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Acoustic interaction forces between small particles in an ideal Ruid
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2Department of Physics, Technical University of Denmark, DTU Physics Building 309, DK-2800 Kongens Lyngby, Denmark
(Received 24 August 2014; published 9 December 2014)

We present a theoretical expression for the acoustic interaction force between small spherical particles
suspended in an ideal Buid exposed to an external acoustic wave. The acoustic interaction force is the part
of the acoustic radiation force on one given particle involving the scattered waves from the other particles. The
particles, either compressible liquid droplets or elastic microspheres, are considered to be much smaller than the
acoustic wavelength. In this so-called Rayleigh limit, the acoustic interaction forces between the particles are well
approximated by gradients of pair-interaction potentials with no restriction on the interparticle distance. The
theory is applied to studies of the acoustic interaction force on a particle suspension in either standing or traveling
plane waves. The results show aggregation regions along the wave propagation direction, while particles may
attract or repel each other in the transverse direction. In addition, a mean-peld approximation is developed to
describe the acoustic interaction force in an emulsion of oil droplets in water.
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I. INTRODUCTION short-range interaction between particles of the types rigid-
rigid [15,16], bubble-bubble 17,18], bubble-rigid [L9], and
%'ubble-dropletXO], whereas long-range rigid-rigid2[l] and
ubble-bubble 32,23] interactions have also been studied.
he acoustic interaction force between two droplets aligned

tic radiation force and streaming, are currently used in man
different ways to handle suspended cells, microparticles, an

Buids nonmtrusn_/ely and I_abel free in _m|croBU|d|c Setu.psrelative to an incident plane wave with arbitrary interparticle
SUCh. as separation, trapping, gnd sorting of ceIIs_, part.'d(aistance was also analyze@4]. Moreover, bubble-bubble
manlpulat|o_n, as well as generation and con_trol Qf Buid mo.t'oqnteraction at any separation distance has also been analyzed
[1E8]. Ex'perlm.ental'ly, ultrasound waves em|.tted Intoap""rt'd.ethrough a seminumerical scheme based on the partial-wave
suspension give rise to acoustic streaming of the carrief

; . . ._expansion method and the translational addition theorem of
Ruid [4], and they are responsible for the two acoustof3uidic pherical functionsZs].

forces driving the acoustophoretic motion of the suspendea The current literature on the acoustic interaction force lacks

particles: th? acoustic radiation force "ﬂ?”d the 5‘9‘(?3 drag forcgn investigation on a suspension composed of compressional
from acoustic streaming. The theoretical description of thes

>Ruid droplets or solid elastic particles without any restriction

cqmplex, nonlinear acoustic effects is not yet _comp_let.e, e Wn the interparticle distances. These kinds of particles are often
this paper we develop the theory of the acoustic radiation force

which dominates the motion of the larger microparticils [ Used in experiments on acoustofRuidics, acoustical tweezers,
Concerning the radiation force exer%ed ona Ein le articleand demulsibcation of particle-water mixtures by ultrasound.
the so—calledg rimary radiation forde" recent stgdieps b It is our goal here to provide an analytical expression for
Doinikov [6] ar?d DanBi/Iov and MironovI]’ as well as Settne)é the acoustic interaction force between suspended droplets or
and Bruus §] and Silva P], have advanced the theoretical solid elastic microparticles in an inviscid Ruid. The proposed

, I . method, which takes the form of a scalar potential theory
treatment beyond the seminal contributions by Kirdd)][ P : ; R
Yosioka and Kawasimaifl], and Gorkov 12]. The main for the acoustic interaction force, extends the single-particle

improvement found in these recent studies is the introductiorrlad'atlon force theory developed by GorkalZ] to include

. ; . rescattering events between particles in the suspension. The
of thermoviscous effects in both the incident ultrasound waves o dis applied to various examples of the acoustic interac-
and the scattered wave from the particle. However, in %ion force in the case of either a standing or a traveling external

article suspension exposed to an external acoustic wav . .
P P P lane wave, and a mean-pbeld theory is proposed and applied

