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Equation-Free Analysis of Macroscopic
Behavior in Traffic and Pedestrian Flow

Christian Marschler, Jan Sieber, Poul G. Hjorth and Jens Starke

Abstract Equation-free methods make possible an analysis of the evolution of a
few coarse-grained or macroscopic quantities for a detailed and realistic model with
a large number of fine-grained or microscopic variables, even though no equations
are explicitly given on the macroscopic level. This will facilitate a study of how the
model behavior depends on parameter values including an understanding of transi-
tions between different types of qualitative behavior. These methods are introduced
and explained for traffic jam formation and emergence of oscillatory pedestrian
counter flow in a corridor with a narrow door.

1 Introduction

The study of pedestrian and traffic dynamics leads naturally to a description by a few
macroscopic, e.g., averaged, quantities of the systems at hand. On the other hand,
so-called microscopic models, e.g., multiagent systems, inherit individual proper-
ties of the agents and can therefore be made very realistic. Among more successful
microscopic models are social force models for pedestrian dynamics [1, 2, 3] and
optimal velocity models in traffic dynamics [4, 5, 6, 7, 8]. Although computer simu-
lations of microscopic models for specific scenarios are straightforward to perform
it is often more relevant and useful to look at the systems on a coarse scale, e.g., to
investigate a few macroscopic quantities like first-order moments of distributions or
other macroscopic descriptions which are motivated by the application.
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The analysis of the macroscopic behavior of microscopically defined models is
possible by the so-called equation-free or coarse analysis. This approach is moti-
vated and justified by the observation, that multi-scale systems, e.g., many-particle
systems, often exhibit low-dimensional behavior. This concept is well known in
physics as slaving of many degrees of freedom by a few slow variables, sometimes
refered to as “order parameters” (see e.g. [9, 10]) and is formalized mathematically
for slow-fast systems by Fenichel’s theory [11]. These methods aim for a description
of the system in terms of a small number of variables, which describe the interest-
ing dynamics. This results in a dimension reduction from many degrees of freedom
to a few degrees of freedom. For example, in pedestrian flows, we reduce the full
system of equations of motion with equations of motion for each single pedestrian
to a low-dimensional system for weighted mean position and velocity of the crowd.

A difficulty for such a macroscopic analysis is that governing equations for the
coarse variables, i.e., the order parameters, are often not known. Those equations
are often very hard or sometimes even impossible to derive from first principles
especially in models with a very complicated microscopic dynamics. To extract in-
formation about the macroscopic behavior from the microscopic models equation-
free methods [12, 13, 14, 15] can be used. This is done by using a special scheme
for switching between microscopic and macroscopic levels by restriction and lifting
operators and suitably initialized short microscopic simulation bursts in between.
Problems with the initialization of the microscopic dynamics, i.e., the so-called lift-
ing error, have been studied in [8]. An implicit equation-free method for simplifying
the lifting procedure has been introduced, allowing for avoiding lifting errors up to
an error which can be estimated for reliable results [8]. The equation-free method-
ology is most suitable in cases where governing equations for coarse variables are
either not known, or when one wants to study finite-size effects if the number of
particles is too large for investigation of the full system, but not large enough for
a continuum limit. It is even possible to apply equation-free and related techniques
in experiments, where the microscopic simulation is replaced by observations of an
experiment [16, 17, 18].

For pedestrian and for traffic problems, a particularly interesting case is a sys-
tematic study of the influence of parameters on solutions of the system. This leads
to equation-free bifurcation analysis. One obtains qualitative as well as quantitative
information about the solutions and their stability. Furthermore, it saves computa-
tional time and is therefore advantageous over a brute-force analysis or computation.
The knowledge of parameter dependence and the basin of attraction of solutions is
crucial for controling systems and ensuring their robustness. Changes of solutions
are summarized in bifurcation diagrams and solution branches are usually obtained
by means of numerical continuation. These techniques from numerical bifurcation
analysis can be combined with equation-free methods to gain insight into the macro-
scopic behavior in a semi-automatic fashion.

In the following, we apply equation-free bifurcation analysis to two selected
problems in traffic and pedestrian dynamics. Section 2 gives a short overview about
equation-free methods. The methods introduced in Section 2 are then applied to
study traffic jams in the optimal velocity model (cf. [4, 8]) in Section 3. Section 4
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Fig. 1 Fast convergence to a slow manifold (thick blue curve). Trajectories in many dynamical sys-
tems converge very quickly to a slow manifold, along which the long-time macroscopic behavior
takes place.

describes the macroscopic analysis of two pedestrian groups in counterflow through
a bottleneck (cf. [3]) and Section 5 concludes the paper with a brief discussion and
an outlook on future research directions.

