the Si-based cell with the same cross-sectional structure as the aforementioned cell for the experiments to guide the choice of substrate properties: Surface recombination velocity \((v_s)\), diffusion length \((L_{oc})\) and thickness \((L)\); for HER at maximum current density. The theoretical charge generation and collection models for the analytical calculation are discussed for this case, and finally, we compared the experimental results with the model-based calculation results verify the validity of the model.
2. Methods

2.1. Sample fabrication

CZ-Si based photocathodes of type I are fabricated with different wafer thickness in order to vary the L_e/L ratio ($L = 30–350 \mu m$) on otherwise similar electrodes. The thickness of the Si was varied by sample thinning (using photolithography and wet etching) of p-type Si substrates. Schematic drawings of samples used in this work are shown in Fig. 2 and S2a in ESI.† The shallow n$^+$-junction was produced in p-type (100) Si wafers (Topspin, 1–20 ohm cm, boron-doped, acceptor density $N_A \approx 5 \times 10^{19}$ cm$^{-3}$) by thin n$^-$ doping using phosphorus ion implantation at 36 keV with a dose of 3×10^{15} cm$^{-2}$ (donor density N_D of approximately 1×10^{20} cm$^{-3}$), which is expected to form a depletion width of 640 nm (described in detail in ESI†). As shown in our previous work,19 this n$^-$ doping screens the band-bending in the silicon from the electrolyte, which allows for increased photovoltage.2 A as shown in Fig. 2c, the electron–hole pairs are separated by a built-in electric field which the pn$^+$ junction provides. The electrons are then transferred to the solid/liquid interface through the conduction band of TiO$_2$ using Mott-Schottky analysis (detail calculations are shown in ESI†). A mesa-isolated pn$^+$-Si structure with height of 3 μm is formed at the front side by photolithography and dry etching (Here, we used SF$_6$, O$_2$ and C$_4$F$_8$ gases in a Pegasus DRIE system from SPTS Technologies). The back side of the same sample was also doped with a thin p$^+$ doping using ion implantation of boron at 100 keV with a dose of 5×10^{16} cm$^{-2}$ ($N_A \approx 1 \times 10^{20}$ cm$^{-3}$). A metallic charge collecting layer was deposited at room temperature by e-beam evaporation of Al. The Al layer was masked to create a circular hole over the active area in order to allow light transmission to the silicon. The resulting active area was precisely measured by image analysis using Imagej 1.46r after the experiments. The p$^+$ doped layer in this device reduces overall series resistance by providing parallel path ways for holes to reach the Al charge collecting layer. Furthermore in actual tandem device operation condition it can also act as a part of the recombination layer (tunnel junction) for the injected holes from photocathode and the electrons from photoanode. Consequently, the sample can be stated as a ‘ready-made bottom cell’ for tandem water splitting devices. Samples prepared without the p$^+$ doped layer are used to quantify the importance of the p$^+$ sheet-conducting layer (Fig. S5 in ESI†). In order to prevent the Si surface from photo-corrosion during the photo-electrochemical measurements, a Ti/TiO$_2$ (5/100 nm) protection layer was sputtered on the n$^+$ doped side (electrolyte side) of samples using previously published methods.19,28 In case of TiO$_2$, Ti was reactively sputtered in an oxygen background. Prior to sputter deposition all wafers were dipped in buffered HF for 30 s, rinsed in Millipore water, dried and were then immediately placed in the sputter chamber to prevent the Si surface from deactivation by native oxide formation. All samples were cleaned with “piranha” solution (3 : 1 H$_2$SO$_4$ (96%) : H$_2$O$_2$ (30%)), washed with ultrapure water (18 MΩ cm) and dried before having 250 ng (Pt basis) of a dinitrosulphatoplatinate solution (Johnson Matthey) drop-cast on them. Pt was used as a co-catalyst in order to achieve high catalytic activity for HER. The thickness of the wafers was controlled using photolithographically thinned p-type Si substrates to keep the L_e value the same for all samples. Finally, they were coated with Teflon tape with a hole punched out yielding an active area of approximately 0.2 cm2. This number was also precisely measured by optical image analysis after the experiments. In addition, the back side of the samples was covered with 50 μm thick quartz glass to protect back side from direct contact with the electrolyte. The quartz glass was mounted directly onto the Al layer using epoxy.