ﬁ];f;gtri‘gﬁr}’o:?g'ggﬁ” ;g:cz aFi)\E):r?rs,al:tri]gleso';ﬁgnea\ioics?ilés '8 compute the acoustic interaction force between the drops in
i 9 P : an emulsion of oil drops in water.

nt*
interaction force is éaused by the scattered waves from th
other particles. Investigations on this force dates back to the
19th century, when Bjerknes studied the mutual force between
a pair of bubbles13], and the analysis performed byeKig
on the acoustic interaction force between two rigid spheres The linear wave theory for the acoustic Pelds in an
[14]. Subsequently, this force was investigated consideringinbounded, isotropic Buid of density, and isentropic
compressibility o = 1/ ( ocg), wherec, is the adiabatic sound
velocity in the Buid, is standard textbook materiabfe8].
We neglect the viscous dissipation of the acoustic beld in
*glauber@pg.cnpg.br the particle suspension, which is a good approximation for
*bruus@fysik.dtu.dk particle radii much larger than the width of the viscous
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boundary layer §] and for frequencies much lower than amplitude function s(rp|rs), where subscriptg® here and
hypersound frequencies (below GHz for water). Consequentlyn the following relates to the probe. Throughout this work, we
a time-harmonic acoustic wave can be described by thenly consider the so-called Rayleigh scattering likaif 1.
velocity potential (r.,t), wherer is position andt is time, = We also assume ideal scattering boundary conditions, i.e.,
in terms of a complex-valued phase fac&st! , where is  total absorption without reRection of any scattered waves at

the angular wave frequency, and an amplitude functitm, inbnity. In this limit, the acoustic scattering is dominated by
which satisbes the Helmholtz wave equation, the monopole and dipole scattering, and the scattered wave is
Sit given by P9
ry= (ne', (1a)
3 ) eikRps
2 =S K? i = =if & &
(r)=S k> (r), withk % (1b) scllplf's) = f 05 5T Ry
In terms of the potential (r), the amplitude function of the &4 & Vin(rs) € ‘0 (kas)®
pressurg(r), the density (r), and the velocity(r) are given s p Rps (KRps)®
by (3)
p(r)=1i o (1) (2a)  whereRys = |1, S 15|, pisnablaacting om,, and terms of
_. 0 2b the order kas)®/ (kRps)® arise from the quadrupolar scattering
(r) = '? (). (2b) [30]. The monopole and dipole scattering factbgs andf ; s
_ 5 of the source particle are given in terms of the density ratio
v(r) = (r). (2¢) %= ¢ opandthecompressibilityratiq+= </ gasfollows
In the following we outline some fundamental conceptsl1112:
of acoustic scattering and radiation forces on small particles foo=18 = (4a)
suspended in the Buid. 0s 2 % y
fre= 22> 4b
e (4b)

A. Single-particle scattering in the Rayleigh limit

Consider a monochromatic acoustic wave represented For the analysis of the higher-order scattering, it is useful
by the velocity potential amplitude;,(r) incident on and to introduce the scattering parameteyaind , as well as the
scattering off a small spherical particle suspended in th&imensionless probe-source distamge
medium. The scattered wave adds to the acoustic wave incident _ _ _
on any other particle in the suspension, so the brst particle acts s= Kas,  p=Ka, Xps= KRps. ®)

as a source of additional acoustic radiation forces felt by thernis together with Eqs2f) and @o), can be used to rewrite

other particles in the suspension. All physical quantities relate@tq_ (3) in terms of a scattering operator acting on the incident
to this source particle are marked by the subscrs@ 6uch  \yave ', (r,) as

as particle radiuss, density ¢, isentropic compressibility

s, and center positiorrg, as sketched in Figl. At any _« g€ fos Mg i

given probe positiorr,, the outgoing scattered wave from sllplls) =S Xps 3 * 2 1+ X_ps X in(F's)
the source particle is represented by the velocity potential