2 Equation-Free Methods

Equation-free methods have been introduced (cf. [14, 15] for reviews) to study the
dynamics of multi-scale systems on a macroscopic level without the need for an
explicit derivation of macroscopic equations from the microscopic model. The nec-
essary information is obtained by suitably initialized short simulation bursts of the
microscopic system at hand. Equation-free methods assume that the system under
investigation can be usefully described on a coarse scale. Evolution equations on
the macroscopic level are not given explicitly. A big class of suitable systems are
slow-fast systems, which have a separation of time scales. Under quite general as-
sumptions (cf. [11]) these systems quickly converge to a low-dimensional object in
phase space, the so-called slow manifold (cf. Fig. 1). The long-term dynamics (i.e.,
the macroscopic behavior) happens on this slow manifold, which is usually of much
lower dimension than the overall phase space (of the microscopic system). The goal
of equation-free methods is to gain insight into the dynamics on this slow manifold.

In the following we discuss the equation-free methodology in detail. The con-
struction of a so-called macroscopic time stepper requires three ingredients to be
provided by the user: the lifting L and restriction R operators to communicate be-
tween the microscopic and macroscopic levels and vice versa, and the microscopic
time stepper M. Due to a separation of time scales, it is possible to construct the
macroscopic time stepper by a lift-evolve-restrict-scheme. This scheme is subse-
quently used to perform bifurcation analysis and numerical continuation.
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Microscopic time stepper M

To be specific, let us consider a microscopic model in the form of a high-dimensional
system of N differential equations

u̇ = f (u). (1)

This can be any model of traffic or pedestrian dynamics, possibly depending on a
set of parameters. We generally assume that the number of degrees of freedom and
thereby the dimension N of u is large. Note that a second-order model, e.g., the
social force model with forces fforce(x), can be written as a first-order model of the
type (1) by including the velocities ẋ = v into the equation. Then u has the form
u = (x,v), and the right-hand side is f (u) = f ((x,v)) = [v, fforce(x)]. We assume that
a microscopic time stepper M for model (1) is available. That is, we have a routine
M (usually a simulation or software package) with two inputs: the time t ∈ R by
which we want to evolve and the initial state u0 ∈ RN from which we start. The
output M(t,u0) ∈ RN is defined by the relation

u(t0 + t) = M(t,u(t0)). (2)

That is M(t,u0) is the state u of (1) after time t, starting from u0 at time t0.

Separation of time scales

We also assume that the dynamics on the macroscopic scale can be described by a
few macroscopic variables x ∈ Rn, where n is much smaller than the phase space
dimension N of the microscopic model. This assumption is typically true in many-
particle systems, e.g., pedestrian flow and traffic problems. The goal of equation-free
methods is then to construct a time stepper for x on the macroscopic level,

x(t0 + t) = Φ(t,x(t0)), (3)

based on repeated and appropriately initialized runs, i.e., simulation bursts, of the
microscopic time stepper M for u. In practice, a user of equation-free methods be-
gins with the identification of a map, the so-called restriction operator

R : RN → Rn,

which reduces a given microscopic state u ∈ RN to a value of the desired macro-
scopic variable x ∈Rn. The assumption about the variables x describing the dynam-
ics at the macroscopic scale has to be made more precise. We require that for all
relevant initial conditions u and a sufficiently long transient time tskip the result of
the microscopic time stepper (2) is (at least locally and up to a small error) uniquely
determined by its restriction, i.e., its macroscopic behavior. That is, if for two initial
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(micro) RN

(macro) Rn x(t0)

u(t0) u(t0 + t)

x(t0 + t)

lifting L

M(t, ·)

R restriction

Φ(t, ·) = R(M(t,L (·)))

Fig. 2 Scheme for construction of the macroscopic time stepper Φ using the lifting L and re-
striction operator R for switching between microscopic and macroscopic levels. M denotes the
microscopic time stepper.

conditions u0 and u1 the relation

RM(tskip;u0) = RM(tskip;u1) holds, then
|RM(tskip + t;u0)−RM(tskip + t;u1)|<C exp(εt− γ tskip)

(4)

for all t ≥ 0. In (4) the pre-factor C should be of order unity and independent of the
choice of t, u0 and u1. The growth rate ε is also assumed to be smaller than the decay
rate γ . This is what we refer to as separation of time scales between macroscopic
and microscopic dynamics. Requirement (4) makes the statement “the dynamics of
u on long time scales can be described by the macroscopic variable x = Ru” more
precise. We also see that the error in this description can be made as small as desired
by increasing the healing time tskip. In fact, requirement (4) determines what a good
choice of tskip is for a given problem.

