Pretreatment for cellulosic ethanol production in the developing world

Thomsen, Sune Tjalfe; Gonzalez Londono, Jorge Enrique; Schmidt, Jens Ejbye; Kádár, Zsófia

Publication date:
2015

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Pretreatment for cellulosic ethanol production in the developing world

Sune Tjalfe Thomsena,*, Jorge Enrique Gonzalez Londoñoa,
Jens Ejbye Schmidta,b, Zsófia Kádára

aCenter for BioProcess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, DTU, Denmark
bPresent address: Institute Center for Energy (iEnergy), Masdar Institute for Science and Technology, PO Box 54224, Abu Dhabi, United Arab Emirates
Welcome

And a big thanks to:

• The funding body Danida – for funding the 2GBIONRG project (DFC journal no. 10-018RISØ) www.2gbionrg.dk

• Colleagues at the Technical University of Denmark, project partners, and especially my co-authors

• The audience – thank you all for coming
Introduction

• Ongoing project concerning production of residue-based biofuels in Ghana

• Several criterias shape the possible biofuels solutions
 – Infrastructure
 – Biomasses
 – Labor
 – Economics

• Screening of suitable pretreatment methods low-tech conditions on Ghanaian biomasses
Plantain

Cassava

Maize

Oil palm

Sugarcane

Yam

Plantain

Cassava

Source: Andreas Kamp
Cocoa
The Betarenewables full-scale plant in Crescentino, Italy Utilize more than 700 tons of biomass per day

Source: www.betarenewables.com
Therefore...

• Pretreatment for cellulosic ethanol should be optimized within the constraints of a significant smaller scale

• Methods that are more labor intensive than methods developed for the industrialized world

• We investigated three alternative pretreatment methods applicable for small-scale low-tech conditions
Pretreatment: Investigated methods

• Soaking in aqueous ammonia (SAA)

• Boiling pretreatment (BP)

• White rot fungi pretreatment (WRF)

Benchmarked against

• Hydrothermal treatment (HTT)
Soaking in aqueous ammonia (SAA)

- Can be done with long retention times and at ambient temperatures.
- Highly scalable thus suited for low-tech solution
- Swelling of cellulose and delignification
 - Cleavage of ether bonds in lignin
 - Cleavage ether and ester bonds coupling lignin to hemicellulose
- A recovery system for the ammonia is needed

SAA pretreated maize stalks solid to liquid loadings of 1:4 (w/w). After soaking for 10 days at 30°C
Boiling pretreatment (BP)

- Very simple method
- Solubilizes some non-structural components such as proteins, waxes, and inorganic compounds
- When BP has been applied as lignocellulose pretreatment method, it has been with a limited effect
- Starch fractions swell and become exposed for enzymatic breakdown
White rot fungi pretreatment (WRF)

- White rot fungi degrades lignin and carbohydrates through extracellular enzymes over an extended time
- Strain: *Ceriporiopsis subvermispora*
 - Degrades mainly lignin and metabolizes only a little C5 sugars and no C6
- Time consuming and labor intensive but scaleable and suitable for low-tech

Moist straw inoculated with *C. subvermispora*

- 25% initial TS (sterilised biomass)
- 30 days at 28° C, 90% relative humidity
Hydrothermal treatment (HTT)

- Autohydrolysis with water at 160-230°C
- High pressure
- High temperature
- High efficiency
- High costs

- Applied by e.g.
 - Inbicon
 - Betarenewables

MINI IBUS:
1 kg HTT facility at DTU
A downscaled version of the process at the Inbicon demonstration plant

190°C
10 minutes
Investigated agricultural residues from West Africa

- Cassava
- Plantain
- Maize
- Rice
- Oil palm
- Groundnut
- Cocoa

- Stalks
- Peelings
- Trunks
- Leaves
- Cobs
- Stalks
- Straw
- EFB
- Straw
- Pods
- Husks
Chemical composition