2.2. Characterization

A 1000 W xenon lamp (Oriel) was used with a 635 nm cut-off filter and an AM 1.5 filter to simulate the red part of the solar spectrum. The light intensity reaching the sample was measured via a spectrophotometer (International Light Technologies Inc, RPS 900-R), and the light intensity was adjusted to match that of the total light intensity of red light in the AM 1.5G solar spectrum ($λ = 635 \text{ nm, } 141.8 \text{ mW cm}^{-2}$). For electrochemical measurements a Bio-Logic VSP potentiostat was used using EC Lab software. All cyclic voltammetry (CV) experiments were done in a 3 electrode H-cell design with an aqueous 1 M HClO$_4$ (Aldrich 99.99%) electrolyte. For all CV’s the electrodes were scanned at a sweep rate of 10 mV s$^{-1}$. A Pt mesh was used as a counter electrode and the reference was a saturated Hg/HgSO$_4$ electrode (WVR International). The solution was purged with H$_2$ gas 30 minutes prior to any experiment and during the entire duration of the experiment. To determine efficiency as a function of wavelength, incident photon to current efficiency (IPCE) measurements were employed. An Oriel 74100 monochromator was combined with the Xenon lamp mentioned above to give monochromatic light. IPCE measurements were carried out from 500 to 900 nm for a thinned sample with a thickness of 50 μm under both front side and back side.
illumination. Wavelengths below 500 nm are irrelevant in this (bottom cell) study and excluded using a filter. In order to determine the photocurrent, the electrodes were tested at 0.0 V vs. RHE using the same set-up and conditions as the CV measurements. The evolved H₂ was detected by gas chromatography (GC; Hewlett Packard 5890 Series II with a thermal conductivity detector, Ar carrier gas), and this is described in detail in ESI.†

2.3. Analytical model calculation

The generation rate is the number of electron–hole pairs generated at each point in the device due to the absorption of photons.²⁹,³⁰ Neglecting reflection, the amount of incident light which is absorbed by a material depends on the absorption coefficient \(\alpha = \alpha(\lambda) \) (unit cm⁻¹) and the thickness of the absorber. Assuming that the absorption of photons directly causes the generation of an electron–hole pair, the spectral generation rate, \(G \), in a thin slice of absorber is determined by finding the change in light intensity across this thin slice, and consequently the electron–hole generation rate at any point in the device can be defined as follows:

\[
G = \alpha H_0 e^{-\alpha z}
\]

where \(H_0 \) is spectral photon flux density at the surface (photons per s per unit-area per wavelength increment), and \(z \) is distance into the absorber. The overall amount of generated charge at a certain depth is described in theoretical study section (Section 3.2). The spectral photon flux density \(H_0 \) can be calculated from measured irradiance \(\mathcal{P}(\lambda) \) of the solar simulator as the ratio of irradiance to photon energy using the equation shown below:

\[
H_0 = \frac{\lambda \mathcal{P}(\lambda)}{hc}
\]

where \(\lambda \) is wavelength, \(c \) is the speed of light in vacuum, and \(h \) is Plank’s constant. In the case where the surface is not perfectly non-reflecting, the irradiance is corrected by measured reflectivity at each wavelength (Fig. S8 in ESI†). The charge collection probability as a function of depth, \(C_\text{c}(z) \), was calculated under the assumption that there is no excess electron density at the junction boundary (i.e. \(n_e = 0 \)) while at \(z = 0 \) the surface recombination velocity requires \(d n_e/dz = S n_e \), where \(S = v_s/D \) is the normalized surface recombination velocity, and \(v_s \) is the surface recombination velocity and \(D \) is diffusivity of Si. The excess electron density in steady state is governed by the steady state continuity equation:

\[
\frac{d^2 n_e}{dz^2} + \frac{n_e}{\tau_e} = 0
\]

where \(L_e = (D \tau_e)^{1/2} \) is the minority carrier diffusion length, and \(\tau_e \) is carrier lifetime. The collection probability \(C_\text{c}(z) \) is the probability that an electron–hole pair generated at a certain depth, \(z \), will be collected (separated) by the pn-junction and consequently contribute to the photocurrent. The behavior of \(C_\text{c}(z) \) and accompanying photo generated current densities \(J_L \) will be discussed later in theoretical study section, and details of the mathematical derivation can be found in the ESI.†