In order to complete the construction of the macroscopic time stepper Φ , the user
has to provide a lifting operator

L : Rn→ RN ,

which reconstructs a microscopic state u from a given macroscopic state x. See [19,
20, 21] for proposals how to construct good lifting operators for explicit equation-
free methods (see Eq. (6) below). In the case of implicit equation-free methods the
choice of a lifting operator is not as delicate [8]. Also note that the choice of lifting
operator is not unique.

Macroscopic time stepper Φ

We can now assemble the approximate macroscopic time stepper Φ for x by ap-
plying the steps Lift-Evolve-Restrict, as illustrated in Fig. 2 in a judicious manner
(cf. Fig. 3 for a detailed construction): the time-t image y = Φ(t;x) of an initial
condition x ∈ Rn is defined as the solution y of the implicit equation

RM(tskip;L y) = RM(tskip + t;L x). (5)
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Rn

RN−n

slow manifold

L (x) L (y)

t sk
ip

healing

t sk
ip

t
M(tskip + t;L (x))
M(tskip;L (y))

x y

R

x∗Φ(t; ·)

Fig. 3 Visualization of the implicit scheme (5). The macroscopic time stepper Φ maps the macro-
scopic state x to the yet unknown macroscopic state y. The scheme lift-evolve-restrict is applied to
both states. Additionally to the healing step tskip the dynamics on the slow manifold are observed
for state x for an additional (long) time t. Both “paths” are compared at the macroscopic end point
x∗. Note, that this scheme defines y implicitly.

Note, that the macroscopic time stepper has originally been introduced as the ex-
plicit definition (cf. also Fig. 2)

Φ̃(t;x) = RM(t;L x). (6)

The explicit method (6) requires that the lifting operator maps onto (or very close to)
the slow manifold for every macroscopic point x. The implicit method (5) does not
have this requirement and should be the method of choice (cf. the discussion in Sec-
tion 3). The implementation of the explicit and implicit time stepper is further illus-
trated in Table 1 using pseudocode. Equation (5) is a nonlinear but in general regular
system of n equations for the n-dimensional variable y. Note that the construction
(5) does not require an explicit derivation of the right-hand side F : Rn→ Rn of the
assumed-to-exist macroscopic dynamical system

ẋ = F(x). (7)

However, it can be used to evaluate (approximately) the right-hand side F in desired
arguments x (see below). The convergence of the time stepper Φ to the correct time-
t map Φ∗ of the assumed-to-exist macroscopic equation (7) is proven in detail in
[8]. The error |Φ(t;x)−Φ∗(t;x)| is of order exp(εt− γtskip).
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required functions: lift, evolve, restrict (cf. main text)
solution at time t0: x

function res = Phi(t,x)
u1 = lift(x); u2 = evolve(t,u1); res = restrict(u2);
end

explicit scheme implicit scheme
y = Phi(t,x); choose dy, tol, y[0] = x, n = 0, err = 2*tol

function res = F(y)
res = Phi(tskip,y) - Phi(tskip+t,x);

end

while err > tol
Fy = F(y[n]);
dF = Jacobian(F,y[n],dy);
y[n+1] = y[n] - (dF)ˆ(-1)*(Fy);
err = abs(y[n+1] - y[n]);
n = n+1;

end
y = y[n];

Table 1 Pseudocode algorithm for computing the macroscopic solution y after time t using the
macroscopic time stepper for the solution x using the explicit (6) and implicit (5) scheme, re-
spectively. The implicit scheme uses a Newton iteration with a given tolerance tol to find y. For
one-dimensional y the Jacobian dF is given by (F(y[n]+dy)-F(y[n]))/dy. Note, that the
complexity of the implicit scheme stems mainly from the Newton iteration, which is not specific
for equation-free computations.

Advantages of equation-free methods

What additional benefits can the macroscopic time stepper Φ have beyond simu-
lation of the low-dimensional dynamics (which could have been accomplished by
running long-time simulations using M directly)?

