Electrical property mapping of ZnO:Al films with micro four-point-probe technique

Crovetto, Andrea; Kjær, Daniel; Petersen, Dirch Hjorth; Schou, Jørgen; Hansen, Ole

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Motivation

Demonstrating the advantages of a micro-four-point probe setup for mapping electrical properties of transparent conductive films:
1. High spatial resolution
2. Non-destructive
3. Compatible with in-line processes
4. No sample preparation for Hall measurement
5. Error suppression by combining measurements from 7 probes

Sheet resistance measurement

![Graph showing sheet resistance measurement](image)

Probes with smaller pitch are more sensitive to local variations and reduce correlation effects.

Hall measurement

- Measure V_B and V_B' close to an insulating boundary.
- Determine Hall mobility and carrier density.

![Diagram of Hall measurement setup](image)

On a ~1 cm scale:
- Resistivity decreases due to increase in both carrier density and mobility.
- Carrier density and mobility vary in antiphase (measurement noise).

On a ~100 µm scale:
- Resitivity decreases due to increase in both carrier density and mobility.

Burstein-Moss effect mapping:

\[\Delta E_c = \text{const} \left(\frac{1}{m_d} + \frac{1}{m_e} \right) n^{2/3} \]

\[\Delta E_c': \text{ (optical band gap of } \text{ZnO:Al) } - (\text{band gap of undoped } \text{ZnO}) \]

\(n \): carrier density

Thin film measurements

- Optical mapping (ellipsometry) to determine film thickness.
- Band gap measurement to determine optical mapping.

Acknowledgments

- This work has been supported by a grant from the Danish Council for Strategic Research.
- CINF is funded by the Danish National Research Foundation (DNRF54).
- The authors wish to thank Philip Rasmussen and Edoardo Bosco for technical assistance.

Contact

Andrea Crovetto
ancro@nanotech.dtu.dk

Daniel Kjær
DK@capres.com