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Abstract

Knowledge-based potentials are energy functions derived from the analysis of databases of protein structures and
sequences. They can be divided into two classes. Potentials from the first class are based on a direct conversion of the
distributions of some geometric properties observed in native protein structures into energy values, while potentials from
the second class are trained to mimic quantitatively the geometric differences between incorrectly folded models and
native structures. In this paper, we focus on the relationship between energy and geometry when training the second class
of knowledge-based potentials. We assume that the difference in energy between a decoy structure and the corresponding
native structure is linearly related to the distance between the two structures. We trained two distance-based knowledge-
based potentials accordingly, one based on all inter-residue distances (PPD), while the other had the set of all distances
filtered to reflect consistency in an ensemble of decoys (PPE). We tested four types of metric to characterize the distance
between the decoy and the native structure, two based on extrinsic geometry (RMSD and GTD-TS*), and two based on
intrinsic geometry (Q* and MT). The corresponding eight potentials were tested on a large collection of decoy sets. We
found that it is usually better to train a potential using an intrinsic distance measure. We also found that PPE outperforms
PPD, emphasizing the benefits of capturing consistent information in an ensemble. The relevance of these results for the
design of knowledge-based potentials is discussed.
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Introduction

Proteins are the essential macromolecules inside cells that
perform nearly all cellular functions. Just like macroscopic tools,
their shapes is a key feature for defining their functions. Structural
biologists have embarked upon the challenge of finding the
structures of all proteins, in hopes of unraveling this relationship
between geometry and biological activity and learn in the process
how cells function. Determining experimentally the structure of a
protein at the atomic level however is not yet an easy task: this can
be indirectly deduced from the fact that we currently know
millions of protein sequences but less than hundred thousand
protein structures. Predicting the structure of a protein from first
principles is not much easier: direct applications of the ideas that
have been used for modeling small molecules have not yet been
successful on these much larger molecules. Recent reports on the
advancements ofab initio techniques clearly show that the protein
structure prediction community is making progress, but that the
quality of the models they generate do not meet yet the stringent
accuracy requirements to become useful to the biologists [1].
Interestingly, the series of Critical Assessment of protein Structure
Prediction (CASP) meetings have highlighted that while the
methods for generating models of protein structures have
improved significantly [2], identifying the native-like conforma-

tions among the large collections of model structures (also called
decoys) remains a significant challenge [3,4]. In this paper we
focus on this problem.

Anfinsen’s thermodynamics hypothesis states that the native
structure of a protein is determined only by its amino acid
sequence [5]. Structural and computational biologists translate this
postulate into the statement, that under physiological conditions,
the native state of a protein is a unique, stable minimum of the free
energy. The key to solving the protein structure prediction
problem amounts therefore to finding an accurate representation
of this free energy function and several methods have been
proposed to construct reasonable approximations of it. The two
most common approaches rely on semiempirical and statistical
potentials, respectively. Semiempirical methods are derived from
knowledge of the basic physical principles whereas statistical
potentials are based on the nonrandom statistics of known protein
structures [6]. Statistical energy functions are either residue based
or atom based and the most recent statistical potentials include
pairwise interactions, orientations of side-chains [7], secondary
structural preferences, solvent-exposure, and other geometric
properties of proteins [8]. We note that there have been attempts
to combine physics-based and statistics-based potentials to
improve protein structure refinement [9–13].
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Current protein structure prediction methods require potentials
that ideally should assign ‘‘scores’’ to a protein structure model
such that the higher the score, the less native-like the model is,
where native-like is measured in terms of a distanced from the
model to the native structure. If this condition is satisfied then the
potential is expected to detect near native conformations even
when the native conformation is not present; in addition, such an
ideal potential could then be used for model refinement. In
mathematical terms this can be expressed as the score functionf
satisfying

f seqi ,riz drð Þ~ f seqi ,rið Þz d ri ,riz drð Þ, ð1Þ

for any sequenceseqi and all deformationsdr of its native
structurer i.

Several methods have been developed to optimize potentials
towards this goal [14–17]. The choice of the distance measured is
critical to the success of these methods. The standard distance
measure when comparing protein structural models is RMSD, i.e.
the root mean square distance between the two models after
optimal translation and rotation. RMSD however has been
replaced in recent CASP experiments by the global distance test
(GDT-TS [18]) due to its undesirable sensitivity towards local
changes in a protein structure; GDT-TS has become one of the
most commonly used distance measures in protein structure
prediction. A less commonly used distance measure is the fraction
of known native contacts, Q. Q quantifies the changes in the
number of ‘‘contacts’’ found in the native structure compared to
the model structure that is evaluated, where a contact corresponds
to two residues being within a given threshold distance from each
other. All the distance measures mentioned above identify
geometric differences between two structural models but do not
attempt to assess if these differences could be assigned to
fluctuations due to the dynamics of the protein. Such differences
would be less of a concern if they were related to geometric
differences that can be explained by dynamics. As an attempt to
identify the role of dynamics, Perezet al. recently introduced
FlexE, a method based on a simple elastic network model that uses
the deformation energy as a measure of the similarity between two
structures [19]. As such, FlexE is expected to distinguish
biologically relevant conformational changes from random
changes.

In this work, we investigate the importance of the distance
functiond when optimizing an energy functionf towards satisfying
equation 1. We train two newCa-based pairwise potentials, PPD
and PPE, to mimic the distance between the model structure
considered and its corresponding native structure, using four
different definitions of the distance measure, namely RMSD,
GDT-TS, Q, and MT, where MT is an anharmonic version of
FlexE. These energy functions are trained and tested on sets
extracted from the high resolution decoy dataset Titan-HRD [20],
as well as on well known decoy datasets from DecoysRUs [21] and
Rosetta [22]. We have also analyzed the performance of our
potentials on the server generated Stage_1 and Stage_2 decoy sets
from CASP 10 [48].

The paper is organized as follows. The next section introduces
the different distance measures and describes our procedures for
training and testing the potentials PPD and PPE. The following
section shows the results on different decoy sets as well as a
comparison between PPD, PPE, two statistical knowledge-based
potentials and a semi-empirical physical potential. We conclude
with a discussion of the importance of the choice of the distance
measure and describe potential future work.

Materials and Methods

Geometrical distances between two structural models of
the same protein

Let us consider two structural modelsA and B of the same
protein P with N amino acids. We represent the two models as
discrete sets of N points, A~ (a1,a2, . . . ,aN ) and
B~ (b1,b2, . . . ,bN ) where the pointsai and bi correspond to the
positions of theCa atomsi in the two structures. We assume that
the correspondence table betweenA and B is known and set such
that ai corresponds tobi for all i[ ½1,N�. We measure the distance
between the two models either based on the Euclidean distance
between the two sets of points (RMSD and GDT-TS), on
differences between contact maps within each set (Q), or on an
elastic network (MT).

RMSD, i.e. root mean square deviation, is the Euclidean
distance between the corresponding pointsai and bi after one of
the two sets of points (usually setB) has been optimally
transformed by a rigid body transformationG:

RMSD~ min
G

���������������������������������
PN

i~ 1
Eai { G(bi )E2

N

vu
u
u
t

: ð2Þ

The rigid body transformationG is a transformation that does
not produce changes in the size, shape, or topology of the protein.
Such transformations are compositions of rotations and transla-
tions. Many closed-form solutions to the problem of finding the
optimal G have been derived [23–25]. We note that RMSD as
defined above is a metric [26].

