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Summary

1. Distributions of species body sizes within a taxonomic group, for example, mammals, are
widely studied and important because they help illuminate the evolutionary processes that
produced these distributions. Distributions of the sizes of species within an assemblage delin-
eated by geography instead of taxonomy (all the species in a region regardless of clade) are
much less studied but are equally important and will illuminate a different set of ecological
and evolutionary processes.
2. We develop and test a mechanistic model of how diversity varies with body mass in marine
ecosystems. The model predicts the form of the ‘diversity spectrum’, which quanti�es the dis-
tribution of species’ asymptotic body masses, is a species analogue of the classic size spectrum
of individuals, and which we have found to be a new and widely applicable description of
diversity patterns.
3. The marine diversity spectrum is predicted to be approximately linear across an asymptotic
mass range spanning seven orders of magnitude. Slope� 0�5 is predicted for the global marine
diversity spectrum for all combined pelagic zones of continental shelf seas, and slopes for
large regions are predicted to lie between� 0�5 and � 0�1. Slopes of� 0�5 and � 0�1 represent
markedly different communities: a slope of� 0�5 depicts a 10-fold reduction in diversity for
every 100-fold increase in asymptotic mass; a slope of� 0�1 depicts a 1�6-fold reduction. Stee-
per slopes are predicted for larger or colder regions, meaning fewer large species per small
species for such regions.
4. Predictions were largely validated by a global empirical analysis.
5. Results explain for the �rst time a new and widespread phenomenon of biodiversity.
Results have implications for estimating numbers of species of small asymptotic mass, where
taxonomic inventories are far from complete. Results show that the relationship between
diversity and body mass can be explained from the dependence of predation behaviour,
dispersal, and life history on body mass, and a neutral assumption about speciation and
extinction.
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Introduction

Most species are small. The nature of this bias and its
causes and rami�cations have been a focus of ecological
and evolutionary research for decades (e.g. Hutchinson &
MacArthur 1959; Van Valen 1973; May 1978; Dial &

Marzluff 1988; Maurer & Brown 1988; Blackburn & Gas-
ton 1994; Loder, Blackburn & Gaston 1997; Purvis, Orme
& Dolphin 2003; Marquet et al. 2005; Clauset & Erwin
2008). As well as illuminating ecological and evolutionary
processes, body mass–diversity relationships are important
for conservation because they help quantify existing diver-
sity. Most past work has considered these relationships in
species assemblages delineated by taxon (e.g. mammals).
We approach the topic from a fundamentally different*Correspondence author. E-mail: d.reuman@imperial.ac.uk
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but equally important perspective: how can body mass-
diversity relationships be explained for geographically
delineated but taxon-inclusive assemblages, that is, all the
species in a region? Different mechanisms will take pri-
macy in this new context. For instance, while patterns in
taxon-speci�c global assemblages will be strongly affected
by evolutionary history and physiological constraints of
the taxon, patterns in geographically constrained assem-
blages will be more affected by community assembly. We
here offer a �rst empirical description and explanatory
model of mass-diversity patterns in an important class of
geographically constrained assemblages: those in the
world’s continental shelf seas.

We consider a community consisting of individuals in
any speci�ed focal region in the world’s continental shelf
seas and with asymptotic mass in any speci�ed focal
range. Diversity of the community is in�uenced by four
main quantities that form the main structural components
of our model: (1) the number of individuals in the com-
munity; (2) the number of individuals in a much larger
‘metacommunity’ that is outside the focal region but that
is delimited by the same asymptotic mass range; (3) com-
monness of dispersal between the community and meta-
community; and (4) a speciation rate. These determinants
of diversity are well known from the theory of island bio-
geography (MacArthur & Wilson 2001) and the neutral
theory of biodiversity (Hubbell 2001). By unifying and
extending life history and size spectrum theory from sev-
eral sources (e.g. Ware 1978; West, Brown & Enquist
2001; Andersen & Beyer 2006), our model makes predic-
tions from �rst principles for how these four quantities
depend on the asymptotic mass bounds used and the envi-
ronment in the focal region. The model then combines the
results using formulas from neutral theory (Etienne & Olff
2004) to predict community diversity. Diversity refers to
numbers of species throughout.

Our model answers several speci�c questions. What is
the diversity in the focal community and how does it
depend on the asymptotic mass range used? How is the
relationship between diversity and mass affected by the
environmental characteristics of the focal region? What
are the individual- and population-level mechanisms con-
trolling these patterns?

The main assumption of our model is that organisms of
similar asymptotic mass in marine pelagic realms can be
approximated to be equivalent competitors– this is the
neutral assumption. Our theory applies principally to
pelagic environments because the neutral assumption and
model parameterizations of life history, predation and dis-
persal are more likely accurate there. ‘Pelagic’ is used here
and throughout to encompass organisms living or inter-
acting primarily in the water column, including bottom-
dwelling species which live on or near the sea bed but are
not permanently constrained to the substrate. We exclude
coral reefs and reef-associated species. Each species is
assigned a characteristic body mass (the asymptotic mass)
and counted as belonging to the mass category of its

characteristic mass. Asymptotic mass is used as the
characteristic mass because many aspects of life history
and predation and dispersal behaviour of a species are
strongly related to asymptotic mass. The approach of
using characteristic masses is consistent with prior work,
although much past work was based on groups exhibiting
determinate growth and therefore used average mass as
the characteristic mass.

As a uni�cation of size-based life history and popula-
tion growth theory with neutral theory within size catego-
ries, our model is inspired and in�uenced by earlier
theoretical approaches such as the models of Etienne &
Olff (2004), O’Dwyer et al. (2009) and Rossberg (2012,
2013). Our model is more targeted to a particular ecosys-
tem type than some of these and is more directly con-
fronted with data. Our model also builds upon and is
heavily in�uenced by the model of Andersen & Beyer
(2006). It extends theirs to address questions of diversity
through the use of neutral theory. Our model has some
similar features to models of Rossberg (2013), but is more
focussed on diversity spectra and biogeographical varia-
tion in the diversity spectrum. Our approach goes beyond
a body of prior statistical work on the biogeography of
marine diversity (e.g. Alroy 2010; Barton et al. 2010;
Beaugrand, Edwards & Legendre 2010; Tittensoret al.
2010), because the focus is on how diversity varies with
body size and also because the model is explicitly mecha-
nistic. Our work is part of a broad effort to unify species-
and size-based research approaches in community ecology
(e.g. Jennings et al. 2001; Brose et al. 2006; Reuman
et al. 2008, 2009b; Rossberg 2012, 2013; Trebilcoet al.
2013). An earlier version of the diversity spectrum, similar
to but distinct from that used here, was de�ned by Rice
& Gislason (1996) and Gislason & Rice (1998). The diver-
sity spectrum as used here was de�ned for the �rst time
by (Reuman et al. 2008, 2009b) and was shown there to
have consistent properties among ecosystems with system-
atic variation in parameters.

