Electrical property mapping of ZnO:Al films with micro four-point-probe technique

Crovetto, Andrea; Kjær, Daniel; Petersen, Dirch Hjorth; Schou, Jørgen; Hansen, Ole

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Electrical property mapping of ZnO:Al films with micro four-point-probe technique

Andrea Crovetto(1), Daniel Kjær(1,2), Dirch H. Petersen(1), Jørgen Schou(3) and Ole Hansen(1,4)

(1)DTU Nanotech, Technical University of Denmark; (2) CAPRES A/S, Kgs. Lyngby, Denmark; (3) DTU Photonics, Technical University of Denmark; (4) CINF, Center for Individual Nanoparticle Functionality, Technical University of Denmark

Motivation

Demonstrating the advantages of a micro-four-point probe setup for mapping electrical properties of transparent conductive films:
1. High spatial resolution
2. Non-destructive
3. Compatible with in-line processes
4. No sample preparation for Hall measurement
5. Error suppression by combining measurements from 7 probes

Sheet resistance measurement

![Graph showing sheet resistance measurement for micro and macro probes with different pitch sizes.]

- Probe with smaller pitch is more sensitive to local variations and reduces correlation effects.

Hall measurement

- Measure V_B and $V_{B'}$ close to an insulating boundary.
- Determine Hall mobility and carrier density.

B, B':

- Film and air.
- Probe tip.
- Sample edge.
- Strain gauge.

- Optical mapping (ellipsometry): thickness → optical mapping → band gap.
- Burstein-Moss effect mapping:

 \[
 \Delta E_g = \text{const} \left(\frac{1}{m_e} + \frac{1}{m_h} \right) n^{2/3}
 \]

 \[\Delta E_g: \text{ (optical band gap of ZnO:Al)} - \text{(band gap of undoped ZnO)}\]

 \[n: \text{ carrier density}\]

Acknowledgments

- This work has been supported by a grant from the Danish Council for Strategic Research.
- CINF is funded by the Danish National Research Foundation (DNRF54).
- The authors wish to thank Philip Rasmussen and Edoardo Bosco for technical assistance.