+0 %, (6)
where := /X pe. Note thaRps  asimpliesxps s, and
. Py ® . thus s{rplrs) = O( s) for probes near the source.
. . . . - . . .. B. Single-particle radiation force
® Once the scattering velocity potential in E) {s known,
. I's o the resulting acoustic radiation force acting on a suspended
o .\’Qs’ ® probe particle of radiua, and scattering coefpcieritg, and
\S..rp . f1p placed at, can be calculated in standard manners using
® ® o olrplrs) second-order time-averaged perturbation theory in the pressure
@ () () or the particle velocity amplitudeB[11,12]. In the Rayleigh
(1) . . ' . scattering limit for any incident acoustic wave(r), except
" ® plane traveling waves, the radiation fofe&9(r p)isagradient
o ® o of a potentialU given by
rad - &
FIG. 1. (Color online) Sketch of the external incident waygr) FErp) =S pU(rp), (73)
(red straight lines) scattered by a suspension of small spherical .2 fo L fip
particles with radiia; . The scattered waves(r,|rs) (green U(rp) =S pT ?'pl in(rp)l” S T'p| o in(rp)l?
dashed curves) from a source particle locater gblack sphere) is
probed at the positiony,. +0 +S ; (7b)
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where ¥, = (Vk) p, used in Eq.Tb), is the dimensionless The radiation forceF2Y(r,) from the external beld corre-
nabla operator convenient to use when calculating derivativesponds to i, = e in Eq. (7b),

of the velocity potential. 3 fo fy
F;i?(rp) =S S 07 p Tp| ext(rp)lst’p| “p ext(rp)l2

C. Scattering in a suspension of particles +0 +§ . (10b)
We now consider a specibc conbgurat®rof N spher-  [tfollows that the conbguration-dependent acoustic interaction
ical particles arbitrarily placed at the positiong for s = force can be expressed as a gradient force,
1,2,3,...,N. The particle at positiongs has the monopole .
and dipole scattering coefbcieffitss andf 1 , respectively, as Fladry|S) =S U(rplrs)+ O —g’ . (10c)

well as radiusas. All particles are assumed to have expansiongg,
parameterss = kas 1.

An external incident wave with velocity potentialy; hits
the N -particle suspension and multiple-scattering processes U(ro|re) = S 0 Re Zf& (1) <(rolre)
occurs. The resulting acoustic Pelg(rp) incident at the PISI™ 3 et P/ saiplls
probe positiorr, can thus be written as

given probe and sodrce positions and rs the pair-
interaction potential energy is

Sfip™p exllp) Tp sclrplrs) - (11)
n(fp) = ex(fp)* msdlplS), ® The potential energy depends on a particle volume product
3a§ and on scattering factors likk;,fis, with i = 0,1.
where ms{rp|S) is that part of the acoustic beld at position It is clear that the acoustic interaction force has the same
rp thatis caused by prior multiscattering events at one or mordependence on these parameters. Note further that the potential
particles in the conbguratids. energyU (rp|rs) is not necessarily symmetric with respect to

In the Rayleigh limit, the multiscattering contribution to its indices. Thus, the acoustic interaction force may not be
the acoustic wave iy (rp) incident at the probe point, symmetric either.
is dominated by scattering waves having undergone only a We now move on to analyze to which order jithe acoustic
single prior scattering event at some source poirdifferent  interaction force contributes to the total radiation force. To en-
from rp, written ass= p. To lowest scattering order, the sure consistent approximations, this contribution must appear
multiple-scattering part ms{rp|S) to the incident wave at with a smaller order in, than the quadrupol%af:ontribution
rp can thus be written as a sum over nonidentical pairs ogjiven in Eq. {b). The pair-interaction approximation is more
positions, dominant when the dimensionless probe-source distgjaée
small, satisfyink(ap + as)  Xps < 1. Combining Egs.X1)
and (10c), one can show that the leading contribution to the

msdFp|S) = s(fplrs) + O(+9). (9 interaction force is

rs S 3
Firr?td | [7p ext(fp) “pl 7p sc(rplrs)l XTE- (12)

Here the primed summation means that the sum is per- ps
formed in all suspended particles except p, and the  We brst note the strong suppressionfifd by x5* as the
expansion parameter is=-max{}. particle distance increases above a few wavelengggs, 1.