• Finding locations of macroscopic equilibria regardless of their dynamical stabil-
ity: macroscopic equilibria x are given by solutions to the n-dimensional implicit
equation Φ(t0;x) = x, or, in terms of lifting and restriction:

RM(tskip + t0;L x) = RM(tskip;L x) (8)

for a suitably chosen time t0 (a good choice is of the same order of magnitude
as tskip). The stability of an equilibrium x, found by solving (8), is determined by
solving the generalized eigenvalue problem Ax = λBx with the Jacobian matrices

A =
∂
∂x

RM(tskip + t0;L x), B =
∂
∂x

RM(tskip;L x).
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Stability is determined by the modulus of the eigenvalues λ (where |λ |< 1 cor-
responds to stability).

• Projective integration of (7): one can integrate the macroscopic system (7) by
point-wise approximation of the right-hand side F and a standard numerical inte-
grator. For example, the explicit Euler scheme for (7) would determine the value
xk+1 ≈ x((k+1)∆ t) from xk ≈ x(k∆ t) implicitly by approximating

F(xk) =
1
δ
[
RM(tskip +δ ;L xk)−RM(tskip;L xk)

]
with a small time δ , and then solving the implicit equation

RM(tskip;L xk+1)−RM(tskip;L xk) = F(xk)

with respect to xk+1. Projective integration is useful if the macroscopic time step
∆ t can be chosen such that ∆ t � δ , or for negative ∆ t, enabling integration
backward in time for the macroscopic system (7).

• Matching the restriction: Sometimes it is useful to find a “realistic” microscopic
state u, corresponding to a given macroscopic value x. “Realistic” corresponds in
this context to “after rapid transients have settled”. This can be accomplished by
solving the nonlinear equation

RM(tskip;L y) = x (9)

for y and then setting u = M(tskip;L y).

The formulas (8) and (9) have already been presented and tested in [22], where they
were found to have vastly superior performance compared to alternative proposals
for consistent lifting (such as presented in [19, 20, 21]).

Bifurcation analysis and numerical continuation

Building on top of the basic uses of the macroscopic time stepper Φ , one can also
use advanced tools for the study of parameter-dependent systems. Suppose that the
microscopic time stepper M (and, thus, the macroscopic time stepper Φ) depends
on a system parameter p. We are interested in how macroscopic equilibria and their
stability change as we vary p. In the examples in Sections 3 and 4 the primary system
parameter is the target velocity (traffic) and door width (pedestrians), respectively.

When tracking equilibria in a parameter-dependent problem one may start at a
parameter value p0, where the desired equilibrium x0 (given by Φ(t0;x0, p0) = x0)
is stable so that it can be found by direct simulations. This achieves a good initial
guess, which is required to solve the nonlinear equations (8) reliably with a New-
ton iteration for near-by p close to p0. In the traffic system studied in Section 3 the
equilibrium corresponding to a single phantom jam undergoes a saddle-node bifur-
cation (also called fold, that is, the equilibrium turns back in the parameter changing
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Fig. 4 Pseudo-arclength continuation of a curve of fixed points {(p,x) : Φ(t0;x, p) = x} of the
macroscopic time stepper Φ . A new point (p̄, x̄) is computed along the secant through (p`−2,x`−2)
and (p`−1,x`−1) in a so-called predictor step. The following corrector step solves the equilibrium
condition (cf. (10)) in the perpendicular direction to find the next equilibrium (p`,x`) on the curve.

its stability, see Fig. 5(a) for an illustration). In order to track equilibria near folds
one needs to extend the nonlinear equation for the macroscopic equilibrium with a
so-called pseudo-arclength condition, and solve for the equilibrium x and the param-
eter p simultaneously [23, 24]. That is, suppose we have already found a sequence
(pk,xk), k = 1, . . . , `−1, of equilibria and parameter values. We then determine the
next pair (p`,x`) by solving the extended system for (p`,x`):

0 = Φ(t0;x`, p`)− x` equilibrium condition

s = p̄`(p`− p`−1)+ x̄T
` (x`− x`−1) pseudo-arclength condition.

(10)

The vector

(p̄`, x̄T
` ) =

(p`−1− p`−2,xT
`−1− xT

`−2)

|(p`−1− p`−2,xT
`−1− xT

`−2)|
(11)

is the secant through the previous two points, scaled to unit length, and s is the
approximate desired distance of the newly found point (p`,x`) from its predecessor
(p`−1,x`−1). The continuation method (10) permits one to track equilibria through
folds such as shown in Fig. 5(a) or Hopf bifurcations such as shown in Fig. 6(b)
(where the equilibrium becomes unstable and small-amplitude oscillations emerge).
For a more detailed review on methods for bifurcation analysis the reader is referred
to standard references, e.g., [23, 24].