3. Results and discussion

3.1. Experimental study

Since we wish to illuminate from the back, a shallow boron doped p’ layer, which is formed between the Al back current collector and the p-Si substrate, is used as a hole transport layer. The (control) sample without p’ doped layer has a very low \(J_L \) at 0 V vs. RHE due to a high series resistance (Fig. S6 in ESI†). Furthermore, this p’ doped layer works as a part of tunnel junction in practical tandem device. This structure makes the overall series resistance of the device comparable to a conventional Si device with direct back contact, and It was estimated that a doping concentration of \(10^{20} \text{ cm}^{-3} \) \((5 \times 10^{16} \text{ at per cm}^2 \) implanted at 100 keV) of boron could provide a sufficiently low sheet resistance to the Si surface,³¹ and consequently an efficient carrier transport pathway. Thus, a boron doped p’ transport layer made by ion implantation method was used in the rest of samples in this study (device structure: p’pn’-Si). The photoelectrochemical properties of the p’pn’-Si photocathodes with different thicknesses \((L = 350, 50 \text{ and } 30 \text{ µm}) \) were compared by measuring cyclic voltammetry. H₂ could be visually observed bubbling off from the semiconductor/liquid interface as the current increased, and it was confirmed by GC measurement that hydrogen is produced with high Faradaic efficiency (Fig. S9 in ESI†). As shown in Fig. 3 the fill-factor and photocurrent of 350 µm thick p’pn’-Si under front illumination (black dot) was considerably enhanced compared to that of the
pn⁺-Si in Fig. S6.† This demonstrates that adding the p⁺ transport layer between the Al charge collector and p-Si significantly reduces the series resistance of the device. Under back-illumination the 350 μm thick p⁺pn⁻-Si sample showed a J_L of 6.2 mA cm⁻². This is significantly less current than the same sample generates under front-illumination. With the thinned design (Fig. 2b) a 50 μm Si slab increased the J_L to 17 mA cm⁻² under back-illumination at the same light intensity. Since the only change between these samples is thickness, L, this can be considered a result of L_e/L ratio on overall charge to current conversion efficiency. As the b sample was thinned from its back side from 350 to 50 μm the L_e/L ratio should be seven fold larger. Since the diffusion length is the average distance that the excess carriers can cover before they recombine, increased L_e leads to improved J_L. Furthermore, V_{oc} of the thinned p⁺ pn⁻-Si samples shifted slightly cathodic with increased J_L, and their slope improved under the back side illumination. This is likely due to the increased concentration of excited charge carriers. Indeed, the light induced open circuit voltage is given by the equation:

$$V_{oc} = \frac{n k T}{q} \ln \left(\frac{J_L}{J_0} + 1 \right) \quad (4)$$

where n is ideality factor of device, T is operating temperature, k is Boltzmann’s constant, q is the electronic charge and J_0 is dark saturation current. Under the assumption that all samples have similar dark current and ideality factor, increased J_L leads to higher V_{oc}. In contrast, comparing unthinned sample with the thinned design (Fig. 2b) under front-illumination shows that thinning results in a lower J_L. The reason is that charge generation on average occurs closer to the pn-junction under front-illumination. As a result of the lower photocurrent density the V_{oc} is slightly lower under back-illumination than under front-illumination. This is probably due to a higher effective recombination velocity at the highly doped p⁺ side than at the pn⁻ side of the device. Note also that the 30 μm thick Si sample with thinned design showed slightly lower current density (16.5 mA cm⁻²) under back-illumination compared to the otherwise similar 50 μm thick sample even though it has a higher L_e/L ratio. This indicates a thickness of 30 μm is already below the critical thickness where the J_L starts to decrease (i.e. loss of photon absorption outweighs gain in C_Φ).