RMSD is a distance measure based on theL2 norm; as such, it is
highly sensitive to outliers, for example due to the presence of large
albeit local differences between the two structures. The global
distance test (GDT) was developed to decrease this sensitivity [18].
GDT focuses on the regions of the structures that can be correctly
aligned by counting the number of residues that can be
superimposed within a given cutoff distance. GDT-TS (where
TS stands for Total Score), combines this information for multiple
cutoffs:

GDT{ TS~
n1z n2z n4z n8

4n
, ð3Þ

where n1, n2, n4, and n8 are the numbers of aligned residues
within 1, 2, 4, and 8 A� ngströms, respectively, andn is the total
aligned length. Note that GDT-TS is a quantity between 0 and 1
that represents similarity, with low values corresponding to bad
correspondences, and high values (close to or equal to 1) indicating
that the two models are highly similar. We have converted this
similarity measure into a distance by considering GDT-TS* = 1-
GDT-TS.

RMSD and GDT-TS* are computed after the two model
structures have been optimally superposed. An alternative
approach is to consider the intrinsic geometry of the two
structures, as captured for example by a distance matrix that
contains allCa{ Ca distances internal to one structure. Q and
MT are two examples of distance measures that use this alternate
approach.

The fraction of native contacts, Q, is a distance measure that
quantifies the changes of a contact map between two models for
the same structure. A contact map is usually defined as
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Si,j~
1 if residuesi and j are in contact

0 otherwise,

�

where two residues are in contact if they are within a given
distance threshold. In this paper, we set this threshold to 9 A� . Q is
then defined by

Q~
sc

scz lc
,

wherescis the number of shared contacts andlc is the number of
lost contacts. Just like GDT-TS, Q is a measure of similarity. We
convert it into a distance measure by defining Q* = 1-Q.

Q* quantifies changes in the contact map of a structure with no
consideration of what could have been the reasons for these
changes. FlexE is a new measure of similarity between protein
structures that was introduced as an attempt to distinguish those
changes that are biologically relevant [19]. It is based on the
concept of elastic network that assigns virtual isotropic springs
between pairs of residues. Elastic network models are used in
normal mode analysis [27,28] for example to reconstruct proteins
[29], to generate decoy sets [30], or to investigate thermal
fluctuations about the native or equilibrium structure [31,32]. In
the formalism introduced by Perez et al [19], the distance measure
FlexE between two structuresN and D is assimilated to the
energetic cost of deforming one of the structures into the other:

FlexE(N,D)~
1

Nres

XNres

i,j~ 1

SN
i,j kij rN

ij { rD
ij

� � 2
, ð4Þ

whereNres is the number of residues inN and D, SN
i,j is a contact

map for structureN, rN
ij and rD

ij are the distances between theCa
atoms of residuesi and j in structuresN and D, respectively, and
kij is a force constant associated to the link betweeni and j. In our
implementation of FlexE, we set all force constants to 1. We
modify the quadratic term in equation 4 with a term congruent to
the potential introduced by Toda [33] to study chains of particles
interacting with non-linear forces.

The corresponding variant of FlexE, which we name MT, is
defined as:

MT (N,D)~
1

Nres

XNres

i,j~ 1

SN
i,j

b2 e
{ (rDij { rNij )b

z rD
ij { rN

ij

� �
b{ 1

� �
, ð5Þ

whereb is a parameter which we set to 0.5. We note that MT is
equal to FlexE for small perturbations of the distances between
residues; for large perturbations however, it penalizes compression
more than extension. Finally the use of the fixed native contact
map for all native-decoy comparisons ensures that both Flex-
E(N,D) and MT(N,D) are well-defined.

Two new parametric potentials
A smooth, pairwise potential, PPD. We design a smooth

knowledge based residue pair potential as done in [34]. For each
of the 210 pairs of amino acids types we assume a potential that is
determined by the corresponding Ca-Ca distance. We model the

interaction as a uniform cubic b-spline with compact support
within 1 A� to 12 A� and 8 degrees of freedom, see e.g. [35]. With
this model an interaction tends smoothly to zero energy at
distances greater than 12 A� and is modeled freely within 4 A� –9 A� .
The pair potential has 86 210 = 1680 parameters in total. The
corresponding potential, PPD, is defined as

PPD~
X

iv j

X

p

Caa(i)aa(j)
p Bp(ri,j ), ð6Þ

whereaa(i)[ 1, . . . ,20f g is the amino acid type of the i-th residue
and Bp(ri,j ) is the p-th b-spline basis function evaluated on the
distance between the i-th and j-th residues.Caa(i)aa(j)

p are the model
parameters determined by the optimization procedure described
below.

A consensus potential, PPE. We introduce a novel smooth
ensemble based pair potential (PPE) that forms an artificial funnel
relative to a pre-calculated contact map:

PPE~
X

iv j

Si,j

X

p

Caa(i)aa(j)
p Bp(ri,j ), ð7Þ

whereSi,j is an consensus contact map. The method to calculate
the consensus contact map is described below. It is based on a
similar consensus method that constructs the reference contact
map from an ensemble of decoys [36].

A consensus contact map. We introduce an iterative
method to compute a consensus contact map of an ensemble of
decoys. The first step is to construct a contact map from the most
common contacts in the ensemble. LetMi,j be the fraction of
contacts in the ensemble for thei,j -th residue pair. The contact
map is then calculated as

Si,j~
1 if M i,j w m

0 otherwise

�
ð8Þ

wheremis a cut-off fixed at 0.25. At each step, we select the 25%
closest decoys to this contact map, where ‘‘closest’’ refers to the
Hamming-distance to the contact map. This leads to a reduced
ensemble from which a new contact map is computed, and the
procedure is iterated. The algorithm usually converges in a few
steps.

Optimizing the potentials
We design an energy landscape using a sculpting procedure. We

assume that we possess a set of natives structuresf Nig and that a
set f Di,j g of decoy structures is known for each of these native
structures. LetDEi,j be the energy difference between the i-th
native structure,Ni , and its j-th decoy,Di,j , and letd(Ni ,Di,j ) be
the corresponding distance betweenNi and Di,j . Our method for
optimizing a statistical potential [34] attempts to establish a
funnel-shaped energy function by calculating the parameters that
minimizes the sum of squared errors betweenDEi,j and
aNi d(Ni ,Di,j ) where aNi is a constant of proportionality. The
problem can be stated as a quadratic programming (QP) problem
with affine constraints,

Distances for Knowledge-Based Potentials
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minimize
X,a1...aM

P

i,j
EDEi,j (X ){ aNi d(Ni ,Di,j )E2z bEXE2

subject to 0:25† aNi † 4, for i~ 1. . . M
P

i
aNi ~ M ,

ð9Þ

whereb is a fixed parameter used for regularization. The variables
in this QP problem areX, i.e. the vector of coefficientsCi,j

introduced above, and the constants of proportionality
aN1 . . . aNM , whereM is the number of proteins in the training
set. The last termbEXE2 is a regularization term that adds a
penalty onto the modulus ofX. The preprocessing is trivially
parallelizable since each of the terms,EDEi,j (X){ aid(Ni ,Di,j )E2,
can be calculated individually. As a consequence, the QP requires
little memory and is fast to compute. We use the optimization
package cplex to solve it.