3 Traffic Models

We apply the methods introduced in Section 2 to the optimal velocity (OV) model [4]
as an example of microscopic traffic models. The model captures the main features
of experiments of cars on a ring road [6]. We exploit equation-free numerical bifur-
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cation analysis to answer the following questions; 1) for which parameter values in
the OV model do we expect traffic jams and 2) how severe are they?

The equations of motion for car n in the OV model are

τ ẍn + ẋn =V (xn+1− xn), V (∆xn) = v0(tanh(∆xn−h)+ tanh(h)), (12)

where τ = 0.588 is the reaction time and V is the optimal velocity function depend-
ing on the velocity parameter v0 and inflection point h. Periodic boundary conditions
xn+N = xn +L are used for N = 60 cars on a ring road of length L = 60. Depending
on the choice of v0 and h one observes uniform flow, i.e., all cars have headway
∆xn = 1, or a traffic jam, i.e., a region of high density of cars. It is worth noting, that
bistable parameter regimes can exist, i.e., a stable uniform flow and a stable traffic
jam coexist and one or the other emerges, depending on initial conditions.

First, we fix h = 1.2 and study the bifurcation diagram in dependence of v0.
Before we are able to apply the algorithms presented in Section 2, we have to define
the lifting and restriction operators.

The restriction and lifting operators

The restriction operator R, used to compute the macroscopic variable to describe
phenomena of interest (here the deviation of the density profile from a uniform flow)
of the microscopic model on a coarse level, is chosen as the standard deviation of
the distribution of headway values

R(u) = σ =

√
1

N−1

N

∑
n=1

(∆xn−〈∆x〉)2, (13)

where 〈∆x〉 is the mean headway.
As the numerical continuation operates in a local neighborhood of the states,

the lifting operator can be based on a previously computed microscopic reference
state ũ = (x̃, ỹ) for positions x̃ and velocities ỹ and its macroscopic image under R,
σ̃ = Rũ. We use ũ and σ̃ to obtain a microscopic profile u for every σ ≈ σ̃ :

Lµ(ũ,σ) = u = (x,y) = (xnew,V (xnew)) , xnew =
µσ
σ̃

(∆ x̃−〈∆ x̃〉)+ 〈∆ x̃〉. (14)

We let the lifting Lµ depend on an artificial parameter µ . We will vary µ later to
demonstrate that the resulting bifurcation diagram is independent of the particular
choice of L .
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Fig. 5 Equation-free bifurcation analysis for the optimal velocity model (12). (a) Bifurcation di-
agram in healed quantities for h = 1.2. Headway profiles are shown for selected points (black
circles) along the branch. Blue and red dots denote stable and unstable solutions, respectively. (b)
and (d) show bifurcation diagrams for different lifting operators. Healed values in (d) lie exactly
on the same branch and recover the results from direct simulation (black dots). Thus, the choice
of lifting operator L does not affect the results if one reports the healed values (in contrast to (b),
reporting the solutions σ of (8)). (c) Two-parameter bifurcation diagram for continuation of the
fold point. Saddle-node (blue crosses) and Hopf points (green dots) from measurements in one-
dimensional diagrams are in perfect agreement with the continuation in two parameters h and v0
and the analytical curve (black line).

Numerical results

The results of the equation-free bifurcation analysis are shown in Fig. 5. The bifurca-
tion diagram for fixed h = 1.2 (cf. Fig. 5(a)) shows a stable traffic jam for parameter
values v0 > v∗ = 0.887. By continuation of the solution from a stable traffic jam
towards smaller values of v0 a saddle-node bifurcation is found at v0 = 0.88. The
traffic jam loses stability and an unstable solution exists for v0 ∈ [0.88,0.887]. Con-
tinuing further along the branch, a Hopf bifurcation, i.e., a macroscopic pitchfork
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bifurcation, where traffic jams are born as small-amplitude time-periodic patterns,
is found at v0 = 0.887. At this point, stable uniform flow solutions (σ = 0) change
their stability to unstable uniform flow solutions. For v0 ∈ [0.88,0.887] two stable
solutions coexist. In this one-dimensional system, the unstable solution separates
the stable and the unstable fixed point, acting as a barrier. Thus, the bifurcation di-
agram also informs us about the magnitude of the disturbance necessary to change
the behavior of the system from a stable traffic jam to a stable free flow. Headway
profiles are shown for selected points along the branch to illustrate the microscopic
solutions. In Fig. 5(b) and Fig. 5(d) the comparison of different lifting operators is
shown. While the unhealed values σ (cf. Fig. 5(b)) of the equilibrium depends on
the choice of µ , the healed values RM(tskip;L σ), used in the implicit equation-
free methods (cf. Fig. 5(d) and [8]) are in perfect agreement with results from direct
simulations (black dots).