Our spectrally resolved IPCE measurement results agree with this explanation. As shown in Fig. 4, the IPCE of a sample with thinned design increases gradually with wavelength under back-illumination, whereas it decreases gradually under the front-illumination. The absorption length δ_p is the distance into a material at which the light intensity drops by a factor of $1/e$ of its original intensity (i.e. the effective light penetration depth). Converting wavelength to δ_p in Si allows experimental estimation of $C_\Phi(z)$ under the assumption of similar charge transfer and diffusion efficiency. As shown in the inset of Fig. 4, the IPCE was over 90% under front-illumination for photons, which are absorbed near the front side of the sample. Conversely, the same sample showed only approximately 50% IPCE under back-illumination. This shows that the pn⁻ junction region separates charges better than the p⁺p-region. The IPCE under back-illumination increases slowly from the short wavelength region and reaches a maximum at a wavelength near 900 nm. This behavior can be explained as follows: Photons with longer wavelengths penetrate deeper into the silicon. So under back-illumination electron–hole pairs generated from longer wavelength photons are therefore generated closer to the pn⁻ junction boundary, whereas front illuminated case the photoabsorption depth as a function of wavelength is inverted, thus the IPCE shows the opposite behavior. This also can be supported by decrease of IPCE of thick samples under back illumination while IPCE under illumination from front side was almost invariable (Fig. S9 in ESI†).

Since the sample used for this IPCE measurement has a 50 μm thick Si slab, the IPCE response under both back and front illumination almost converge for wavelengths close to 900 nm.

3.2. Theoretical study

3.2.1. Ideal current density vs. effective thickness. Crystal-line silicon has an indirect band gap (1.12 eV) and must therefore be thicker than most direct band gap light absorbers in order to have substantial optical absorption and electron–hole pair generation. Fig. 5 shows, as an inset, the available photons versus wavelength in the reference solar spectrum (AM 1.5G). The figure also shows the (red filtered) simulated solar spectrum used in this work where a Xen-lamp illumination is filtered using AM 1.5 and 635 nm cut-off filters (i.e. $\lambda > 635$ nm to approximate the wavelengths and intensity would be received in a real tandem device).

The irradiance of solar light can be converted into a photo-generated electron–hole density (mA cm⁻²) per unit wavelength for a Si-slab device of finite thickness. The resulting (integrated) current density is shown in Fig. 5 for both the AM 1.5G reference and for our simulated solar spectrum. If Si were to exhibit ideal
Theoretical light-induced maximum current density in term of Si wafer thickness and the light spectrum of AM 1.5G and solar simulator with AM 1.5 and 635 nm cut-off filters as an inset. The total irradiance of the simulated solar spectrum is 41.8 mW cm\(^{-2}\), and for the standard AM 1.5G spectrum ~ 85.1 mW cm\(^{-2}\) with range from 250 to 1100 nm in wavelength.

The rate of light-generated carriers, \(G\), as a function of depth \(z\) in Si can be theoretically calculated:

\[
G(z) = \int_{\lambda_{\text{min}}}^{\lambda_{\text{max}}} a(\lambda)H_0(\lambda)e^{-\alpha(z)\lambda} d\lambda
\]

where \(L\) is Si thickness, and \(n\) is the index of refraction of the Si slab. The absorption coefficient \(a(\lambda)\) as a function of wavelength used in this work can be found in Fig. S7 in ESL†.
Fig. 7 Calculated charge generation induced by the light from the (red) simulated solar spectrum shown in Fig. 2a, calculated collection efficiency with various $S = V_f/D$ (b) and L_e/L (c) ratio. The normalized charge generation rate is ratio of charge generation rate at that at the surface ($z = 0$), where the value shows its maximum.

Fig. 8a shows behavior of $G(z)$ in terms of the depth from the light incident surface. An interesting point from Fig. 8a is that $G(z)$ drops below 50% of its initial value [i.e. at $z = 0$] just 5 μm from the surface. In fact, charge generation is almost zero at the junction boundary. This underscores the importance of charge collection probability $C_p(z)$ since only collected charge become external photocurrent. The $C_p(z)$ as a function of depth, z, can be calculated from the equation shown below:

$$C_p(z) = \frac{1}{\cosh \left(\frac{L - z}{L_e} \right) + \sinh \left(\frac{L - z}{L_e} \right) \frac{S L_e \cosh \left(\frac{L}{L_e} \right)}{L_e^2}} \quad (8)$$