Training and test sets
It is a nontrivial task to construct a ‘‘good’’ set of decoy

structures. Any such decoy set relies on a sampling of the
conformational space accessible to the protein structure of interest.
The specific techniques used to generate such sampling are prone
to biases [37], leading to poor sampling of the corresponding free
energy surfaces. These approximate energy surfaces may not
adopt a funnel like geometry in the neighborhood of the native
structure and may contain many artificial potential energy
barriers. To avoid the risk of learning from a specific bias
introduced by one sampling technique, we have considered a
variety of test sets to train and measure the performances of our
energy functions. Of particular interest to us are near-native test
sets since we design energy functions to mimic the neighborhoods
of native structures.

We have chosen part of the Titan High Resolution Decoy set
[20] as our training set. The list of proteins included in this set was
originally proposed by Zhou and Skolnik [17]; it was selected on
the basis that it is composed of a representative set of
nonhomologous single domain proteins with maximum pairwise
sequence similarity reported to be 35%. The models included in
the decoy sets were generated using the torsion angle dynamics
program DYANA [38] subject to distance constraints that are set
to preserve the hydrophobic core of a protein. It is assumed that
the hydrophobic core includes all residues within ab strand as well
as all hydrophobic residues within ana-helix. The set includes
1400 proteins in total (compared to 1489 proteins in the original
set of Zhou and Skolnik [17]). We eliminated all short proteins
with a large radius of gyration as these proteins are overfitted by
the optimization and are usually separate stretched secondary
structures. We divided the remaining proteins into a training set of
1155 proteins with an average of 994 decoys per native structure
(Titan-HRD*) and a test set of 142 proteins with an average of 854
decoys per native structure (Titan-HRD). The average GDT-TS
distances between native and decoys over the training and test sets
are 0.75 and 0.76 with a mean absolute deviation of 0.1,
respectively. Note that we will use the mean absolute deviation (the
l1-norm) instead of the standard deviation (thel2-norm) as it puts
less weight on outliers.

Apart from the Titan-HRD set we use 10 freely available decoy
sets that were generated using different procedures. These include
6 sets taken from DecoysRUs [21] (4 state reduced [39], hg
structal [21], fisa [40], fisa casp3 [40], lmds [41] and lattice ssfit
[42,43]). We also included two older versions of the Rosetta decoy

sets (Rosetta-All [44], Rosetta-Tsai [22]), the newest version
Rosetta-Baker available at http://depts.washington.edu/bakerpg/
decoys/ and the I-Tasser Set II [45].

The different CASP meetings have highlighted successes and
failures in generating model structures that resemble the native
structures of proteins. A repository of all models that have been
proposed as answers to the prediction challenges that were part of
these meetings is available on the CASP web page (http://
predictioncenter.org). This repository provides a wealth of
information on protein structure modeling, as well as useful test
cases to assess the quality of new potential energy functions. We
have therefore considered five CASP sets each containing models
predicted by a variety of methods from the different CASP
meetings (302 ensembles in total). We also generated CASP-HRD,
a high resolution decoy subset of CASP 5–9, which includes
models that have a TM score [46] larger than 0.5 and a RMSD
less than 4 A� to the native structures. This cutoff was chosen based
on the observation made by Xu and Zhang, which states that two
decoys belong to the same fold when their TM-score to a native
structure is higher than 0.5 [47]. CASP-HRD is constructed to
have nearly the same average distance measure value as Titan-
HRD but we find smaller variations of the distance measures for
CASP-HRD. In that sense, it does include variations with different
structural characteristics compared to Titan-HRD as it is
generated by many different methods, while Titan-HRD is more
homogeneous.

The total number of ensembles excluding Titan-HRD, Titan-
HRD*, and CASP-HRD is 546 with an average GDT-TS
between its decoys and their corresponding native structures of
0.47 with a average mean absolute deviation of 0.16. We refer to
this set as ‘‘Test Set All’’ (TSA).

Finally, we include decoys from the latest CASP experiment,
CASP10. A critical component of the CASP experiment is the
assessment of the predictions that are submitted as putative models
for the target proteins considered. This assessment is performed by
the CASP assessors but also by the CASP community, with
considerable enthusiasm, as observed in CASP10 [48]. The
procedure for assessing the predictions in CASP10 differed from
that of previous CASPs. The main difference was the introduction
of two stages, labeled Stage_1 and Stage_2. For the former, twenty
of the supposedly best predictions for each CASP target were
released for assessment. Subsequently, hundred and fifty decoys
were released for each target, defining Stage_2. Stage_1 ensembles
are designed to survey single model assessment methods, while
stage_2 allows for the survey of methods that rely on ensembles for
the assessment of models. We have considered 93 targets from
CASP10 for which both Stage_1 and Stage_2 test sets are
available from the CASP web site (http://www.predictioncenter.
org/casp10/). Compared to the other decoy sets described above,
these sets contain longer protein chains. The models they include
are usually as distant from their native counterparts as observed
for the datasets from the previous CASP meetings. These sets
however are more compact, i.e. with less diversity in distances,
especially for the Stage_2 sets that resemble the CASP-HRD sets
in that respect.

In table 1, we report the mean characteristics of these decoy sets
(size, diversity, …) as well as information about their availability.

Preprocessing the decoy sets. To guarantee that the decoys
included in a set are consistent in length with their corresponding
native structure, we performed the following two-step preprocess-
ing. First, we removed all residues in the decoys with missing
backbone atoms (Ca, N, C, and O). Second, we extracted the
sequences from the decoy structure files and aligned these
sequences with the native sequence of the protein of interest
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(where the native sequence is derived from the ATOM record in
the corresponding PDB file). If these alignments include trailing
unmatched residues either in the decoys or in the native structure,
these residues are removed until all sequences are identical. We
found that this procedure was necessary for some of the decoy sets
described above.

Assessing the quality of decoy selection: R-score
Given a distance measure and an energy function, an ensemble

of decoy protein conformations contains a ‘‘best’’ distance model,
i.e. the conformation that is closest geometrically to the native
structure, as well as a ‘‘best’’ energy model, i.e. the model whose
energy is the lowest. Ideally, these two ‘‘best’’ models should be the
same; in practice however, they are different due to shortcomings
of the potential energy function. To quantify this difference we
introduce the R-score as follows. LetD be the ensemble of decoys
and let Xi be one of its elements. The corresponding native
structure isN. We define the mappingSd from D to R as
Sd(Xi )~ d(Xi ,N), i.e. the distance between the decoyX and N,
whered can be any of the four distance measures defined above.
We name XE the decoy with the lowest energy, i.e.
E(XE)† E(X ) VX [ D. In parallel, we nameXd the decoy closest
to N with respect of the distanced, i.e.Sd(Xd)† Sd(X ) VX [ D.
The R score ford and E is defined as:

R(d,E):
Sd(XE){ SSdT
Sd(Xd){ SSdT

if DSd(XE){ SSdTD† DSd(Xd){ SSdTD

{ 1 otherwise

8
<

:
, ð10Þ

where SSdT is the average value forSd over the decoy setD.
R(d,E) is designed to assess how wellE mimicsS in finding the
best decoy. It takes values between -1 and 1 where 1 indicates that
the energy has picked the best decoy. We fix the lower limit at -1
to avoid having outliers being assigned very low negative values.
Note, that if an ensemble does not contain outliers then 0 is the
random expectation. If we furthermore assume that the distances
Sd(X ) are uniformly distributed then(1{ R(d,E))=2 is the
fraction of decoys with a distance to the native structure better
than Sd(XE). The R score can also be seen as the ratio between
the Z -score of the best energy model,(Sd(XE){ SSdT)=s(Sd),
and theZ -score of the best distance model,(SdXd{ SSdT)=s(Sd),
wheres(Sd) is the standard deviation forSd over the decoy setD.