In order to study the dependence on both parameters v0 and h simultaneously,
we use an extended set of equations to continue the saddle-node bifurcation point in
Fig. 5(c). Blue crosses and green dots denote measurements of the saddle-node and
Hopf points from one-parameter continuations, respectively. The two-parameters
continuation (red dots) is in perfect agreement with the measurements. As a check
of validity, the Hopf curve (black line below red dots) can be computed analytically
(cf. e.g., [8]) and is shown for comparison.

In conclusion, the analysis pinpoints the parameter values for the onset and col-
lapse of traffic jams. This information is of potential use to understand the role of
speed limits. The two-parameter bifurcation diagram in Fig. 5(c) shows a free flow
regime for small v0 and large h (bottom right part of the diagram). On the other hand,
a large velocity parameter v0 and a small safety distance h lead to traffic jams (top
left part). In between, a coexistence between free flow and traffic jams is found. The
final state depends on the initial condition. A speed limit lower than the saddle-node
values is necessary to assure a global convergence to the uniform free flow.

4 Pedestrian Models

For further demonstration of the equation-free bifurcation analysis, we also apply it
to a social force model describing pedestrian flow [1, 25]. A particular setup with
two crowds passing a corridor with bottleneck [26] from opposite sites (the crowd
marked blue moving to the right, the crowd marked red moving to the left) is an-
alyzed with respect to qualitative changes of the system behavior [3, 27]. To this
end, a coarse bifurcation analysis is used to determine which bifurcations occur and
thereby to understand which solutions are expected to exist. Details about the model
and the analysis of the bottleneck problem can be found in [3]. Here, we focus on
the coarse analysis of the problem.

Two parameters have been chosen as the main bifurcations parameters; the ratio
of desired velocities of the two crowds rv0 = vr

0/vb
0 and the width of the door w

acting as a bottleneck. Microscopic simulations of the model for two crowds of size
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N = 100 reveal two fundamentally different regimes of the dynamics. One finds a
blocked state and a state that is oscillating at the macroscopic level (cf. Fig. 6(a))
for small and large door widths, respectively. The question we would like to answer
is: how and where does the transition from a blocked to an oscillating state happen?
In mathematical terms the question is, where is the bifurcation point and what type
of bifurcation is observed at the transition?

The restriction and lifting operators

We define the macroscopic quantity m as

m =
mr +mb

2
, m(r,b) =

∑i∈(r,b) κ(xi)xi

∑i∈(r,b) κ(xi)
, (15)

where m(r,b) is a weighted average of the longitudinal component for the blue and red
pedestrian crowd, respectively. κ gives more weight to pedestrians close to the door
(see [3] for details). Since we expect oscillations from microscopic observations the
pair of variables (m, ṁ) is used as the macroscopic variable for the equation-free
methods. The transient from the initial condition to a limit cycle in the macroscopic
description is shown for w = 0.7 in Fig. 6(c). The restriction operator R = (m, ṁ)
is therefore defined by the macroscopic description (15) and its derivative.

The lifting operator L uses information about the distribution of the pedestri-
ans in front of the door to initialize a sensible microscopic state. The distribution of
positions of pedestrians along the corridor is known from numerical studies and is
observed to be well-approximated by a linear density distribution, i.e., the distribu-
tion is of the form p(|x|) = a|x|+ b, where |x| is the distance from the door along
the corridor axis. The slope a and interception b are determined by simulations for
all parameter values of interest. The lifting uses these distributions to map, i.e., lift
(m, ṁ) to a “physically correct” microscopic state. All velocities are initially set to
0, such that we lift to a microscopic state with ṁ = 0 (see [3] for details).

Numerical results

Using equation-free bifurcation analysis, the bifurcation diagram is computed for
the fixed ratio rv0 = 1. Fig. 6(d) shows the maximum and minimum of m(t) as a
function of w. The transition from a blocked state to an oscillating state is clearly
observed and the bifurcation point is found to be at w = 0.56. The transition is
analyzed in detail in [3] and the bifurcation point is identified as a Hopf bifurcation
point using Poincaré sections, i.e., a discretization of the recurrent dynamics in time.
This method is also implicit with a healing time tskip determined by the first crossing
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Fig. 6 Coarse analysis of the pedestrian dynamics in a corridor with bottleneck. (a) Snapshots of
a microscopic simulation show oscillating behavior for large enough door width w = 0.6. (b) Two-
parameter plane explains the dynamics of the system and the point for the Hopf bifurcation. (c)
Transient and limit cycle in the macroscopic description for w = 0.7. (d) The coarse bifurcation
diagram reveals a Hopf bifurcation at a critical door width w = 0.56.

of the Poincaré section. The Hopf bifurcation gives rise to macroscopic oscillations
for large door width w emerging from a stable blocked state for w small enough.