Then we may expresgs in terms of the scattering parameter
of the probe particle ag,s = ,, where > 1+ ada,.
D. The acoustic interaction force Therefore|F129 = O[ >4 >1]. Comparing the leading term

When the particle interaction is taken into account throuan the acoustic interaction %rce with the quadrupole correction

the scattered waves, the radiation force can be written a'gth.q' d(7b)3 we thprt]% 4tg?t COQS'St?Qt tapprowagt;ogst are
the sum of contributions from the unperturbed external peldPtamned, given tha p p Of that 1S restricted 1o

ox(Tp) and from the conbguration-dependent interactiorfn€ limited range ¥ as/a, < 5> For example, if, =
peld, which involves terms like,(fp) msdfp|S). By substi- 0.1, then 1000; otherwise, the acoustic interaction force
tuting Eq. @) into Eq. (7b) we bnd magnitude becomes comparable to the quadrupole correction,
which was already neglected in the radiation force expression
Farp) = F%rp) + Fl9r,|S). (10a) givenin Eq. 7).

J

Ill. EXAMPLES OF THE ACOUSTIC PAIR-INTERACTION FORCE

The acoustic interaction force exerted on a probe by a single source particle will be determined considering the interaction
potential energy in Eql{) for an external traveling plane and standing wave. The source patrticle is at the origin of the coordinate
systenrs = 0, while the probe particle is at any other positign= r = re,. Furthermore, the shorthand notatld(r) = U(r|0)
andF29(r) = F29r|0) will be used.

int int

063007-3
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A. Traveling plane wave
Consider an external plane wave propagating along tieds. The velocity potential amplitude of this wave is

o(2) = V—koe‘kZ, (13)

wherevy is the magnitude of the oscillatory velocity.

The pair-interaction potential energy is calculated by substitutingIB)irfto Eq. 6). Thus, inserting the obtained result into
Eq. (11), we bnd in spherical coordinates ( ) that

1+ 3cos2 1
2 (kr)3

U(r, )= E ok’ajad coskr(1S cos )] fipfas

. 4 1+ cosZ

1
S §f0,pf0,s+fl,pfls 2 (fOsflp"'fOpfls)COS E

N . 1 L 2
S sin[kr(1S cos )] Ef 1pf1s S §(f osfip + fopfis)cos + gflypflys cos?2 (14)

1
(kr)? ~
whereEg = % ng is the characteristic energy density of the external traveling plane wave. Below we study two special cases of
this expression, and in this context it is useful to introduce the compression and density interaction potential stigagths,

U;, respectively,

4
Uo= 5 Eok’a3ad fopfos, (15a)

U= E oksa,.?aé fipfas. (15b)

As the prst special case, we reproduce the seminal result for the secondary Bjerknes force between two bubbles, for which it
is assumed that the external wave frequency is much smaller than the resonance frequency of the bubbles. Since for gas bubble:
fo S 10Pandf; S 2, and becauskr > kas 10°3 implies thatf o f 1/ (kr), only the term involving o, f o is relevant
in Eq. (14), and we arrive at dt) andF29=S U,

int

coskr(1S cos )]

=S 1
U, )=SUg I (16a)
- inkr(1S i 1 + kr sinfkr(1 1
Erodr )= § kU sinkr(1'S cos )]sin o+ coskr(1S cos )] rS|n[2r( S cos )](1S cos ) (16b)
kr (kr)
g Ko . 4E ok%ajad p s
(kr)2 Ter, kr l, (160)

where the latter is the secondary Bjerknes force in the short-range limit as derived by Zheng an@4pfel [
As the second special case, we consider the acoustic interaction between particles collected in the transverse plé)e (
Since the phase of the external wave does not change in the transverse plane, the angular dependence dropsldutiof Eq. (

this special case, only the radial distance  x2 + y2 in the transverse plane and the associated in-plane radial unit eector
play a role in the following. The potentiél becomes