Assessing how well the energy functions mimic a funnel
in the neighborhood of the native structure

To measure how far the energyE is from the desired linear
funnel shape given by Equation 1 relative to the distance measure
d we report the Pearson’s correlation coefficientCorr(d,E)
between the energy valuesE(Xi) and distance measuresSd(Xi )
over all decoysXi in the decoy set:

Corr(d,E)~
1

N{ 1

XN

i~ 1

Sd(Xi ){ SSdT
s(Sd)

E(Xi ){ SET
s(E)

, ð11Þ

whereS:T ands(:) stand for the mean and standard deviation over
the decoy set considered.

Comparing two distance measuresd1 and d2
In the two previous subsections, we have defined a R-score

R(d,E) and a correlation coefficientCorr(d,E) to measure how
well an energy functionE mimics a distance measured. Both

quantities can be used as is to compare two distance measuresd1

andd2. Indeed,d2 can be assimilated to a pseudo energy function,
akin to the definition of FlexE given in equation 4. The R-score
and correlation coefficient betweend1 and d2 are then simply
R(d1,d2) and Corr(d1,d2), respectively.Corr(d1,d2) measures the
dependence betweend1 and d2 over a decoy set, whileR(d1,d2)
checks the ‘‘quality’’ of the best decoy identified byd2, as
measured byd1. Note that this R-score between distance measures
may not be symmetric.

Results and Discussion

The diversity of the distance measures
There is no unique way to compare three dimensional shapes.

When comparing protein structures, two main classes of distance
measures have been proposed, those based on a Euclidean
distance between the positions of the atoms of the two proteins
(after proper translation and rotation of one of them), and those
based on the intrinsic geometry of the structures. We have
considered two examples in each class, namely RMSD and GDT-
TS* for the former, and MT and Q* for the latter. A full
description of these four distance metrics is given in Material and
Methods. As these measures capture changes of different
geometric properties of the protein structures, there is no reason
to believe that they are equivalent. To test the degrees to which
these distances differ, we have compared them on three different
sets of decoys, namely Titan-HRD, CASP-HRD, and TSA, using
two different report scores,Corr and R, where Corr is the
Pearson’s correlation coefficient that measures how welld1 mimics
d2 over a large range of distance values whileR measures how
(metrically) wrong the best candidate of one distance measure (i.e.
the decoy with the smallest distance to its corresponding native
structure) is when measured by another distance (see Materials and
Methods for details). Results forCorr and R are given in tables 2
and 3, respectively.

The correlations between the distance measures are high on the
Titan-HRD set of decoys, with values above 0.87 for the
correlation coefficients. The corresponding R-scores are above
0.76. If we assume uniform distributions of the native-decoy
distances over a decoy set, the best decoy by one distance measure
on average is ranked within the top 5% and within the top 12% by
another distance measure for R scores of 0.9 and 0.76,
respectively. These high scores are expected, as the Titan-HRD
decoys are high resolution, usually very close to their native
structure counterparts (see Table 1). It is interesting however that
the R score between RMSD and Q* is relatively low (0.76), even
on this high resolution data set. This low value indicates that a
‘‘good’’ decoy defined by Q* may explore a range of RMSD
values. In contrast, a decoy that is close to the native structure with
respect to RMSD usually has a high percentage of native contacts,
as highlighted by the R score between Q* and RMSD of 0.87. In
fact, we observe that the best RMSD decoy is generally scored
better by the three other distance measures.

While CASP-HRD also contains high resolution decoys that are
close to their corresponding native structures (with RMSD, 4 A�
and TM scores above 0.5), the four distance measures we tested
are less dependent on this dataset than on Titan-HRD, both
globally as scored by correlation coefficients and locally (i.e. in
picking a ‘‘best’’ decoy), as highlighted by the R scores. We see two
possible reasons for these differences between the two groups of
decoy sets. First, the decoys in Titan-HRD are homogeneous, as
they all contain the same hydrophobic cores as the native
structures. In contrast, the CASP decoys were derived with many
different methods, leading to heterogeneity in their geometry.

Distances for Knowledge-Based Potentials
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Second, we cannot exclude an effect of sample size, as on average
the sets included in Titan-HRD contain four times more decoys
and larger average mean absolute deviation of distance measures
than the sets included in CASP-HRD (see Table 1).

TSA, which stands for ‘‘Test Sets All’’ is a large heterogeneous
collection of decoy sets that were generated by many different
techniques (see Materials and methods for details). Some of these
decoy sets are high-resolution, i.e. contains mostly native-like
structures, while others are more diverse, containing decoys that
are very different from their corresponding native structures, both
in terms of secondary structure content and three-dimensional
organization. To assess the importance of this diversity, we
selected within the TSA group of decoy sets two subgroups, those
for which the decoys have average TM score larger than 0.5, and
those with average TM score smaller than 0.5. This 0.5 cutoff was
again chosen based on the observation made by Xu and Zhang
that two decoys belong to the same fold when their TM-scores to a
native structure is higher than 0.5 [47]. Table 1 shows that TSA
TM-score. 0.5 generally contain longer chains with fewer decoys
when compared to the TSA TM-score, 0.5 set. The two sets are
fully listed in File S1 and File S2. Tables 2 and 3 show that the
distance measures behave on the high-resolution subgroup (TM.
0.5) as on the Titan-HRD test set, i.e. with high correlations and
high R scores, meaning that they are very similar to each other.
On the low-resolution subgroup (TM, 0.5) however, the distance

measures are poorly correlated with each other, with most
correlation coefficients in the range 0.5 to 0.7. Both results
confirm that when two structures are very close to each other,
different distance measures quantify their differences in a similar
manner. When the two structures however are very different,
different distance measures will focus on different geometric
differences, leading to differences in their behaviors. We observe
however one exception in Table 2, in that RMSD and MT clearly
remains correlated (0.80) even for the diverse subgroup of TSA
with TM , 0.5. The reason for this exception is unclear.

The CASP 10 Stage_1 and Stage_2 test sets usually include
longer proteins than the other sets considered here, with decoys
that are far from their native counterparts. In the Stage_1 sets
there are very few decoys per target (by construction, see Methods
above) and relatively large average mean deviations of the distance
measures. For the Stage_2 test sets there are more decoys per
target; these decoys however are usually very similar to each other,
leading to very low mean absolute deviations for the GDT-TS*
and Q* distance measures, and consequently to low correlations
and R scores between the measures. As an example, the
correlation between RMSD and GDT-TS* for the Stage_2 decoy
sets is only 0.51 and their non symmetric R scores are
R(RMSD,GDT-TS*) = 0.71 and R(GDT-TS*,RMSD) = 0.73, re-
spectively. These low values are good indicators of significant

Table 2. Correlations between the four distance measures.