The empirical and theoretical descriptions of the diver-
sity spectrum we provide are important for several rea-
sons. First, and perhaps most importantly, we found that
the diversity spectrum, described systematically here for
the �rst time for marine systems, captures very wide-
spread phenomena of diversity and re�ects how abiotic
factors in�uence diversity. It therefore merits empirical
and mechanistic theoretical description. Secondly, data
and theory about the diversity spectrum are useful for
estimating numbers of species in small mass categories,
where taxonomic inventories are far from complete. We
provide such estimates for all continental shelf-sea regions
in aggregate and for speci�c regions. Estimates such as
these, as well as the general form and systematic variation
in the diversity spectrum that we describe, may be useful
for establishing baselines in conservation and monitoring
efforts, including planning aimed at marine reserve design.
Finally, by formulating a mechanistic model, this study
tests the hypothesis that well-known patterns of life his-

© 2014 The Authors.Journal of Animal Ecologypublished by John Wiley & Sons Ltd on behalf of British Ecological Society.Journal of
Animal Ecology, 83, 963–979

964 D. C. Reumanet al.



tory, predation and dispersal of marine organisms com-
bined with a neutral null assumption for speciation and
extinction can explain patterns of marine diversity. Our
model is a useful approximating model that illuminates
the main mechanisms behind a new set of important glo-
bal diversity phenomena.

Model formulation

prel iminaries: spectra and distr ibut ions

Diversity–body mass relationships can be characterized
using the diversity spectrumand a mathematically equiva-
lent but super�cially different species asymptotic-size
distribution, de�ned here along with related concepts
(Fig. 1). Let R be the focal shelf-sea region, and letm
denote the body mass of an individual andm� the asymp-
totic body mass of a species or an individual.

The individual size distributionis de�ned as the proba-
bility density function (pdf) of m for individuals in R,
regardless of species (Fig. 1c). The classicsize spectrum
(also called the abundance spectrum; Kerr & Dickie 2001)
is usually obtained by dividing the log(m) axis into bins
of equal width and plotting against bin centres the log
numbers of individuals (again regardless of species) inR
in each bin (the logarithmic base used here and elsewhere
in this section makes no substantive difference). If
g = log(m), one can alternatively use the equivalent de�-
nition that the size spectrum is the log of the pdf ofg for
the region (Fig. 1d). We adopt the latter de�nition
because of statistical weaknesses of the bin-based de�ni-

tion (White, Enquist & Green 2008). The size spectrum is
linear if and only if the individual size distribution is a
power-law distribution, in which case its slope is 1 plus
the exponent of the power law (Andersen & Beyer 2006;
White, Enquist & Green 2008; Reuman et al. 2008;
Appendix S2�1).

The individual asymptotic-size distribution and the
asymptotic-size spectrumcan be de�ned in an analogous
way to the individual size distribution and size spectrum.
The individual asymptotic-size distribution is the pdf of
m� for individuals in R, regardless of species. The asymp-
totic-size spectrum can be obtained by dividing the indi-
vidual log(m� ) axis into bins of equal width and plotting
against bin centres the log numbers of individuals inR
with m� in each bin. If g � = log(m� ), then the statistically
preferable but conceptually equivalent de�nition of the
asymptotic-size spectrum that we adopt is the log of the
pdf of g � for individuals. The asymptotic-size spectrum is
linear if and only if the individual asymptotic-size distri-
bution is a power law, and then its slope is 1 plus the
exponent (Appendix S2�1).

The species asymptotic-size distribution is the pdf of
m� for species in R (Reuman et al. 2008, 2009b;
Reuman, Cohen & Mulder 2009a; Fig. 1e). A bin-based
de�nition of the diversity spectrum exists, but the statisti-
cally preferable de�nition is the log of the pdf of g � for
species (Fig. 1f). The diversity spectrum is linear if and
only if the species asymptotic-size distribution is a
power-law distribution, and then its slope is 1 plus the
exponent (Appendix S2�1). The individual size distribu-
tion and size spectrum quantify the distribution of
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Fig. 1. Schematic illustration of basic de�nitions of spectra and distributions. Each species occurring in a region has an asymptotic mass
(large dots), and the individuals of that species have masses less than or equal to the asymptotic mass (small dots, linear scale, (a); sepa-
rate data on the log scale, (b)). Individuals of a species are all growing towards the species asymptotic mass, indicated by the thin col-
oured lines in (a) and (b). The individual size distribution (ISD; c) describes how the body sizes of all individuals in the region,
regardless of species, are distributed. The size spectrum (d) provides equivalent information in different form– it is the log of the distri-
bution of log individual body sizes. The species asymptotic-size distribution (SASD; e) is a species analogue of the ISD, and the diversity
spectrum (f) is a species analogue of the size spectrum– these tools indicate how species asymptotic sizes are distributed.
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individuals’ m, the individual asymptotic-size distribution
and the asymptotic-size spectrum quantify the distribu-
tion of individuals’ m� , and the species asymptotic-size
distribution and diversity spectrum quantify the distribu-
tion of species’m� .

model conceptual framework and
assumptions

Beginning with notation, denote the asymptotic mass
range boundaries for the community bym� ,l and am� ,l,
where l stands for ‘lower bound’ and a is a factor >1.
This range has width log(a) on a logarithmic scale, and
represents a moving window on that scale. Denote by
f(m� ) a minimum mass cut-off larger than the eggs of
individuals of asymptotic mass m� – this describes egg
mass as a function of asymptotic mass. Denote byC(m� ,l,
am� ,l) the community of individuals in region R with
asymptotic body mass,m� , in the range m� ,l to am� ,l and
body mass,m, in the range f(m� ) � m � m� . Denote by
M (m� ,l, am� ,l) the metacommunity, delimited by the same
ranges of m� and m, but in the region outside R instead
of in R. The region R is assumed to be 10000 km2 or lar-
ger. Denote by JC(m� ,l, am� ,l) and JM(m� ,l, am� ,l) the
numbers of individuals in the community and metacom-
munity, respectively, and denote bySC(m� ,l, am� ,l) and
SM(m� ,l, am� ,l) the numbers of species represented in
each. The abbreviationsC, M, J C, JM, SC and SM are
used whenm� ,l and am� ,l are understood from context.
T and AR denote the average temperature and area,
respectively, ofR.