U()= Ungtk )+ Uy "),

(17a)

where, respectively, the functiong(x) = S cosk)/x andni(x) =S sinx)/x S cosk)/x 2 are the zero- and brst-order spherical
Neumann functions. In the short-range litkit 1, the negative gradient of Efj7(g gives

Fi( ) =S kU, (k Gy tOokIMe. k1 (17b)
which depends on the inverse interparticle distance to the fourth power. Furthermore, the interaction force is antisymmetric
[ﬁ‘ﬁ(rphs) =S F,';’;‘td(rs|rp) It is worth noticing that the dependence on the inverse interparticle distarfceas also been
found in the acoustic interaction force between two rigid small particles derived by Vé¢iae31]. In the long-range limit
k 1, the acoustic interaction force in the transverse plane is

sink )
k

Fiad( ) =S kUg +0(k 1°% , k 1L (17¢)
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This result has been previously obtained by Zhuk for the interaction of two rigid small par2dles\jpte that the acoustic
interaction force decays with the interparticle distance, but that it oscillates in space with two consecutive zeros separated by a
half wavelength of the external traveling plane wave. Finally, it should be noted that the short-range interaction depends on the
product of the density contrast factdrs, f 1 s, whereas in the long-range interaction the dependence is upon the product of the
compressibility contrast factofg pf os.

B. Standing plane wave
Now, consider the case where the external incident wave is a standing plane wave debned by the potential

() = 22 sink(z S h], (18)

whereh is the distance from the Prst wave node to the origin of the coordinate system. A particle exposed to such a wave will be
collected in the potential node if the scattering coefpcients safigfy  S3f 1, and in the potential antinode if 3, > S3f 1.
We calculate the interaction potential energy by inserting E)sar{d (L8) into Eq. (L1). Accordingly, we obtain

coskr) f

_ UTCLE?
U(r, )= E ok’a3a cosk(r cos Sh)]Tp f 15 coskh)(1 + 3C052)W+ 3

fossinkh)cos coskr

1 1 1

+ f1scoskh)(1+ 3cos2)sin(kr) W S fiscoskh)(1+ cos2)coskr)S éfo,S sinkh) cos sin(kr) ™
o ke 2 1

+ sink(r cos S M= f1coskh) cos %+ <fos sinfh) coskr) + f 15 coskh)cos sinkr) =

(19)

(

Using a similar analysis as performed in SHtA, we  which depends on inverse of the interparticle distance to the
brst study the acoustic interaction force between two aifourth power. Furthermore, only the density scattering factors
bubbles. The force is given by the negative gradient of E9). ( and not the compressibility factors enter. In the long-range
considering only the term containifig, f o5, and we arrive at  limit k 1 for the nodal plane, the acoustic interaction force
the secondary Bjerknes force in a standing plane wave, is

2cosk )

. 4E ok%a3ad , ¢ it NIV
S )2

S3
Fiadr) S 522 +O(k I7%) e, (22D)

sif(kh)e, kr 1. (20) Fia( ) = kU

o . ) which has an oscillatory behavior with half an external
This is equivalent to the result obtained by Zheng andayelength distance between two consecutive zeros, while
Apfel [24]. it decays with the inverse square of the interparticle distance.

Next we focus on the acoustic interaction force betweer\ e that only on the density scattering factors appear.
particles in the transverse plane debned by / 2. In this Similarly, in the antinodal planekb = / 2), the short-

special case Eq1) reduces to range limitk 1 of the acoustic interaction force is

- 1
(21) Frade ) = S kU w7 +0() e, (23a)
We note that this interaction potential only depends on distancevhile the long-distance limk lis
between the source and the probe, and consequently, the

ni(k )

U() = Ug sirP(khyno(k ) + Uy cos(kh)= —.

acousfcic in'geraction forcg between particles in the transverse Firrz]itd( ) =8 kU sin(k ) + O([k ]éz) e. (23b)
plane is antisymmetric with respect to the probe and the source k
particles.