<table>
<thead>
<tr>
<th></th>
<th>Starch</th>
<th>Cellulose</th>
<th>Xylan</th>
<th>Arabinan</th>
<th>Rhamnan</th>
<th>Galactan</th>
<th>Fructose</th>
<th>Lignin</th>
<th>Ash</th>
<th>Extractives</th>
<th>Protein</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yam peelings</td>
<td>70.1</td>
<td>5.7</td>
<td>n.d.</td>
<td>0.6</td>
<td>n.d.</td>
<td>n.d.</td>
<td>4.7</td>
<td>4.1</td>
<td>5.1</td>
<td>5.3</td>
<td>3.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Cassava peelings</td>
<td>53.1</td>
<td>12.7</td>
<td>n.d.</td>
<td>1.3</td>
<td>0.8</td>
<td>n.d.</td>
<td>3.4</td>
<td>8.2</td>
<td>4.8</td>
<td>7.2</td>
<td>3.0</td>
<td>5.6</td>
</tr>
<tr>
<td>Cassava stalks</td>
<td>1.1</td>
<td>33.1</td>
<td>13.7</td>
<td>0.5</td>
<td>n.d.</td>
<td>n.d.</td>
<td>2.8</td>
<td>28.3</td>
<td>4.1</td>
<td>8.9</td>
<td>2.7</td>
<td>4.8</td>
</tr>
<tr>
<td>Plantain peelings</td>
<td>26.2</td>
<td>8.0</td>
<td>n.d.</td>
<td>2.6</td>
<td>n.d.</td>
<td>2.8</td>
<td>1.0</td>
<td>10.0</td>
<td>14.3</td>
<td>18.3</td>
<td>4.5</td>
<td>12.3</td>
</tr>
<tr>
<td>Plantain trunks</td>
<td>0.6</td>
<td>45.6</td>
<td>9.6</td>
<td>2.6</td>
<td>n.d.</td>
<td>1.6</td>
<td>n.d.</td>
<td>12.4</td>
<td>13.7</td>
<td>10.1</td>
<td>3.2</td>
<td>0.5</td>
</tr>
<tr>
<td>Plantain leaves</td>
<td>0.6</td>
<td>21.9</td>
<td>9.0</td>
<td>5.6</td>
<td>1.6</td>
<td>4.1</td>
<td>n.d.</td>
<td>18.3</td>
<td>13.4</td>
<td>16.1</td>
<td>5.6</td>
<td>4.0</td>
</tr>
<tr>
<td>Cocoa husks</td>
<td>3.2</td>
<td>12.9</td>
<td>n.d.</td>
<td>1.5</td>
<td>1.7</td>
<td>6.7</td>
<td>n.d.</td>
<td>24.3</td>
<td>11.6</td>
<td>17.5</td>
<td>12.6</td>
<td>8.0</td>
</tr>
<tr>
<td>Cocoa pods</td>
<td>0.6</td>
<td>19.1</td>
<td>8.7</td>
<td>1.8</td>
<td>1.7</td>
<td>6.5</td>
<td>n.d.</td>
<td>37.2</td>
<td>12.6</td>
<td>5.7</td>
<td>5.9</td>
<td>0.3</td>
</tr>
<tr>
<td>Oil palm EFB</td>
<td>0.5</td>
<td>33.0</td>
<td>22.1</td>
<td>0.6</td>
<td>n.d.</td>
<td>0.3</td>
<td>n.d.</td>
<td>23.8</td>
<td>4.8</td>
<td>6.2</td>
<td>2.9</td>
<td>5.8</td>
</tr>
<tr>
<td>Maize cobs</td>
<td>0.7</td>
<td>35.4</td>
<td>31.3</td>
<td>3.5</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>18.0</td>
<td>1.6</td>
<td>1.7</td>
<td>1.3</td>
<td>6.4</td>
</tr>
<tr>
<td>Maize stalks</td>
<td>1.0</td>
<td>37.5</td>
<td>18.8</td>
<td>2.7</td>
<td>n.d.</td>
<td>0.5</td>
<td>n.d.</td>
<td>17.0</td>
<td>11.2</td>
<td>4.2</td>
<td>2.0</td>
<td>5.3</td>
</tr>
<tr>
<td>Rice straw</td>
<td>1.4</td>
<td>32.5</td>
<td>17.3</td>
<td>2.5</td>
<td>n.d.</td>
<td>0.6</td>
<td>n.d.</td>
<td>11.3</td>
<td>17.8</td>
<td>4.2</td>
<td>2.8</td>
<td>9.7</td>
</tr>
<tr>
<td>Groundnut straw</td>
<td>2.2</td>
<td>18.1</td>
<td>7.7</td>
<td>2.6</td>
<td>1.7</td>
<td>1.7</td>
<td>n.d.</td>
<td>15.4</td>
<td>10.9</td>
<td>10.9</td>
<td>9.4</td>
<td>19.3</td>
</tr>
</tbody>
</table>

All standard deviations were below 5%. Not detected = n.d.

