Advances in the chemical vapor deposition (CVD) of Tantalum

Mugabi, James Atwoki; Bjerrum, Niels; Petrushina, Irina; Eriksen, Søren; Christensen, Erik

Publication date:
2014

Citation (APA):
CHEMICAL VAPOUR DEPOSITION (CVD) OF TANTALUM

- In Long narrow channels

James Atwoki Mugabi
PhD Student, DTU

Supervisors:
Niels J. Bjerrum
Irina Petrushina
Søren Eriksen
Erik Christensen

DTU Energy Conversion
Department of Energy Conversion and Storage
Why Tantalum?

Percentage Weight loss in 10 wt % HCl, room temperature, α-alumina abrasives and 1000 rpm for 168 hours.

Tantalum Coated Plate Heat Exchanger
System Description

\[Ta_{(s)} + 2.5 Cl_2_{(g)} \rightarrow TaCl_5 \]

\[TaCl_5 + \frac{5}{2} H_2 \rightarrow Ta + 5 HCl \]
Modeling

Long narrow Channel: Tubes

Fluid Flow: Navier Stokes

Diffusion: Fick’s Law

Chemical Reaction: Arrhenius

Adsorption: Langmuir
Results:

Experiment 800°C, 25 mbar

![Graph showing tantalum thickness as a function of position in the tube for two trials.](image)
Experiment 850°C, 25 mbar

Tantalum Deposition Rate [µm/h]

Position in tube [m]

- Try 1
- Try 2
- Try 3
Experiment 900°C, 25 mbar

Tantalum Deposition Rate [µm/h] vs Position in tube [m]

- Try 1
- Try 3
- Try 4
Experiment 950°C, 25 mbar

Tantalum Deposition rate [µm/h] vs Position in tube [m]

- Try 1
- Try 2
All Temperatures, 25 mbar

Position in tube [m]

Tantalum Deposition rate [µm/h]
Tantalum Layer Deposition Rate [µm/h]

Position in the Tube [m]

- 25 mbar -- 50g Cl2/ h
- 100 mbar -- 50g Cl2/ h
- 300 mbar -- 30g Cl2/ h
- 1 atm -- 30g Cl2/ h

All Pressures, 800 °C
Model Fitting
Model

Fluid Flow: **Navier Stokes**

Diffusion: **Fick’s Law**

Adsorption: **Langmuir**

Chemical Reaction: **Arrhenius**

Geometry: **2D Axial Symmetry and 3D**

Software: **COMSOL MultiPhysics®**
Mechanism

\[\text{TaCl}_5(g) + \frac{1}{2} H_2 \rightarrow \text{TaCl}_4(g) \rightarrow \text{TaCl}_3(g) \]

\[\text{Adsorption} \quad + HCl(g) \quad \text{Adsorption} \quad + HCl(g) \]

\[\text{Gas Phase Reaction} \quad \rightarrow \quad \text{Surface Reaction} \]

\[\text{Ta}_s + 4HCl(g) \quad \rightarrow \quad \text{Ta}_s + 3HCl(g) \]
Model Fitting – 800 °C

Tantalum Deposition Rate um/h vs Position in tube [m]

- Model Fitting
- Position in tube [m]
- Temperature: 800 °C
Model Fitting – 850 °C

![Graph showing Tantalum Deposition Rate um/h vs. Position in tube [m]. The graph shows a peak around 0.5 m, with a sharp decrease followed by a gradual decrease towards 6 m.]
Model Fitting – 900 °C

Tantalum Deposition Rate um/h

Position in tube [m]
Model Fitting – 950 °C

Tantalum Deposition Rate um/h vs Position in tube [m]
Application
CB30 – Channel
CB30 – Channel (X-Y Plane)
CB30 – Streamline: Velocity field Visualization
CB30 – Streamline: Velocity field Visualization
CB30 – 1st Run: Tantalum Layer Thickness (i.e. Only treated from the right end)
CB30 – 1st Run: Tantalum Layer Thickness (i.e. Only treated from the left end)
CB30 – 2nd Run: Tantalum Layer Thickness (i.e. Treated from the both ends)
CB30 – 2nd Run: Tantalum Layer Thickness (i.e. Treated from the both ends)
Thank you for your attention.