Let us now study the influence of rv0 on the location of the bifurcation point. The
system for macroscopic continuation is analyzed by a predictor-corrector method
using a linear prediction and a subspace search for the correction in order to study
the two-parameter problem and to continue the Hopf point. The results are shown in
Fig. 6(b). Keeping the other model parameters fixed, this gives an overview of the
behavior of the system on a macroscopic level in two parameters.

The application of equation-free analysis is not limited to pedestrians in a bot-
tleneck scenario. One could also think of applications in evacuation scenarios (see,
e.g., [28, 29]), where parameter regimes with blocked states have to be avoided at
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all cost. It is also possible to apply equation-free analysis to discrete models, e.g.,
cellular automaton models [30, 31]. This motivates further studies using equation-
free methods in traffic and pedestrian flow in order to systematically investigate and
finally optimize the parameter dependencies of the macroscopic behavior of such
microscopic models.

5 Discussion and Conclusion

We have demonstrated, that equation-free methods can be useful to analyze the pa-
rameter dependent behavior in traffic and pedestrian problems. Implicit methods
allow us to improve the results further by reducing the lifting error. The comparison
between traffic and pedestrian dynamics shows that both problem classes can be
studied with the same mathematical tools. In particular, the use of coarse bifurca-
tion analysis reveals some information about the system that could not be obtained
by simpler means, e.g., direct simulations of a microscopic model, since they can-
not investigate unstable solutions. Nevertheless, unstable solutions are important in
order to understand the phase space and parameter dependence of the dynamics.
In particular, in the case of a one-dimensional macroscopic dynamics the unstable
solutions act as barriers between separate stable regimes defining reliable operating
ranges. The knowledge of their locations can be used to systematically push the sys-
tem over the barrier to switch to another more desirable solution, e.g., leading to a
transition from traffic jams to uniform flow. In the application to two-dimensional
macroscopic dynamics, we find the precise dividing line between oscillations and
blocking in two parameters.

Finally, let us constrast equation-free analysis to the most obvious alternative. A
common approach to determining the precise parameter value at which the onset of
oscillations occurs, is to run the simulation for sufficiently long time and observe
if the transient behavior vanishes. This approach suffers from two problems. First,
close to the loss of linear stability in the equilibrium (i.e. close to the bifurcation
point) the rate of approach to the stable orbit or fixed point is close to zero as the
Jacobi matrix becomes singular. This makes the transients extremely long, resulting
in unreliable numerics. Second, even eventually decaying transients may grow in-
termittently (the effect of non-normality) such that the criteria for the choice of the
transient time to observe are non-trivial. Equation-free computations working on the
macroscopic level in a neighborhood of the slow manifold do not suffer from these
long transients, as they are based on direct root-finding methods.

In conclusion coarse bifurcation analysis can be used in future research to im-
prove safety in traffic problems and evacuation scenarios of large buildings in case
of emergency. The main advantage is, that realistic models can be used and a qualita-
tive analysis of the macroscopic behavior is still possible. The method works almost
independent of the underlying microscopic model and has a significant potential for
helping traffic modellers to gain insight into previously inaccessible scenarios.



16 Christian Marschler, Jan Sieber, Poul G. Hjorth and Jens Starke

Acknowledgements The authors thank their collaborators R. Berkemer, A.
Kawamoto and O. Corradi. The research of J. Sieber is supported by EPSRC grant
EP/J010820/1. J. Starke was partially funded by the Danish Research Council under
09-065890/FTP and the Villum Fonden (VKR-Centre of Excellence “Ocean Life”).