Distance d2

Test set Distance d1 RMSD MT GDT-TS* Q*

Titan-HRD RMSD 1a 0.92 (0.06) 0.92 (0.04) 0.87 (0.08)

MT 0.92 (0.06) 1 0.92 (0.03) 0.94 (0.03)

GDT-TS* 0.92 (0.04) 0.92 (0.03) 1 0.95 (0.03)

Q* 0.87 (0.08) 0.94 (0.03) 0.95 (0.03) 1

CASP-HRD RMSD 1 0.74 (0.16) 0.73 (0.14) 0.6 (0.19)

MT 0.74 (0.16) 1 0.72 (0.13) 0.83 (0.07)

GDT-TS* 0.73 (0.14) 0.72 (0.13) 1 0.74 (0.13)

Q* 0.6 (0.19) 0.83 (0.07) 0.74 (0.13) 1

CASP10-stage1 RMSD 1 0.83 (0.16) 0.71 (0.24) 0.68 (0.24)

MT 0.83 (0.16) 1 0.73 (0.2) 0.82 (0.14)

GDT-TS* 0.71 (0.24) 0.73 (0.2) 1 0.86 (0.12)

Q* 0.68 (0.24) 0.82 (0.14) 0.86 (0.12) 1

CASP10-stage2 RMSD 1 0.78 (0.16) 0.51 (0.22) 0.49 (0.19)

MT 0.78 (0.16) 1 0.52 (0.2) 0.69 (0.14)

GDT-TS* 0.51 (0.22) 0.52 (0.2) 1 0.64 (0.17)

Q* 0.49 (0.19) 0.69 (0.14) 0.64 (0.17) 1

TSA RMSD 1 0.92 (0.06) 0.8 (0.15) 0.82 (0.11)

MT 0.92 (0.06) 1 0.78 (0.14) 0.85(0.08)

TM-score. 0.5 GDT-TS* 0.8 (0.15) 0.78 (0.14) 1 0.89 (0.12)

Q* 0.82 (0.11) 0.85 (0.08) 0.89 (0.12) 1

TSA RMSD 1 0.8 (0.12) 0.59 (0.24) 0.56 (0.18)

MT 0.8 (0.12) 1 0.54 (0.2) 0.68(0.14)

TM-score, 0.5 GDT-TS* 0.59 (0.24) 0.54 (0.2) 1 0.67 (0.22)

Q* 0.56 (0.18) 0.68 (0.14) 0.67 (0.22) 1

aPearson’s correlation coefficientCorr(d1,d2) between the two distance measuresd1 and d2. We provide both the average value and the mean absolute deviation (in
parenthesis) over the data set considered.
doi:10.1371/journal.pone.0109335.t002
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differences between their ranking of the decoys included in
CASP10 Stage_2 test sets.

Training knowledge-based potentials with different
distance measures

We have derived two new smooth knowledge-based residue pair
potentials, PPD and PPE. Both potentials are based on distances
between theCa atoms of the protein structure of interest. For each
of the 210 types of amino acid pairs, the two potentials are written
as a weighted sum of smooth spline functions, whose weights are
optimized so that the total energy of a protein model resembles the
distance between the model and a reference structure (usually
taken to be the native structure), as described by equation 1. The
two potentials differ however on which pairs of residues are taken
into account. While PPD includes all pairs of residues from the
protein structureP considered, PPE only include those pairs
whose interCa distance is consistently below a cutoff value in an
ensemble of protein models similar toP. The idea behind PPE,
derived from Eickholt et al. [36], is that the various models in the
ensemble contain complementary information which can be
pooled together to build a contact map of consistent residue-
residue contacts that are more likely to be informative. Our
interest here is to assess the influence of the distance measure used
to train the two potentials. We have trained PPD and PPE on the
Titan-HRD* training set with the four distance measures

introduced above separately, and tested the corresponding four
versions of the potentials against the Titan-HRD, CASP-HRD,
and TSA test sets in their abilities to mimic any of the four distance
measures. All parameters describing the amino acid pair spline
potentials are listed in the file Force Field S1. The encoding used
and the spline basis used is described in Readme Force Field S1.
Both files are in the supporting information.

Figure 1 shows some examples of the b-spline expanded pair
potentials. As expected, the pair potentials are repulsive for short
inter-residue distances and have a first minimum between 4 A� and
6 A� and this preferred distance relatively independent of the
training metric. For longer pair distances it is seen that most PPD
pair potentials have a local minimum around 10 A� whereas the
PPE pair potentials tend to have a local maximum at this distance.
One plausible explanation is that as PPE does not identify new
contacts for these large distances; it may then set higher energy
values for remote decoys. The exact placement of the minimum as
well as the depth of the potential differs for the different pair
potentials. While these differences may seem small, they add up
when we sum over all the interactions.

We computed both the correlations between energy and the
distance measure, and the R scores that compare the best decoys
picked based on energy with the decoys closest to their
corresponding native structures. Results are given in Table 4 for
the correlation coefficients, Table 5 for the R scores, and in

Table 3. Comparing the best models picked by different distance measures.

Distance d2

Test set Distance d1 RMSD MT GDT-TS* Q*

Titan-HRD RMSD 1a 0.88 (0.12) 0.91 (0.09) 0.76 (0.17)

MT 0.94 (0.06) 1 0.92 (0.08) 0.91 (0.07)

GDT-TS* 0.96 (0.04) 0.94 (0.07) 1 0.91 (0.08)

Q* 0.87 (0.09) 0.92 (0.07) 0.89 (0.09) 1

CASP-HRD RMSD 1 0.71 (0.26) 0.79 (0.22) 0.49 (0.38)

MT 0.76 (0.22) 1 0.76 (0.22) 0.76 (0.23)

GDT-TS* 0.8 (0.22) 0.68 (0.27) 1 0.48 (0.39)

Q* 0.57 (0.33) 0.81 (0.16) 0.66 (0.24) 1

CASP10-stage1 RMSD 1 0.81 (0.24) 0.75 (0.31) 0.79 (0.23)

MT 0.9 (0.13) 1 0.85 (0.19) 0.94 (0.09)

GDT-TS* 0.79 (0.24) 0.78 (0.24) 1 0.82 (0.2)

Q* 0.78 (0.22) 0.88 (0.14) 0.8 (0.23) 1

CASP10-stage2 RMSD 1 0.76 (0.22) 0.71 (0.3) 0.63 (0.29)

MT 0.83 (0.18) 1 0.73 (0.24) 0.83 (0.19)

GDT-TS* 0.73 (0.26) 0.65 (0.24) 1 0.59 (0.29)

Q* 0.62 (0.29) 0.82 (0.18) 0.62 (0.23) 1

TSA RMSD 1 0.9 (0.11) 0.84 (0.19) 0.81 (0.18)

MT 0.94 (0.07) 1 0.88 (0.14) 0.92 (0.09)

TM-score. 0.5 GDT-TS* 0.85 (0.16) 0.79 (0.21) 1 0.73 (0.24)

Q* 0.79 (0.18) 0.89 (0.11) 0.81 (0.16) 1

TSA RMSD 1 0.83 (0.19) 0.73 (0.27) 0.71 (0.27)

MT 0.87 (0.14) 1 0.74 (0.27) 0.88 (0.14)

TM-score, 0.5 GDT-TS* 0.74 (0.27) 0.7 (0.27) 1 0.67 (0.27)

Q* 0.68 (0.27) 0.85 (0.16) 0.68 (0.27) 1

aR-scoreR(d1,d2) between the two distance measuresd1 and d1. We provide both the average value and the mean absolute deviation (in parenthesis) over the data set
considered.
doi:10.1371/journal.pone.0109335.t003
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Figures 2 and 3 for a comparison of these scores. We draw from
these tables and figures the four main conclusions described below.