Model dynamics assume �xed numbers of individuals in
the community (JC) and metacommunity (JM), with
deaths occurring at random. Dead individuals in the
metacommunity are replaced, with probability m by an
individual of an entirely new species, and with probability
1� m by the offspring of a randomly chosen individual
from the metacommunity. Dead individuals in the com-
munity are also replaced, with probability m by the off-
spring of a randomly chosen individual from the
metacommunity, and with probability 1� m by the off-
spring of a random individual from the community. So m
is a speciation rate parameter andm is an immigration
rate; these parameters are borrowed from the neutral
model (Hubbell 2001). The four model components out-
lined in the Introduction and derived in the following sec-
tions correspond to (1) JC; (2) JM; (3) m; and (4) m.
Model parameters are introduced in the text and summa-
rized in Table S1. Following common practice, mathemat-
ical symbols in different fonts or with different
capitalization are different; notational conventions are
explained in full in Appendix S1.

To represent multispecies dynamics inC and M by the
neutral model, we assume the same mortality and repro-
duction probabilities for all individuals in C and M ,
regardless of species (Hubbell 2001). This assumption is
not strictly met because niche differences resulting in life-

history variation are inevitable, but the assumption is a
reasonable �rst approximation becausem� explains much
of the variation in life history in marine organisms: the
growth trajectory (West, Brown & Enquist 2001), survival
probability and reproductive output of an individual can
all be predicted from m� (Charnov 1993; Charnov &
Gillooly 2004). Because growth trajectory is determined
by m� and because body mass,m, which is governed by
the growth trajectory, largely explains what a marine
organism eats and what eats it (Jenningset al. 2001), all
organisms in C and M are considered by our model to
face approximately equivalent competitive landscapes, on
average, over their lifetimes. There is some variation in
egg mass among organisms of asymptotic massm� , which
could affect the functional equivalence assumption. How-
ever, by de�ning C and M as those individuals that have
grown past the threshold massf(m� ), recruitment to C or
M only occurs at f(m� ). The factor a must be larger than
1, but not so large as to violate the assumption that indi-
viduals in C(m� ,l, am� ,l) can be treated as functionally
equivalent. The precise value ofa does not affect our
results.

derivation of model components1 and 2:
numbers of individualsJ C AND J M

Theoretical predictions for JC and JM are based on a for-
mula of Andersen & Beyer (2006) for the joint distribu-
tion, N(m, m� ), of individual m and m� . Derivation of the
formula, with augmentations for the current application, is
in Appendix S4. The distribution N(m, m� ) is de�ned, as
for any distribution, such that N(m, m� )dmdm� is the den-
sity in the marine community of individuals with body
masses betweenm and m + dm and asymptotic body
masses betweenm� and m� + dm� , for small dm and dm� .

The formula for N(m, m� ) incorporates several well-
known parameterizations of aspects of the life history and
behaviour of marine organisms. Field metabolic rate,IF,
depends on body mass as a power law,IF / meIF (Appen-
dix S3 and S8�1; see also Clarke & Johnston 1999; White,
Phillips & Seymour 2006; Hudson, Isaac & Reuman
2013). Optimal swimming speed,uopt, has been theoreti-
cally predicted to be a power law of body mass,
uopt / meuopt (Ware 1978; Appendix S3), with empirical
support provided by Peters (1983). Ontogenetic growth
rate, g, of marine organisms is known to be well approxi-
mated by the formula g ¼ kgmeIF ð1 � ð m=m1 Þ1� eIF Þ(West,
Brown & Enquist 2001; Andersen & Beyer 2006; Appen-
dix S4.5). Predation mortality risk in marine systems,d,
has been parameterized in past work asd ¼ kdmed (Loren-
zen 1996; Gislasonet al. 2010). Large teleost �sh have
small eggs that do not covary in size with speciesm�

(Duarte & Alcaraz 1989; Kamler 2005); and small �sh
and organisms smaller than �sh have egg sizes that scale
as a power law of body size (Duarte & Alcaraz 1989;
Hendriks & Mulder 2008). So f(m� ), the upper bound of
egg mass for organisms of asymptotic massm� , was mod-
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elled askfm
ef
1 for m� less than a thresholdmcut, and equal

to a constant, megg, for m� � mcut.
The formula for N(m, m� ) is

Nðm; m1 Þ /

m
2eIF � euopt � 11=3þ kdg
1 m� eIF � kdg 1 �

m
m1

� � 1� eIF

 ! kdg
1� eIF

� 1

eqn 1

where kdg = kd/kg. The formula holds for any m� > megg

and m in the range f(m� ) to m� . The marginal distribu-
tion

R1
m Nðm; m1 Þdm1 is proportional to the individual

size distribution for m > megg. The other marginal distri-
bution,

Rm1

fðm1 ÞNðm; m1 Þdm, is proportional to the individ-
ual asymptotic-size distribution, henceforth denoted
Nm1 ðm1 Þ, for m1 [ megg.

Via the above proportionality for the individual asymp-
totic-size distribution, theory predicts how JC and JM

scale with m� ,l. The numbers of individuals JC and JM in
the asymptotic mass boundsm� ,l to am� ,l are propor-
tional to

Ram1 ;l

m1 ;l
Nm1 ðm1 Þdm1 . BecauseNm1 ðm1 Þ can be

computed numerically for m� > megg, this integral can
also be computed numerically form� ,l > megg, providing
the predictions for the scaling ofJC and JM.