Thomsen et al., Compositional analysis and theoretical biofuel potentials from various West African agricultural residues, *Biomass & Bioenergy* (2014)
Glucose yield after enzymatic conversion with cellulase of raw and pretreated agricultural residues

5 %TS, Cellic CTec 2® + HTec 2®, 72h
Threshold for glucose yield after enzymatic conversion

• Based on two criteria:
 – At least 4 w/w % ethanol after fermentation is needed in order to make cost-effective distillation
 – Maximum 25 % TS in prehydrolysis
• These factors can be calculated into a required conversion of glucan of at least 30 g per 100 g of TS
Glucose yield after enzymatic conversion with cellulase of raw and pretreated agricultural residues

5 %TS, Cellic CTec 2® + HTec 2®, 72h
Fermentation* of raw and pretreated residues

<table>
<thead>
<tr>
<th>Type</th>
<th>g ethanol (100 g TS)^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw Plantain</td>
<td>11</td>
</tr>
<tr>
<td>BP Plantain</td>
<td>22</td>
</tr>
<tr>
<td>HTT Plantain</td>
<td>25</td>
</tr>
<tr>
<td>WRF Trunks</td>
<td>17</td>
</tr>
<tr>
<td>Raw Maize</td>
<td>5</td>
</tr>
<tr>
<td>HTT Maize</td>
<td>23</td>
</tr>
<tr>
<td>SAA Cobs</td>
<td>15</td>
</tr>
<tr>
<td>Raw Maize Stalks</td>
<td>13</td>
</tr>
</tbody>
</table>

*SSF, 6 days, 10 %TS, Cellic CTeC 2® + HTec 2®, Ethanol Red®
Glucan recovery, ethanol conversion efficiency and overall ethanol yield of raw and pretreated residues

<table>
<thead>
<tr>
<th></th>
<th>Glucan recovery</th>
<th>Ethanol conversion efficiency</th>
<th>Overall ethanol yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>w/w %</td>
<td>g eth./100 g potential eth. from pretreated material</td>
<td>g eth./100 g TS raw material</td>
</tr>
<tr>
<td>Plantain peelings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raw</td>
<td>100%</td>
<td>59.4</td>
<td>11.5</td>
</tr>
<tr>
<td>BP</td>
<td>81%</td>
<td>85.9</td>
<td>13.4</td>
</tr>
<tr>
<td>Plantain trunks</td>
<td>Raw 100%</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>HTT</td>
<td>77%</td>
<td>74.1</td>
<td>15.0</td>
</tr>
<tr>
<td>WRF</td>
<td>89%</td>
<td>63.7</td>
<td>14.8</td>
</tr>
<tr>
<td>Maize cobs</td>
<td>Raw 100%</td>
<td>17.3</td>
<td>3.6</td>
</tr>
<tr>
<td>HTT</td>
<td>81%</td>
<td>91.1</td>
<td>15.2</td>
</tr>
<tr>
<td>SAA</td>
<td>81%</td>
<td>92.7</td>
<td>15.2</td>
</tr>
<tr>
<td>Maize stalks</td>
<td>Raw 100%</td>
<td>25.0</td>
<td>5.4</td>
</tr>
<tr>
<td>SAA</td>
<td>90%</td>
<td>72.4</td>
<td>13.7</td>
</tr>
</tbody>
</table>
Summary

• Pretreatment for cellulosic ethanol should be optimized for smaller scale for most developing world scenarios (exemplified by West African conditions)

• We find that the alternative methods are viable, especially when looking at the overall utilization of the biomasses

• Only less than half of the tested biomasses are suitable for cellulosic ethanol production with sufficiently high yields

• Outlook:
 – Low-tech small-scale distillation
 – Implementation studies on site

References:

• Kemausuor et al., Assessment of biomass residue availability and sustainable bioenergy yields in Ghana, Resources, Conservation and Recycling (2014)

• Thomsen et al., Compositional analysis and theoretical biofuel potentials from various West African agricultural residues, Biomass & Bioenergy (2014)

• Thomsen et al., Screening of pretreatments of common West African lignocellulosic biomass residues for ethanol production, submitted to Renewable Energy (2014)