where S is the normalized surface recombination velocity (surface recombination velocity/diffusivity, $S = v_f/D$) and L_e and L are the same as their previous definitions. eqn (8) was derived from the ratio of the charge flux at the pn-junction boundary to the sum of the fluxes generated in bulk as described in detail in ESL.† As shown in Fig. 7b, $C_p(z)$ becomes quite low at the surface ($z = 0$) where electron-hole generation is fastest. The impact of surface recombination velocity and diffusion length on collection probability is also illustrated by varying S (and L_e/L) in eqn (8). As shown in Fig. 7b, $C_p(z)$ increases with the L_e/L ratio, and begins to saturate from an approximate ratio of $L_e/L = 2$ with $C_p(z)$ below 20% at the surface. Likewise, $C_p(z)$ increases with decreasing S, but unlike the L_e/L ratio, $C_p(z)$ at the surface ($z = 0$) increases significantly as S value decreases. This indicates that increasing the diffusion length (L_e) increases the charge collection efficiency ($C_p(z)$) only up to a certain point. Beyond this point further increase of diffusion length of the Si [i.e. the bulk quality of the Si] has little benefit for charge collection since in that limit the total recombination is dominated by surface recombination. This behavior of $C_p(z)$, and consequently $J_{L, max}$ for different thicknesses is shown as a function of S and L_e in Fig. 8. The $J_{L, max}$ can be calculated from the equation shown below by multiplying $G(z)$ and $C_p(z)$ of the carriers:

$$J_{L, max} = q \int_0^L G(z) C_p(z) dz \quad (9)$$

As shown in each plot of Fig. 8, once L_e reaches a certain value comparable to the absorber thickness, surface recombination (S) starts to become more significant. As shown in Fig. 8a ($L = 15 \mu$m), the slopes of contour lines are relatively moderate in the short diffusion length region and the gap between the lines have been broadened. This indicates J_L in a real device will be less sensitive to device parameters, but the maximum current for 15 μm thick Si is limited below 17 mA cm$^{-2}$ while a 30 μm thick Si (Fig. 8b) can reach above 20 mA cm$^{-2}$. The thinnest samples are limited by photons with long wavelength passing through the Si with little absorption. On the other hand, a 350 μm thick device (Fig. 8f) shows a J_L limited at approximately 10 mA cm$^{-2}$ and even this value requires good surface passivation and a very high L_e level which only can be achieved by using quality material such as float zone (FZ) Si.

The reason is that charge collection probability with identical S and L_e decreases with increased Si thickness due to the decreased L_e/L ratio and the impact of this ratio increases significantly as thickness of Si increases as already shown in Fig. 7c. Clearly, the choice of thickness is strongly dependent on L_e and S and must be optimized with respect to cost. Considering that conventional solar cell grade CZ Si wafer shows L_e of 100–300 μm, it seems using Si with thickness around 50 μm seems an appropriate compromise. As shown in Fig. 8e, 50 μm thick Si shows peak values up to 20.2 mA cm$^{-2}$ under the λ > 635 nm simulated spectrum. This is a high J_L value compared to the other thicknesses with identical S and L_e.

However, in order to compare to experimental results it is necessary to include the surface reflectance from the light incident side. Considering measured reflectance from the back
bottom cell illumination (see Fig. 2). These plots illustrate impact of with uncertainty, allows estimating approximate contour lines, which correspond to the experimental values all three thicknesses due to the surface reapplication of a thermally grown SiO2 layer via application of a thermally grown SiO2 layer or an overlayer.

side of the device (solid blue curve in Fig. S11†), the theoretical maximum current with surface reflectance $J_{L,\text{max}}$ can be calculated. The result is reduced charge generation rate $G'(z)$ due to the surface reflectance. As shown in Fig. 10, it is observed that the overall current level is decreased by more than 15% for all three thicknesses due to the surface reflectance. Overlapping contour lines, which correspond to the experimental values with uncertainty, allows estimating approximate L_e and S values of the Si device used in this work (green colored area in Fig. 9d).

It was found that a L_e of approximately 350 μm and S of 80 cm$^{-1}$ best fit the experimental data. Assuming that Si has an electron diffusivity, $D = 36$ cm2 s$^{-1},$ we estimate the surface recombination velocity, V_s, to be approximately 3×10^3 cm s$^{-1}$ ($S = V_s/D$).