The derivation of the scaling of JC and JM also reveals
that this scaling is independent of the temperature
and area of R and its metaregion: although the constants
of proportionality relating JC and JM toRam1 ;l

m1 ;l
Nm1 ðm1 Þdm1 will differ from each other and may

vary from one region, R, to another, the proportionalities
themselves are the same for all regions. Eqn 1 and hence
the proportionalities for the individual asymptotic-size
distribution, JC, and JM, were derived regardless of tem-
perature and region area (Andersen & Beyer 2006;
Appendix S4). The parameters in eqn 1 also do not
depend on these environmental factors (Appendix S4�6).

The quotient JC/JM turns out to be important for the
diversity spectrum and its variation among regions. It will
later be shown to be proportional to the ‘size ofC relative
to speciation’, a quantity de�ned as the number of indi-
viduals in the community C compared to a total number
of speciation events in the metacommunity per generation.
Therefore, we now explore the dependence ofJC/JM on
m� ,l, T and AR. The m� ,l dependence ofJC/JM follows
immediately: becauseJC and JM scale with m� ,l in the
same way,JC/JM is independent ofm� ,l.

The parameterJC/JM is smaller for regions with higher
T. In marine ecosystems, temperature and primary pro-
duction are not strongly positively related on the spatial
scales we consider because low nutrient availability limits
primary production in areas with intense solar radiation
and because currents as well as local solar heating drive
sea temperature (Sarmiento & Gruber 2006). Thus, in
warm regions, resource supply rate at the base of the
food web is not systematically larger than in cold
regions. Because the metabolic demands of heterotrophic

marine ectotherms are greater in warmer regions,JC will
be smaller, on average, in warmer regions. A similar
result is obtained by Jenningset al. (2008). But the meta-
regions will not vary appreciably in their average temper-
atures from one region, R, to the next because the
metaregions themselves will not vary much: the metare-
gion is the area outside the region, and the area outside
one reasonably sized region nearly coincides with the
area outside another. Therefore, the metacommunity
sizes, JM, will be nearly constant for reasonably sized
regions. BecauseJC is smaller and JM nearly the same
for warmer regions, JC/JM will be smaller for warmer
regions, as claimed.

The quotient JC/JM is also larger for regions with larger
area AR. In fact, for each increase inAR by an arbitrary
factor, c, the ratio JC/JM will be larger by a factor of at
least c: JC is proportional to AR and JM shrinks as AR

increases because the metaregion is the area outside the
region.

derivat ion of model component 3: dispersal,m

In the neutral model, deaths occur at random and each
dead individual in the community is replaced from the
metacommunity with probability m and from the commu-
nity with probability 1 � m. For a tractable derivation of
m, we idealize the layout ofR as a disc,D, of effective
radius rR ¼

������������
AR=p

p
in the real Euclidean plane. The disc

D contains the community, C, and the region in the
Euclidean plane outsideD contains the metacommunity,
M . In the event of a death at locationv1 = (x1, y1) in D,
let uðv1; v2Þ ¼expðððx1 � x2Þ2 þ ðy1 � y2Þ2Þ=ð� 2r 2

dÞÞ be
the relative pressure from any other pointv2 = (x2, y2) to
�ll the vacancy resulting from this death; u is a dispersal
kernel, and r d is a dispersal distance parameter for organ-
isms in C and M . The average total replacement pressure
from outside D divided by that from inside D is

m
1 � m

¼

R
v12D

R
v262D uðv1; v2Þdv2dv1R

v12D

R
v22D uðv1; v2Þdv2dv1

: eqn 2

This quotient simpli�es to provide an expression for m
(eqn S5�1�8, Appendix S5�1) that can be computed numer-
ically given rR/r d, therefore providing theoretical predic-
tions for the dependence ofm on m� ,l, T and AR if we
can now predict how rR/r d depends on these variables.

But a relationship of the form rR=r d / rRm
� er d
1 ;l =kr dðTÞ

can be derived, whereer d is positive and kr dðTÞis smaller
for larger T. We here derive it by deriving the formula
r d / kr dðTÞm

er d
1 ;l , from which the formula for rR/r d fol-

lows immediately. The formula for r d is empirically and
theoretically supported for both larval and adult dispersal.
A large portion of dispersal in a marine environment is
via planktonic or weakly swimming larvae. Species dis-
persal distances,r d, as inferred from genetic data and the
expansion rates of invasive species, or as measured
directly for dispersing larvae, have been found to be
strongly related to larval duration by a power law
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(Shanks, Grantham & Carr 2003; Siegelet al. 2003). Lar-
val duration is in turn related to maximum body mass via
a power law (Bradbury et al. 2008) and has also been
shown to decrease with increasingT both within and
among species (O’Connor et al. 2007; Bradbury et al.
2008). Combining these patterns supports the stated
dependence ofr d on m� ,l and T if dispersal is primarily
larval. Adult dispersal is reasonably assumed to be pro-
portional to uopt times life span. Theory in Appendix S3
shows uoptðm1 ;l ; TÞ / e

� Euopt
kT m

euopt

1 ;l . Life span is known to
scale approximately as inverse mass-speci�c metabolic
rate, which scales ase

EIF
kT m

1� eIF
1 ;l because metabolic rate is

proportional to e
� EIF

kT m
eIF
1 ;l (Gillooly et al. 2001). Multiply-

ing the expressions for uopt and life span gives

e
ðEIF

� Euopt Þ

kT m
euoptþ 1� eIF
1 ;l . This product is a positive-exponent

power law of m� ,l, as claimed, as long as
euopt þ 1 � eIF [ 0, and it decreases asT increases, as
claimed, as long asEIF � Euopt [ 0, supporting the stated
dependence ofr d on m� ,l and T if dispersal is primarily
by adults. See Appendix S5�2 for a more detailed theoreti-
cal development that comes to the same conclusions. A
positive relationship between dispersal and asymptotic
body mass was further empirically supported by a
negative correlation between the genetic differentiation
within species and species’ maximum body size (Bradbury
et al. 2008). Decreased dispersal at higherT was sup-
ported in the same study by a negative correlation
between species’ genetic differentiation and their maxi-
mum latitude.