References

1. D. Helbing, P. Molnár, Phys. Rev. E 51, 4282 (1995)
2. D. Helbing, Rev. Mod. Phys. 73, 1067 (2001)
3. O. Corradi, P. Hjorth, J. Starke, SIAM Journal on Applied Dynamical Systems 11(3), 1007

(2012)
4. M. Bando, K. Hasebe, A. Nakayama, A. Shibata, Y. Sugiyama, Phys. Rev. E 51(2), 1035

(1995)
5. I. Gasser, G. Sirito, B. Werner, Physica D: Nonlinear Phenomena 197, 222 (2004)
6. Y. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama, K. Nishinari, S.i. Tadaki,

S. Yukawa, New J. Phys. 10(3) (2008)
7. G. Orosz, B. Krauskopf, R. Wilson, Physica D: Nonlinear Phenomena 211, 277 (2005)
8. C. Marschler, J. Sieber, R. Berkemer, A. Kawamoto, J. Starke, ArXiv e-prints (2013)
9. H. Haken, Synergetics. An introduction. (Springer, Berlin, 1983)

10. H. Haken, Advanced synergetics. (Springer, Berlin, 1983)
11. N. Fenichel, Journal of Differential Equations 31, 53 (1979)
12. I.G. Kevrekidis, C.W. Gear, J.M. Hyman, P.G. Kevrekidis, O. Runborg, C. Theodoropoulos,

Communications in Mathematical Sciences 1, 715 (2003)
13. I.G. Kevrekidis, C.W. Gear, G. Hummer, AIChE Journal 50(7), 1346 (2004)
14. I.G. Kevrekidis, G. Samaey, Annual Review of Physical Chemistry 60(1), 321 (2009)
15. Y. Kevrekidis, G. Samaey, Scholarpedia 5(9), 4847 (2010)
16. J. Sieber, B. Krauskopf, Nonlinear Dynamics 51(3), 365 (2008)
17. E. Bureau, F. Schilder, I.F. Santos, J.J. Thomsen, J. Starke, Journal of Sound and Vibration

332(22), 5883 (2013)
18. D.A.W. Barton, J. Sieber, Phys. Rev. E 87, 052916 (2013)
19. C.W. Gear, T.J. Kaper, I.G. Kevrekidis, A. Zagaris, SIAM Journal on Applied Dynamical

Systems 4, 711 (2005)
20. A. Zagaris, C.W. Gear, T.J. Kaper, Y.G. Kevrekidis, ESAIM: Mathematical Modelling and

Numerical Analysis 43(04), 757 (2009)
21. A. Zagaris, C. Vandekerckhove, C.W. Gear, T.J. Kaper, I.G. Kevrekidis, Discrete and Contin-

uous Dynamical Systems - Series A 32(8), 2759 (2012)
22. C. Vandekerckhove, B. Sonday, A. Makeev, D. Roose, I.G. Kevrekidis, Computers & Chemi-

cal Engineering 35(10), 1949 (2011)
23. W.J. Beyn, A. Champneys, E. Doedel, W. Govaerts, Y.A. Kuznetsov, B. Sandstede, in Hand-

book of Dynamical Systems, Handbook of Dynamical Systems, vol. 2, ed. by B. Fiedler (Else-
vier Science, 2002), pp. 149 – 219

24. Y.A. Kuznetsov, Elements of Applied Bifurcation Theory, Applied Mathematical Sciences, vol.
112, 3rd edn. (Springer, New York, 2004)

25. A. Seyfried, B. Steffen, T. Lippert, Physica A: Statistical Mechanics and its Applications
368(1), 232 (2006)

26. J. Zhang, W. Klingsch, A. Schadschneider, A. Seyfried, Journal of Statistical Mechanics: The-
ory and Experiment 2012(02), P02002 (2012)

27. C. Marschler, J. Starke, P. Liu, I.G. Kevrekidis, Phys. Rev. E 89, 013304 (2014)
28. D. Helbing, I.J. Farkas, P. Molnar, T. Vicsek, Pedestrian and evacuation dynamics 21, 21

(2002)



Equation-Free Analysis of Macroscopic Behavior in Traffic and Pedestrian Flow 17

29. A.U.K. Wagoum, M. Chraibi, J. Mehlich, A. Seyfried, A. Schadschneider, Computer Anima-
tion and Virtual Worlds 23(1), 3 (2012)

30. C. Burstedde, K. Klauck, A. Schadschneider, J. Zittartz, Physica A: Statistical Mechanics and
its Applications 295(34), 507 (2001)

31. S. Nowak, A. Schadschneider, Phys. Rev. E 85, 066128 (2012)


	Equation-Free Analysis of Macroscopic Behavior in Traffic and Pedestrian Flow
	Christian Marschler, Jan Sieber, Poul G. Hjorth and Jens Starke
	1 Introduction
	2 Equation-Free Methods
	3 Traffic Models
	4 Pedestrian Models
	5 Discussion and Conclusion
	References