According to whether a given set of particles is collected inlgczgfs gggﬂfdal plane only the compressibility scattering

either the nodal or the antinodal planes of the standing wave,;
we can choose to let the transverse plane coincide with a nodal
plane by settingch = 0, in which case all sith) terms vanish IV. MEAN-FIELD APPROXIMATION
in Eq. 21), and with an antinodal plane i = / 2, inwhich
case all co¥(h) terms vanish.

Thus, from the gradient of) in Eq. 1) we obtain the
acoustic interaction force between particles in the nodal plan
(kh = 0) in the short-range limit 1tobe

Going beyond the simple two-particle problem, we now de-
rive an analytical expression for the acoustic interaction force
Eetween a probe particle and the particles surrounding it in a

omogeneous particle suspension. In $&€.we considered
N particles with positions s in a given conbguratio in a
suspension of volum¥ . Using DiracOs function (r), we

. 3 &
rad — S2
Fin( ) =5 kU, Ok ™) e, (222) can formally rewrite the surd over pair potentiald) as an

(k )*
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integral, while the center of the disk-shaped source-particle region is
displaced backwards along what is dePned to be thes to
U(rp) = U(rplrs) = U(rplr)n(r)dr, (24a) thepositiorr, e,. With this conbguration and using EG1j,
rs S v the pair-interaction potenti&l (rp|rs) becomes
- & - k
n(r) = . (rSry), (24b) U(rplrs) =8 20 2 withr, = 0, (26)
s

fwhile the limits of the integration regiow in the expression
(24D for the total interaction potential requires some analysis.
Using the cylindrical polar coordinates (z ) for the source
positionrg, we Pnd that in the direction, a source particle
can at most be at the distanRg ) from the probe particle,

wheren(r) can be interpreted as the particle concentratio
Peld. In a mean-beld approximatiargr ) is smoothened, such
that the numbedN of particles particles in a small volume
dr at any given positiorr is given bydN = n(r)dr. For
a homogeneous suspension, we hag®) N/V , and the
:;Errzc):(mgtggtg;tlal experienced by the probe particle is well R()= RS X,§ si? &1, cos. @7)

The total interaction potentidl having a strength oty =

N
U(rp) v U(rp|r)dr. (25)  2NUy/ for the probe particle at, = 0, becomes
\%

. . L . 2 as R()
This mean-peld approximation is expected to improve for an U(rp) =S _NUop dz drr coskr)
increasing number of source particles per volume. R 2(2a5) o Sa, 0 kr

To illustrate the mean-peld approximation in the acoustic B 2 2N
interaction force problem, we assume that the source particles =S Uy d sinkR( )], Up= Ug—. (28)

0

are uniformly distributed within a circular region of radius

R and thickness & at the antinodal plane (they plane) For an arbitrary positiorr, of the probe particle relative
of the external standing plane wave Ed8) The volume to the center of the source-particle region, this integral can
occupied by the particle distribution is thUs= 2 R 2as. The  be evaluated numerically. However, for small displacements
probe particle is placed at the origin of the coordinate systent,, R, we can obtain an analytical expression by Taylor

a b
(@) 1 [aJ] () 1 [aJ]
S5
510
515 <
520
S25 305
_ $30
S1 - L
S1  So05 0 . x 05 1
(© [aJ] (d)
1 R
40
0.5 0.5 5
$10
z 20 z
0 0
0 S$20
505 305
SZO §30
S1 - - S1, A\ -
S1  So05 0, 05 1 S1  S05 0, 05 1

FIG. 2. (Color online) The acoustic interaction pair poteritigt, |0) [Eq. (14), contours] and forc&!2%(r ,|0) = S U (arrows) between
a pair of identical 131m particles induced by the traveling plane wave (TPW) E®),(with the source particle located at the origig= O,
for kr > 0.2. (a) Silicone oil droplets (oil-oil), with the probg, = (x,y,0) in the transversgy plane. (b) Same as (a) but for polystyrene
microparticles (ps-ps). (c) Same as (a), but with the pmgbe (x,0,z) in the paralleixz plane (oil-oil). (d) Same as (b), but with the probe
r, = (x,0,2) in the parallekz plane (ps-ps).
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