First, we find that both potentials PPD and PPE perform very
well on the Titan-HRD test set, for all distance measures used for
training and testing the potential. The corresponding mean
correlation coefficients (averaged over all decoys sets in Titan-
HRD) are usually above 0.8, indicating that the energy functions
order the decoys in the same manner as the distance measures. In
parallel, the R scores are also high, with most values well above
0.65, indicating that the decoys with the lowest energies are usually
among the decoys that are close to the corresponding native
structures. We should note however that PPD and PPE were
trained on Titan-HRD*. While Titan-HRD and Titan-HRD* are
different (see Methods), they both contain decoys that were
generated with the same principles, with the significant constraint
that they maintain the hydrophobic cores of the corresponding
native structures. The exceptional performance of PPD and PPE
may therefore not be surprising in light of this comment. Indeed,
as we test these potentials on different decoy sets with more diverse
populations of decoys, we observe a decrease in performance that
follows the increase in diversity (in the order Titan-HRD - TSA
(TM w 0:5) - CASP-HRD - TSA (TM v 0:5). This decrease in
performance is illustrated in Figure 2.

Second, the ensemble potential PPE performs better than the
single structure potential PPD, again for all the distance measures
used to train and test the potentials. The differences between the
two potentials are large for the high resolution decoys sets in
Titan-HRD and TSA (TM. 0.5), but become statistically insig-

nificant for very diverse decoy sets such as those in TSA (TM,
0.5). We believe that these differences illustrate the power of
generating consensus information from an ensemble. In PPE, we
only consider those contacts there are consistently below a given
distance cutoff in the whole decoy set to which the protein of
interest belongs. This initial filtering is clearly an advantage for
Titan-HRD, as it will select the contacts in the hydrophobic cores
which are native, and will ignore the contacts that fluctuate
significantly due to the sampling procedure used to generate the
decoys. It remains an advantage for high quality decoy but
becomes less pertinent for highly diverse decoys.

Third, the performances of the two potentials PPD and PPE
depend on the choice of the distance used in the training step. For
example, the correlations between PPE and any of the four
distance measures increase on average by 0.09 when it is trained
on MT instead of RMSD (Table 4). Similar differences are
observed for the R scores between PPE and the four distance
measures (Table 5). More generally, it is best to train the potentials
on a distance measure that is directly based on intrinsic inter-
residue distances, such as MT that follows the elastic network of
the protein of interest, or Q* that counts the number of contacts
that fall below a given distance cutoff, than on a distance measure
based on extrinsic Euclidean distances, such as RMSD. Interest-
ingly, we find that GDT-TS* behaves more like the intrinsic
distance measures MT and Q* than RMSD, even though it is also
based on extrinsic distances. The reason for this discrepancy is
unclear.

Figure 1. Showing nine different types of residue pair interactions for our single model method PPD (continuous lines) and our
consensus method PPE (dotted lines) when trained on RMSD (blue), MT(red), GDT-TS(green) and Q(black).
doi:10.1371/journal.pone.0109335.g001
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Finally, we observe that the ability of an energy function to pick
a ‘‘good’’ decoy (i.e. with native-like characteristics) is contingent
to how well this energy function correlates with a distance measure
between decoys and native structure. This is illustrated in
Figure 2. This observation validates the approach of sculpting
(training) a potential to mimic a distance measure.

Comparison with other energy functions
We have compared the two energy functions PPD and PPE with

two well established all-atom statistical potentials RAPDF [49] and
GOAP [7] and with a semi-empirical physical potential,
AMBER99SB-ILDN [50], for all decoy sets in Titan-HRD,
CASP-HRD, and TSA. Results for correlations between energy
and distance measures and for R scores are given in Tables 4 and
5, respectively.

As intuitively expected, the performances of AMBER99SB-
ILDN are very poor. This is most likely an artifact due to the
presence of a few steric clashes in the decoys, and not a reflection
of the quality of this potential. While it would be possible to
improve this performance by applying an initial energy minimi-
zation on all decoys, this result by itself highlights that such a
physical potential cannot be used directly to order a set of decoys,
unless some pre-processing is applied.

RAPDF is a knowledge-based statistical potential that is based
on a direct conversion of the distributions of inter-atomic distances

observed in native protein structures into energy values that are
then used to assess how native-like a model is [49]. It is not based
on any information from existing decoy sets, and it is not trained to
mimic some differences between decoys and native structures. It is
therefore not surprising that it does not perform as well as PPD
and PPE, especially on the Titan-HRD as both PPD and PPE
were trained on decoys resembling those included in this data set.

GOAP is an all-atom orientation-dependent knowledge-based
statistical potential that includes a distance-based term and an
angle-dependent contribution [7]. The distance-based term is an
all-atom statistical potential that is based on the reference state
that was introduced with the DFIRE potential [51]. The angle
dependent component of GOAP is based on the geometric
orientation of local planes. GOAP is found to perform significantly
better than RAPDF on all datasets tested in this study. This is not a
surprise, as GOAP includes much more information than RAPDF
due to its angle term. We find however that GOAP performs only
marginally better than PPD and worse than PPE. This illustrates
the benefit of training a potential on a decoy set. PPD and PPE are
only Ca based potentials; they have been trained however to
mimic distances between non-native models and native structures
of proteins.

The performances of RAPDF and GOAP depend on the
distance measure used for testing. We observe that they are
particularly good when the statistical potentials are tested on

Figure 2. Energy-distance correlations as a function of the quality of the decoy set. For each decoy set in Titan-HRD, CASP-HRD, and TSA (a
total of 797 sets), we plot the correlation Corr(E,d1) as a function of the mean value ofd1 over the decoy set, whereEis either the PPD energy (red,
plus sign+) or the PPE energy (black, cross sign x) trained on the set Titan-HRD with the distance measured1, and d1 is one of the fourth distance
measures considered, namely RMSD (panel A), MT (panel B), GDT-TS* (panel C), and Q* (panel D). The corresponding running means computed over
20 equidistant intervals for PPD (red, solid line) and PPE (black, dashed line) are shown. Clearly, the quality of the correlation energy-distance
decreases as the diversity of the decoy set increases.
doi:10.1371/journal.pone.0109335.g002
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GDT-TS*, reflecting the differences between these distance
measures (see Table 2 and 3).

Performance in the CASP 10 quality assessment category
As part of the CASP experiment, state-of-the-art methods for

protein structure assessment are judged on their ability to evaluate
the quality of the predictions submitted as models for the targets
considered in that specific experiment: this is the quality
assessment category (QA). In 2012 as part of CASP10, 37 groups
participated [48]. They were asked to evaluate the quality of sets of
predictions (decoys) in two rounds designated as Stage_1 (20
decoys with a large variation in quality as measured by GDT-TS)
and Stage_2 (150 decoys with homogeneous quality as measured
by GDT-TS). The main reason for providing a small number of
decoys in Stage_1 was to allow for judging assessment methods
that rely on a single model independently from methods that rely
on an ensemble of decoys (consensus methods), that would be
tested extensively with the Stage_2 decoy sets. The three main
conclusions drawn from these experiments were [48]: 1) The
performances of the single model methods are usually worse than
the the performances of consensus methods, 2) The Stage_2 sets
are usually more difficult to rank than the Stage_1 sets, and 3) No
methods were able to consistently pick the best decoy in an
ensemble. The results for the participating groups can be seen in
Figure 2 (average correlation) and Figure 3 (ability to pick the best

decoy) in [48]. We note that the single model method GOAP used
in this study differs from the quasi-single model method GOAPQA
used in CASP10QA. For the latter, the TM-score [46] to the top 5
ranked models is used as a measure of model quality.