Given the relationship rR=r d / rRm
� er d
1 ;l =kr dðTÞ, we let

the unknown value of rR/r d for the reference asymptotic
massmeggbe denotedK1, so that rR=r d ¼ K1ðm1 ;l=meggÞ

� er d

and K1 / rR=ðkr dðTÞm
er d
eggÞ. Given values for K1, megg and

er d, rR/r d and therefore m can be computed for anym� ,l.
Theory thereby provides predictions for how m depends
on m� ,l. We call K1 the relative radius of the region R. It
is the effective radius of the region relative to the dis-
persal kernel of the smallest mass category, and turns out
to be important for the diversity spectrum of R. The
dependence ofm on the environmental variablesT and
AR is through K1 becauserR/r d depends on T and AR

through K1. K1 is larger for warmer or larger regions. The
expression K1 / rR=ðkr dðTÞm

er d
eggÞ makes it clear that

higher T implies larger K1, becausekr dðTÞ is smaller for
higher T; and increasing AR by an arbitrary factor c
increasesrR and thereforeK1 by a factor of

���
c

p
.

model component 4: speciat ion,m

Prior work suggestively but not irrefutably supports the
assumption that mis independent ofm� ,l and T. Gillooly
et al. (2005) showed that molecular evolution rates, in
units of nucleotide substitutions per unit time and per site
in a genome, are proportional to species characteristic
body mass to the power of� 1/4, times expð� E

kT Þ, where E
is about the same as the Arrhenius activation energy of

metabolism. As generation time is approximately propor-
tional to the inverse of this product, molecular evolution
rates expressed in units of nucleotide substitutions per
generation and per site are independent of body mass and
temperature. Thus, rates of molecular evolution per
recruit are mass and temperature independent. Because
the parametermis a per-recruit rate, this reasoning would
support the constancy ofmif speciation rates are primarily
controlled by rates of genetic divergence, as suggested by
Allen et al. (2006). Thomaset al. (2006) found that rates
of molecular evolution in invertebrate taxa do not depend
systematically on body mass, casting doubt on the gener-
ality of the results of Gillooly et al. (2005), but Thomas
et al. (2006) did not control for temperature. Perhaps
more importantly, the link between molecular evolution
and morphological change and speciation is uncertain
(Bromham et al. 2002). Several of these points were made
by Mittelbach et al. (2007). Nevertheless, because the
assumption of constantmis better supported than alterna-
tive assumptions and is also more parsimonious, we
explore the consequences of this assumption for our
model instead of alternative assumptions.

the unifying model component: numbers of
species,S C AND S M

Formulas were provided by Etienne & Olff (2004) for the
numbers of speciesSM and SC, depending on the quanti-
ties JC, JM, m and mderived above. The formulas provide
expected numbers of species at stochastic equilibrium in
the neutral model. The formulas can be well approxi-
mated by

SM � JM
vlogeð1=vÞ

1 � v
eqn 3

SC � JM
v

1 � v
loge 1 �

m logeðmÞ
1 � m

JCð1 � vÞ
JM v

� �� �
eqn 4

(Appendix S6�2). These approximations are used below to
develop testable predictions. The inaccuracies of the for-
mulas and their effects on our conclusions are quanti�ed
and shown to be negligible in Appendix S9. We use
approximations in place of the original formulas of Eti-
enne & Olff (2004) because it simpli�es analysis and inter-
pretations.

Becausemis very small, the expressionJC (1 � m)/(JMm)
in eqn 4 is approximately JC/(JMm), the number of
individuals in C relative to the number of speciation
events in M per generation. We denote this constant by
K2, which we name thesize of C relative to speciation. K2

is constant with respect tom� ,l becausemis constant and
we showed that JC and JM scale in the same way with
respect to m� ,l. K2 is smaller for regions with higher T,
and, for each increase inAR by an arbitrary factor, c, K2

is larger by a factor of at leastc; these facts hold because
m is constant and we showed thatJC/JM has the same
properties.
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Model parameterization

model parameters

The model was parameterized from data in the literature.
The values eIF ¼ 0:7982 and EIF ¼ 0:5782 were derived
from our own theoretical and empirical analyses (Appen-
dix sections S3 and S8.1). Similar values were estimated
from a large data set in prior work (Clarke & Johnston
1999). The valueeuopt ¼ 0:1342 was derived theoretically
(Ware 1978; Appendix sections S3 and S8.5) and sup-
ported empirically by Peters (1983), who obtained the
value 0�13. Euopt ¼ 0:2816 was obtained from the same the-
ory. Becausekdg is a function of eIF , euopt , bf, r f and a
food conversion ef�ciency, the value kdg = 0�737 was
derived from literature estimates of these parameters
(Appendix S8.5). To parameterize f(m� ), data from
several sources on the sizes of the eggs of �sh and other
marine organisms were used to support the valuesmegg =
6�5 9 10� 5 kg, mcut = 0�316 kg, ef = 0�5 and kf ¼ 1:16 �
10� 4kg1� ef (Appendix S8.4).

We adopted a range of values for the dispersal parame-
ter er d because it was the parameter known with the least
certainty from the literature and because it can comprise
both larval and adult dispersal. Dispersal distance is
related to larval duration by a power law with exponent 1
(Siegelet al. 2003; Shanks, Grantham & Carr 2003), and
larval duration is related to maximal body mass by a
power law with exponent 0�25 (Bradbury et al. 2008).
Thus er d ¼ 0:25 if dispersal is primarily larval. For adults,
we derived er d ¼ euopt þ 1 � eIF in the section ‘Derivation
of model component 3’, the value of which is 0�336. The
same or very similar values were obtained by the more
detailed reasoning in Appendix S5�2 (see also Appendix
S8�6). We considered the range 0�2 to 0�4 for er d. The
value EIF � Euopt , which if positive indicates that adult dis-
persal is theoretically expected to be reduced at higher
temperatures (see section ‘Derivation of model component
3’), is 0�5782–0�2816 = 0�2966 > 0. Additional details on
model parameters are given in Appendix S8, and parame-
ter values are summarized in Table S1.