This high value clearly indicates that there is room for improvement. Using these traced values one can determine the theoretical Absorbed Photon-to-Current Efficiency (APCE). For Pt, a material with fast HER kinetics, the yield of electron injection into the electrolyte is ~ 1, and therefore APCE can be obtained by dividing J_e by absorbed photon expressed as a current density (J_{abs}). Details of the mathematical procedure can be found in the ESI.† It was determined that the APCE, which was calculated from the measured IPCE, was quite similar to $C_F(z)$ with L_e of 350 μm and S of 80 cm$^{-1}$ (Fig. S12 in ESI†), indicating that the measured experimental behaviour agrees well with the model.

In Fig. 10, the calculated current density (using an empirical L_e and S extracted from Fig. 9) is shown as a function of thickness together with five experimentally measured values (Fig. S13 in ESI†). Calculated photocurrent density with enhanced L_e and S cases are also shown to point out how additional improvements can be made with further structural design modification. An important point is the impact of surface recombination velocity on $J_{L,\text{max}}$. According to the modeled data in Fig. 10, an improvement of S (dashed line) gives higher impact on $J_{L,\text{max}}$ than an improvement in L_e. Case in point: $J_{L,\text{max}}$ increased by 12% when S is reduced by 1/2, whereas a model of a device with $3 \times$ increased L_e (dot-dash line) shows only slight increase in current density with decreased thickness sensitivity. This analysis strongly suggests using (back) surface passivation – e.g. via application of a thermally grown SiO2 layer or an overlayer.

![Fig. 8 Contour plots of theoretical maximum current density versus diffusion length and surface recombination rate for 15 μm thick (a), 30 μm thick (b), 50 μm thick (c), 70 μm thick (d), 100 μm thick (e), 150 μm thick (f), 250 μm thick (g), and 350 μm thick (h) bottom cell under the simulated bottom cell illumination (see Fig. 2). These plots illustrate impact of S and L_e on theoretical current density, and at the same time how these impacts change with Si thickness.](image)

![Fig. 9 Contour plot of theoretical maximum current density versus diffusion length and surface recombination rate under simulated illumination (Fig. 6) considering reflectance from the surface of the back side versus diffusion length and surface recombination rate for 30 μm thick (a), 50 μm thick (b), 350 μm thick (c). Overlapped contour lines (d) which correspond to the experimental uncertainty are also given to estimate diffusion length and surface recombination rate of the samples used for this work. Uncertainty ranges for each panel were derived from the uncertainty of the saturated current I_s and the active area measurement A, i.e. $I_s/A \pm (\Delta I_s + \Delta A)$.](image)
4. Conclusions

We have demonstrated, for the first time, a back-illuminated photocathode which is suited to work efficiently in a tandem PEC stack. Specifically we have shown that a photocathode with a p’pn’-Si structure, whose pn-junction is formed at the solid/liquid interface, can be used as a HER photoelectrode under backside illumination, whereas a 350 μm thick sample, with a 7 times lower LpL ratio, showed only 6.1 mA cm⁻². In contrast, despite its enhanced LpL ratio, a 30 μm thick sample showed only slightly lower Jₜ due to its limited light absorption (loss of infrared photons). These results demonstrate how the charge collection limitation of a photocathode with its pn-junction at solid/liquid can be overcome. Importantly, the increased fill factor and increased Vₜ of the thinned back-illuminated samples owe their success mostly to increased Jₜ, and such designs should lead to increased operational current density when coupled with a photoanode. Building on the experimental input, further modelling shows that surface recombination on the back side of the silicon is the dominant current loss mechanism. Therefore, the application of a conducting passivation layer, which allows transport of the carriers with minimum optical loss, seems one of the critical challenges to reduce the back side recombination rate and consequently enhance photocatalytic performance of practical Si-bottom cell.

Acknowledgements

This work was performed as a part of the Center for Individual Nanoparticle Functionality (CINF) which is funded by Danish National Research Foundation (DNRF54). Furthermore, most of sample fabrication work has been done using facilities in DTU Danchip.

Notes and references