The CASP 10 datasets have average native-decoy RMSDs of
11–13 A� . These differences are significantly larger than the 2.4 A�
RMSD found in our training sets (see Table 1). Our analyses of
the performances of PPD (single model) and PPE (ensemble of
decoys) on the other datasets considered in this study have shown
that for decoys that are far from their native counterparts, the two
methods perform similarly, and in fact poorly (see top left panel of
Figure 2 and Table Table 4). We observe the same behavior when
PPD and PPE are applied on the CASP10 datasets (Tables 4 and
5). Similarly we expect and indeed find that the ensemble method
PPE is ineffective in ranking the decoys of the CASP10 datasets
when its performance is measured against the MT distance
measure, and shows some prospects when its performance is
measured against the GDT-TS* and Q* distance measures. The
energy-GDT-TS correlations of 0.51(0.63) and 0.29(0.44) for
PPD(resp. PPE) on Stage_1 and Stage_2 respectively are amongst
the lowest reported for single model(resp. ensemble) methods in
CASP10QA [48]. The low energy-distance correlations reported
usually leads to a bad pick for the best decoy, see Figure 3. It is
therefore surprising that the averageDGDT-TS* of 0.07 between
the GDT-TS*-closest decoy and the lowest energy decoy picked

Figure 3. R scores versus Energy-distance correlations. For each decoy set in Titan-HRD, CASP-HRD, and TSA, we plot the R scoreR(d1,E) as a
function of the correlation coefficientCorr(d1,E), whereEis either the PPD energy (red, plus sign+) or the PPE energy (black, cross sign x) trained on
the set Titan-HRD with the distance measured1, andd1 is one of the fourth distance measures considered, namely RMSD (panel A), MT (panel B), GDT-
TS* (panel C), and Q* (panel D). The corresponding running means computed over 20 equidistant intervals for PPD (red, solid line) and PPE (black,
dashed line) are shown. Note thatR(d1,E) compares the best decoy picked based on the energy valueE with the decoy closest to the native
structure according to the distance measured1. There is a clear correlation between these two values for all four distance measures.
doi:10.1371/journal.pone.0109335.g003
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by PPE on the CASP10 Stage_2 data sets places PPE in the middle
of the CASP10 participating methods (see [48] Figure 2(A)).

The results for PPD, PPE, AMBER99SB-ILDN, RAPDF and
GOAP on CASP 10 stages 1 and 2 are given in Tables 4 - 6 where
PPD and PPE were trained and tested on the same distance
measure. Clearly, GOAP has a better performance than PPD
when GDT-TS* is chosen as a measure of distance. It is however
noteworthy that PPD performs better than GOAP when measured
by RMSD and MT instead. It is encouraging that the distance
dependent C-alpha potential, PPD, as a single model method has a
performance that is comparable to the state-of-the-art orientation-
dependent all-atom potential, GOAP. We find that PPD is good at
selecting a decoy that is close to the native structure (Table 6).

Concluding Remarks

The recent literature on generating knowledge-based potentials
for protein structure modeling makes no secrets of their limitations
and problems. Knowledge-based potentials are energy functions
derived primarily from databases of protein structures and
sequences. They can be divided into two classes. Potentials from
the first class are based on a direct conversion of the distributions
of some geometric properties observed in native protein structures
into energy values, while potentials from the second class are
trained to mimic quantitatively the geometric differences between
incorrectly folded models (also called decoys) and native structures.
Both potentials are designed to assess how native-like a model
structure is. There is no consensus however on which geometric
property should be considered, on how to convert a statistical
distribution into an energy for the first class, and on how energy
and geometry should be related in the second class.

In this paper, we focused on the relationship between energy
and geometry when training knowledge-based potentials from the
second class. We assumed that the difference between the energy
of a decoy and the energy of its corresponding native structure
must be linearly related to the distance between the decoy and the
native structure. We trained two distance-based Ca potentials
accordingly, one based on all inter-residue distances (PPD), while
the other had the set of all these distances filtered to reflect
consistency in an ensemble of decoys (PPE). Compared to other
methods that follow the same approach however, we did not
assume that the distance between a decoy and the native structure
is the traditional RMSD. Instead, we tested four different distance
measures, two based on extrinsic geometry (RMSD and GTD-
TS*), and two based on intrinsic geometry (Q* and MT). We
found that it is usually better to train the potentials using the latter
type of distances.

We have found that both PPD and PPE perform extremely well
on the high resolution decoy set Titan-HRD, with correlation
coefficients between energy and distance usually well above 0.8.
PPE always performs better than PPD on this set, emphasizing the
benefits of capturing consistent information in an ensemble. While
we trust the general trends highlighted by these results, we tone
down the importance of In extensive testing on available decoy sets
and models from the Critical Assessment of protheir exceptional
character as they may only reflect the specificity of the Titan-HRD
data set. tein Structure Prediction (CASP) experiments we find
that PPD yields better energy-distance correlations than one of the
state of the art single model potentials, GOAP [7]. We note
however that the sophisticated distance-based and orientation-
based statistical potential GOAP is better at picking the best
decoys and has a better though comparable performance for fixed
energy-distance correlation. It should be noted that PPD and PPE
are Ca-based, while GOAP is an all-atom potential. We believe
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that this demonstrates that a very efficient training of a simple
distance-based pair potential can generate a very effective measure
for assessing protein structure models.

There is still room for improvement in training knowledge-
based potentials. We limited our study to pairwise potentials; we
will test different geometric properties of protein structures in
future studies. We plan to include the potentials described here
into a structure minimization package, to assess their performanc-
es in improving non-native protein structure models.

Supporting Information

File S1
(TXT)

File S2
(TXT)

Force Field S1
(DOC)

Readme Force Field S1
(RTF)

Acknowledgments

The authors want to thank the anonymous reviewers for constructive
criticism and careful reading of the first version of this manuscript.

Author Contributions
Conceived and designed the experiments: MC PK PR. Performed the
experiments: MC. Analyzed the data: MC PK PR. Contributed reagents/
materials/analysis tools: MC. Wrote the paper: MC PK PR.

References
1. Zhang Y (2009) Protein structure prediction: when is it useful? Curr Opin Struct

Biol 19: 145–155.
2. Moult J, Fidelis K, Kryshtafovych A, Tramontano A (2011) Critical assessment

of methods of protein structure prediction (CASP)-round IX. Proteins: Struct
Func Bioinfo 79: 1–5.

3. Cozzetto D, Kryshtafovych A, Tramontano A (2009) Evaluation of CASP8
model quality predictions. Proteins: Struct Func Bioinfo 77: 157–166.

4. Kryshtafovych A, Fidelis K, Tramontano A (2011) Evaluation of model quality
predictions in CASP9. Proteins: Struct Func Bioinfo 79: 91–106.

5. Anfinsen C (1973) Principles that govern the folding of protein chains. Science
181: 223–230.

6. Lazaridis T, Karplus M (2000) Effective energy functions for protein structure
prediction. Curr Opin Struct Biol 10: 139–145.

7. Zhou H, Skolnick J (2011) GOAP: a generalized orientation-dependent, all-atom
statistical potential for protein structure prediction. Biophys J 101: 2043–2052.

8. Skolnick J (2006) In quest of an empirical potential for protein structure
prediction. Curr Opin Struct Biol 16: 166–171.

9. Summa C, Levitt M (2007) Near-native structure refinement usingin vacuo
energy minimization. Proc Natl Acad Sci (USA) 104: 3177–3182.

10. Zhu J, Fan H, Peiole X, Honig B, Mark A (2008) Refining homology models by
combining replica-exchange molecular dynamics and statistical potentials.
Proteins: Struct Func Bioinfo 72: 1171–1188.