bounds for K1 AND K2

Two bounds can be derived within whichK1, the relative
radius of the region, andK2, the size ofC relative to spe-
ciation, must reasonably lie for any of the regions we con-
sider. These bounds are important for understanding the
range of possibilities for diversity spectra becauseK1 and
K2 affect the diversity spectrum ofR. By de�nition, K2 =
JC(1� m)/(mJM), where mJM is a measure of the common-
ness of speciation andJC (1� m) � JC is large for large
regionsR. Because speciation is rare and we consider only
regions of area more than 10 000 km2, it is safe to assume
K2 > 10, that is, that the number of new species per gener-
ation is not more than 1/10th the population of the region
R. This seems likely to be a conservative bound. The

bound applies for the smallest regions we consider (those
of area 10 000 km2); the higher bound K2 > (AR/
10 000 km2)10 therefore holds for larger regions. An
upper bound for K1 that depends onAR can also be pro-
duced: solving rR=r d ¼ K1ðm1 ;l=meggÞ

� er d for K1 and
substituting

������������
AR=p

p
for rR gives K1 ¼

ð
�������
AR

p
=ð

���
p

p
r dÞÞðm1 ;l=meggÞ

er d . Using the reasonable
assumption that r d > 10 km for organisms of asymptotic
mass 1000 kg (andr d is certain to be larger than 10 km
for such large organisms, which on energetic grounds
alone would need to forage over extensive areas), we have
K1\ ð

�������
AR

p
=ð

���
p

p
10kmÞÞð1000kg=meggÞ

er d . This bound for
K1 can be combined with the bound for K2 by
algebraically eliminating AR to get K2[ K2

1p

megg

1000kg

� � 0:6
1
10

� �
¼1:54� 10� 5K2

1, using the central value 0�3

for er d: Both bounds are linear on log(K2)-versus-log(K1)
axes. Details of the derivation are in Appendix S8�7.

Model predictions

abundance predict ions

Linearity of the size spectrum and slope about� 1 have
been empirically supported (e.g. Sheldon, Sutcliff & Prak-
ash 1972; Kerr & Dickie 2001). Our model predicts this,
providing reassurance of model reasonableness. The distri-
bution N(m, m� ), using the parameters of section ‘Model
parameters’, is pictured in Fig. 2a. The marginal distribu-
tion

R1
m Nðm; m1 Þdm1 , proportional to the individual size

distribution, was shown by Andersen & Beyer (2006) to
be a power-law distribution with exponent � 2�003. The
model of Andersen & Beyer (2006) is included in our
model; hence, our model also predicts a power-law
individual size distribution with exponent � 2�003 and
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Fig. 2. (a) The joint distribution of individual mass, m, and asymp-
totic mass, m� , expressed as log10(N(m, m� )) + constant (see eqn
1) for m betweenmegg(upper bound �sh egg size) and 1000 kg and
m� between 1 and 1000 kg. The marginal distributions, which are
the individual size distribution (ISD) and the individual asymptotic-
size distribution (IASD), are labelled. The dashed line in the
individual size distribution indicates the part of the plot to which
organisms with m� < 1 kg contribute. (b) The log10 individual
asymptotic-size distribution plotted and linearly approximated for
m� betweenmeggand 1000 kg, illustrating the theoretical prediction
that the individual asymptotic-size distribution is approximately a
power law in m� with exponent about � 1�49.
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therefore a linear size spectrum of slope� 1�003 (Fig. 2a).
The derivation is reproduced in Appendix S4�3.

The other marginal distribution of N(m, m� ), computed
numerically and proportional to the individual asymp-
totic-size distribution, is shown in Fig. 2b. The predicted
log10 individual asymptotic-size distribution is approxi-
mately linear in log10(m� ), of slope � 1�49. Hence, theory
predicts that the individual asymptotic-size distribution is
a power law in m� with exponent � 1�49, and the asymp-
totic-size spectrum is linear with slope� 0�49.

diversity spectra

Because the individual asymptotic-size distribution is
approximately a power law in m� with exponent � 1�49,
JC and JM are approximately proportional toRam1 ;l

m1 ;l
m� 1:49

1 dm1 / m� 0:49
1 ;l . As m is constant with respect

to m� ,l, eqn 3 implies that SM should scale with m� ,l in
the same wayJM does, leading toPrediction 1: The num-
ber of speciesSM in the metacommunity M is approxi-
mately a power law in m� ,l with exponent � 0�49.

Equivalently, the diversity spectrum of the metaregion is
approximately linear with slope � 0�49. This prediction is
for m� ,l > megg, a limitation which comes from the same
limitation for eqn 1. Thus, theory predicts that the num-
ber of species in a category of log asymptotic mass in the
metaregion will be proportional to the number of individ-
uals in that category.

Predictions for the dependence ofSC on m� ,l can be
computed numerically using eqn 4 for any given values of
er d. K1 and K2. We plotted log10(SC) against log10(m� ,l)
(the diversity spectrum) for values ofer d in the range 0�2
to 0�4 and for K1 and K2 in a region bounded by the con-
straints of the section ‘Bounds forK1 and K2’. Plots were
always close to linear: root mean squared deviations
between linear approximations to the plots and the plots
themselves were always< 0�175 (Fig. 3a–c for example
plots). Slopes were always shallower than (greater than)
� 0�49 and were steeper than (less than) about� 0�1 for
reasonable values ofK1 and K2 (Fig. 3d–f). These results
precipitate two predictions. Prediction 2: The number of
speciesSC in the community C is approximately a power
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Fig. 3. Predicted regional diversity spectra and their slopes for different values ofK1 (the relative radius of the region),K2 (the size of
the community relative to speciation) ander d (the dispersal distance scaling exponent). Examples of predicted regional diversity spectra
(a–c) were close to linear. These panels show the log10 number of species in the regionR (i.e. SC(m� ,l, am� ,l)) plotted for lower-bound
asymptotic massm� ,l betweenmegg and 1000 kg.SC is computed using eqn 4.K1 = 102�5 and K2 = 104 were used for a–c; er d ¼ 0:2, 0�3
and 0�4 were used for a, d; b, e; and c, f, respectively, spanning the range selected in the section ‘Model Parameters’. The relationship
between log10(SC) and log10(m� ,l) was always close to linear, not just in the examples shown (see text). Panels d–f are contour plots
showing slopes of log10(SC) versus log10(m� ,l) for a range of values ofer d , K1, and K2. Dashed lines in d–f delineate the bounds forK1

and K2 given in the section ‘Bounds forK1 and K2’. The minimum slope and maximum slope occurring in the bounds are given, and
indicate that regional diversity spectrum slopes should be between� 0�5 and about � 0�1 for real regions.
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law in m� ,l. Equivalently, the diversity spectrum of the
region R is linear. Prediction 3: The power-law exponent
is greater than � 0�49 and likely less than� 0�1 for large
regions. Equivalently, the diversity spectrum slope forR
is between� 0�49 and � 0�1. These predictions are form� ,l

> megg. A derivation that does not use the approximations
used here is in Appendix sections S9�2 and S9�3; results
are substantially the same.

environmental gradients in diversity spectra

Suppose given a collection of continental shelf-sea regions
with different average temperatures,T, and areas,AR; the
collection of regions has a collection of associated metare-
gions, each metaregion being the area outside its region.
We showed thatK1 is predicted to be larger andK2 smal-
ler for warmer regions than for colder ones. Therefore,
Fig. 3d–f leads to Prediction 4: Diversity spectrum slopes
will be shallower (less negative) in warmer regions. Mov-
ing to the right (increasing K1) and down (decreasingK2)
on any of the panels d–f of Fig. 3 implies a shallower pre-
dicted slope (see Fig. 4 for a detailed depiction for the
central value er d ¼ 0:3). This prediction is for m� ,l > megg.
It holds as long as T and net primary productivity are
truly not positively related among regions; the derivation
of the T dependence ofJC/JM, and thereforeK1, relied on
this expectation.

We showed that across a gradient of increasingAR,
both K1 and K2 are predicted to increase, withK1 being
larger by a factor of

���
c

p
and K2 being larger by a factor

of at least c for each factor-of-c increase inAR. The net

effect is Prediction 5: The diversity spectrum of larger
regions will be steeper (more negative) than that of smal-
ler regions (Fig. 4). This prediction is form� ,l > megg. The
prediction matches with intuition because larger regions
are closer in size to their associated metaregions, which
have predicted diversity spectrum slope� 0�49, at the
steep end of the range of predicted regional slopes. A der-
ivation of predictions 4 and 5 that does not use the
approximations used here is in Appendix S9�3; results are
substantially the same.

Methods for testing model predictions

To test theoretical predictions, we empirically estimated
diversity spectra of 63 of the 64 large marine ecosystems
(LMEs) that partition the world’s continental shelf seas
(Sherman, Alexander & Gold 1993). LME boundaries are
standardized and are delineated by downloadable GIS
shape�les from the United States National Oceanic and
Atmospheric Administration (NOAA; Table S3 and Fig.
S7). LMEs are large, the smallest having area
1�52 9 1011 m2. The Arctic LME was excluded because
environmental variables were unavailable.

The range of variation in LME areas was modest
(1�52 9 1011 to 4�17 9 1012 m2, a factor of 27�3). There-
fore, to examine the in�uence of region area on diversity
spectra, LMEs were also aggregated to form larger
regions for which diversity spectra were estimated. LMEs
were aggregated to form 15 ‘provinces’ of area
9�77 9 1011 to 1�85 9 1013 m2, 7 ‘basins’ of area 2�53 9
1012 to 2�55 9 1013 m2, 3 ‘latitudinal bands’ of area
1�69 9 1013 to 3�13 9 1013 m2 and a single aggregate of
all 63 LMEs, the ‘global region’ (area 7�58 9 1013 m2).
Regions are listed and mapped in Appendix S10�1, Table
S4 and Figs S8 to S10.

Our theory applies to the entire community for m� ,l >
megg and is not constrained to a taxonomic group. How-
ever, taxonomically inclusive data are very dif�cult to
obtain. To test our theory, we use the fact that �sh domi-
nate the biomass and diversity of marine pelagic ecosys-
tems over the asymptotic mass range 1 to 1000 kg and
are likely to provide an adequate representation of the
whole community in that range (Jenningset al. 2008).
Theory was tested using �sh data in that range. The effect
of including other groups such as mammals, cephalopods
and scyphozoans was considered to the extent possible.

Data on the asymptotic sizes of �sh species and their
occurrence by LME were downloaded from FishBase
(Froese & Pauly 2006, August 2013). FishBase provides
the maximum length ever observed in any ecosystem for
each species. This was taken as a surrogate for species
asymptotic length, l� . Asymptotic lengths were converted
to asymptotic masses via the relationshipm� =101.038

l�
2.541, where l� is in metres andm� is in kilograms. This

relationship was determined from mass and length
data for world-record �sh caught by angling, for 526 spe-
cies, from the International Game Fish Association;
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Fig. 4. Predicted variation in regional diversity spectrum slopes
along environmental gradients. Contour lines show diversity spec-
trum slopes, enlarging part of Fig. 3e. Starting from reference
values of K1 and K2 (solid dot), arrows show the predicted varia-
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for other values of er d (Fig. 3).
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world-record lengths and masses are taken as surrogates
for asymptotic lengths and masses for a species, and an
interspeci�c regression was carried out to approximate the
relationship between asymptotic mass and length (Appen-
dix S11�1 for details). The same value ofm� was used for
a species in all LMEs in which it occurred. We excluded
species in the FishBase life-type category ‘reef-associated’
because our theory is for pelagic species. The number of
LME species occurrence records extracted from FishBase
was 27 817. Lists of species for larger regions (provinces,
basins, etc.) were compiled by combining the species lists
for component LMEs and removing duplicates.

The diversity spectrum of a region was estimated by
estimating the mathematically equivalent species asymp-
totic-size distribution. A truncated Pareto (tP) distribution
was �tted by maximum likelihood (Aban, Meerschaert &
Panorska 2006) to the species asymptotic mass data
between 1 and 1000 kg for each region that had at least
30 species in that range (58 LMEs and all the larger
regions).