11. Chopra G, Kalisman N, Levitt M (2010) Consistent refinement of submitted
models at CASP using a knowledge-based potential. Proteins: Struct Func
Bioinfo 78: 2668–2678.

12. Amautova Y, Scheraga H (2008) Use of decoys to optimize an all-atom forcefield
including hydration. Biophys J 95: 2434–2449.

13. Bhattachary D, Cheng J (2013) 3Drefine: consistent protein structure refinement
by optimizing hydrogen bonding network and atomic level refinement. Proteins:
Struct Func Bioinfo 81: 119–131.

14. Rohl C, Strauss C, Misura K, Baker D (2004) Protein structure prediction using
Rosetta. Methods Enzymol 383: 66–93.

15. Zhang Y, Kolinski A, Skolnick J (2003) Touchstone II: A new approach to ab
initio protein structure prediction. Biophys J 85: 1145–1164.

16. Benkert P, Tosatto S, Schomburg D (2008) QMEAN: A comprehensive scoring
function for model quality assessment. Proteins: Struct Func Bioinfo 71: 261–
277.

17. Zhang Y, Skolnick J (2004) Automated structure prediction of weakly
homologous proteins on a genomic scale. Proc Natl Acad Sci (USA) 101:
7594–7599.

18. Zemla A (2003) LGA: a method for finding 3D similarities in protein structures.
Nucl Acids Res 31: 3370–3374.

19. Perez A, Yang Z, Bahar I, Dill K, MacCallum J (2012) FlexE: using elastic
network models to compare models of protein structure. J Chem Theory
Computat 8: 3985–3991.

20. Rajgaria R, McAllister S, Floudas C (2006) A novel high resolution Ca–Ca
distance dependent force field based on a high quality decoy set. Proteins: Struct
Func Bioinfo 65: 726–741.

21. Samudrala R, Levitt M (2008) Decoys ‘R’Us: A database of incorrect
conformations to improve protein structure prediction. Protein Science 9:
1399–1401.

22. Tsai J, Bonneau R, Morozov A, Kuhlman B, Rohl C, et al. (2003) An improved
protein decoy set for testing energy functions for protein structure prediction.
Proteins: Struct Func Bioinfo 53: 76–87.

23. McLachlan A (1979) Gene duplications in the structural evolution of
chymotrypsin. J Mol Biol 128: 49–80.

24. Horn B (1987) Closed form solution of absolute orientation using unit
quaternions. J Opt Soc Am 4: 629–642.

25. Coutsias E, Seok C, Dill K (2004) Using quaternions to calculate RMSD.
J Comp Chem 25: 1849–1857.

26. Kaindl K, Steipe B (1997) Metric properties of the root-mean square deviation
of vector sets. Acta Cryst A 53: 809.

27. Tirion M (1996) Large amplitude elastic motions in proteins from a single-
parameter, atomic analysis. Phys Rev Lett 77: 1905–1908.

28. Tama F, Sanejouand Y (2001) Conformational change of proteins arising from
normal mode calculations. Protein Eng 14: 1–6.

29. Bohr J, Bohr H, Brunak S, Cotterill R, Fredholm H, et al. (1993) Protein
structures from distance inequalities. J Mol Biol 231: 861–869.

30. Summa C, Levitt M (2007) Near-native structure refinement using in vacuo
energy minimization. Proc Natl Acad Sci (USA) 104: 3177–3182.

31. Bahar I, Atilgan A, Erman B (1997) Direct evaluation of thermal fluctuations in
proteins using a single-parameter harmonic potential. Folding and Design 2:
173–181.

32. Atilgan A, Durell S, Jernigan R, Demirel M, Keskin O, et al. (2001) Anisotropy
of fluctuation dynamics of proteins with an elastic network model. Biophys J 80:
505–515.

33. Toda M (1967) Vibration of a chain with nonlinear interaction. J Phys Soc
Japan 22: 431–436.

34. Røgen P, Koehl P (2013) Extracting knowledge from protein structure geometry.
Proteins: Struct Func Bioinfo 81: 841–851.

35. de Boor C (1978) A practical guide to splines. New York: Springer-verlag.
36. Eickholt J, Wang Z, Cheng J (2011) A conformation ensemble approach to

protein residue-residue contact. BMC structural biology 11: 38.
37. Handl J, Knowles J, Lovell S (2009) Artefacts and biases affecting the evaluation

of scoring functions on decoy sets for protein structure prediction. Bioinformatics
25: 1271–1279.

38. Güntert P, Mumenthaler C, Wu¨thrich K (1997) Torsion angle dynamics for
NMR structure calculation with the new program DYANA. J Mol Biol 273:
283–298.

39. Park B, Levitt M (1996) Energy functions that discriminate x-ray and near-native
folds from well-constructed decoys. J Mol Biol 258: 367–392.

40. Simons K, Kooperberg C, Huang E, Baker D (1997) Assembly of protein
tertiary structures from fragments with similar local sequences using simulated
annealing and bayesian scoring functions. J Mol Biol 268: 209–225.

41. Keasar C, Levitt M (2003) A novel approach to decoy set generation: designing a
physical energy function having local minima with native structure character-
istics. J Mol Biol 329: 159–174.

42. Huang E (1999) A combined approach for ab initio construction of low
resolution protein tertiary structures from sequence. In: Pacific Symposium on
Biocomputing. volume 4, pp. 505–516.

43. Xia Y, Huang E, Levitt M, Samudrala R (2000) Ab initio construction of protein
tertiary structures using a hierarchical approach. J Mol Biol 300: 171–185.

44. Simons K, Ruczinski I, Kooperberg C, Fox B, Bystroff C, et al. (1999) Improved
recognition of native-like protein structures using a combination of sequence-
dependent and sequence-independent features of proteins. Proteins: Struct Func
Bioinfo 34: 82–95.

45. Zhang J, Zhang Y (2010) A novel side-chain orientation dependent potential
derived from random-walk reference state for protein fold selection and structure
prediction. PloS One 5: e15386.

46. Zhang Y, Skolnick J (2004) Scoring function for automated assessment of protein
structure template quality. Proteins: Struct Func Bioinfo 57: 702–710.

47. Xu J, Zhang Y (2010) How significant is a protein structure similarity with TM-
score = 0.5? Bioinformatics 26: 889–895.

Distances for Knowledge-Based Potentials

PLOS ONE | www.plosone.org 17 November 2014 | Volume 9 | Issue 11 | e109335



48. Kryshtafovych A, Barbato A, Fidelis K, Monastyrskyy B, Schwede T, et al.
(2014) Assessment of the assessment: evaluation of the model quality estimates in
CASP10. Proteins: Struct Func Bioinfo 82: 112–126.

49. Samudrala R, Moult J (1998) An all-atom distance-dependent conditional
probability discriminatory function for protein structure prediction. J Mol Biol
275: 895–916.

50. Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, et al. (2010)
Improved side-chain torsion potentials for the Amber ff99SB protein force field.
Proteins: Struct Func Bioinfo 78: 1950–1958.

51. Zhou H, Zhou Y (2002) Distance-scaled, finite ideal-gas reference state improves
structure-derived potentials of mean force for structure selection and stability
prediction. Protein Sci 11: 2714–2726.

Distances for Knowledge-Based Potentials

PLOS ONE | www.plosone.org 18 November 2014 | Volume 9 | Issue 11 | e109335