The quality of �t of the tP distribution, and hence the
correctness of theoretical predictions about the linearity
of diversity spectra, was assessed with statistical tests and
plots. For each region, we tested the composite hypothesis
that data came from a tP distribution with truncation
points 1 and 1000 kg and unknown exponent. The statis-
tical test used is based on the Kolmogorov–Smirnov
statistic (Appendix S10�2). Tests such as this one can
detect very small deviations from the null hypothesis for
large sample sizes. For the speciose LMEs and for the lar-
ger regions, sample sizes were large, so we also produced
plots that depict the magnitude of deviations from linear-
ity. These plots were produced using a simple transforma-
tion that converts the cumulative distribution function
(cdf) of a tP distribution to the associated diversity spec-
trum (Appendix S10�2). The transformation was applied
to the empirical cdf of each region, producing a plot
we call the empirical diversity spectrum. The plot was
compared to the diversity spectrum associated with the �t-
ted tP distribution. Agreement between the plots was
assessed visually and also using a coef�cient of determina-
tion, 1 � SSE/SST, where SSE was the sum of squared
differences between the two plots, and SST was the sum
of squared deviations of the empirical diversity spectrum
from its mean. This statistic, which we call thespectrum
linearity statistic, is the fraction of the variation in the
empirical diversity spectrum that is explained by the linear
hypothesis. If the spectrum linearity statistic was greater
than 98% for a region, the diversity spectrum of that
region was deemed linear for the purposes of this study
even if the tP distribution was statistically rejected by the
above test. This is reasonable because we are trying to
understand the most important determinants of diversity
patterns.

For regions for which the tP distribution was statisti-
cally rejected, a quadratic generalization of the tP distri-
bution, here called the quadratic truncated Pareto(qtP)

distribution (Reuman et al. 2008; Appendix S2�2), was
also �tted for con�rmation. Its �t was compared with that
of the tP distribution using a likelihood ratio test. The
qtP is mathematically equivalent to a quadratic diversity
spectrum; hence, our comparison of the tP and qtP distri-
butions constituted a comparison of the hypothesis of a
linear diversity spectrum against a quadratic alternative.
The qtP distribution is the same as a log-normal distribu-
tion truncated on both sides, and the log-normal distribu-
tion is a commonly considered hypothesis for species size
distributions. The quality of �t of both the tP and qtP
distributions was judged visually by plotting log10 asymp-
totic body masses, sorted in ascending order, against
log10-scale medians of the order statistics of the �tted dis-
tributions, to provide log 10-scale probability plots. When
these plots were straight it indicated that the distribution
used was a good �t. When the plot for the qtP distribu-
tion was not substantially straighter than that for the tP
distribution, it indicated that the null hypothesis of a lin-
ear diversity spectrum was at least as good as the curved
alternative. For regions for which the tP distribution was
statistically rejected, the diversity spectra corresponding to
both the �tted tP and qtP distributions were also plotted
and compared visually. The dual use of formal hypothesis
tests and visual comparisons is again appropriate because
we are interested in whether theory and data agree on
major patterns, but minor deviations can cause statistical
rejection of hypotheses for large data sets.

Slopes of diversity spectra that were deemed linear
(either the tP distribution was not statistically rejected or
the spectrum linearity statistic was> 98%) were retrieved
from the parameters of the best-�tting tP distribution.
The tP distribution has pdf proportional to m�ð bþ 1Þ

1 where
b is the �tted parameter. The diversity spectrum is linear,
and � b is the diversity spectrum slope if the tP distribu-
tion is a good �t (see section ‘Preliminaries: Spectra and
Distributions’; Appendix S2�1). Con�dence intervals for b
and therefore for diversity spectrum slope were obtained
by a resampling scheme. For each region,m� values in
the range 1 to 1000 kg were resampled 1000 times with
replacement, and b was estimated for each resampling,
with quantiles providing con�dence intervals.

Estimates of average sea surface temperature, used as a
surrogate for T, and primary production in the LMEs
were obtained from remote sensing data.T estimates were
averages of 1997–2007 outputs of the version 5�0
Advanced Very High Resolution Radiometer Path�nder
project conducted by the University of Miami’s Rosenstiel
School of Marine and Atmospheric Science and the
NOAA National Oceanographic Data Center. The Path-
�nder data set is distributed by the Physical Oceanography
Data Active Archive Center (PODAAC) of the United
States National Aeronautics and Space Administration
Jet Propulsion Laboratory. Net primary productivity was
depth-integrated primary production (mg C m� 2 d� 1) and
was calculated from chlorophyll concentration following
the approach of Platt & Sathyendranath (1988) as
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implemented by M�elin & Hoepffner (2004). Model inputs
of surface chlorophyll concentration were obtained from
the Sea-viewing Wide Field-of-view Sensor (SeaWiFS)
time series for the years 1997–2007. Averaging procedures
are in Appendix S10�3. The Arctic LME was not included
because near-continuous cloud and ice cover prevented
adequate estimates of environmental variables (Gregg &
Casey 2007).

Dependence of diversity spectrum slopes on environ-
mental variables was examined with linear models, using
those LMEs deemed to have adequately linear diversity
spectra. A linear model with predictors log10(AR) and T
was used. AR was log-transformed because the trans-
formed variable appeared symmetrically and unimodally
distributed. For veri�cation of results, a linear model was
also used in which the importance of individual systems
for �tting was weighted according to the inverse variances
of the diversity spectrum slope estimates.

Results of testing model predictions

Prediction 1 was validated in main substance: the metare-
gion diversity spectrum was approximately linear with
slope close to � 0�49. The metaregion corresponding to
any of our regions, R, is the area of the global region out-
side R, which is well approximated by the whole global
region. So we tested prediction 1 for the global region.
Although the tP distribution was statistically rejected at
the 1% level (Table S6 forP-values), the empirical diver-
sity spectrum was very close to linear (Fig. 5a), and the
spectrum linearity statistic was greater than 98% (Table
S6 for spectrum linearity statistics). Because sample size
was large for the global region (n = 2885), very small
deviations from linearity were detected by the test of �t of

the tP distribution. Probability plots indicated that the tP
distribution was a good, but not perfect �t for the global
region (Fig. 5b). A likelihood ratio test showed that the
qtP distribution was statistically preferred (1% level) to
the tP distribution, but the qtP probability plot was only
slightly straighter than the tP plot (Fig. 5c), and the diver-
sity spectrum corresponding to the best-�tting qtP was
hardly different from that of the best-�tting tP (Fig. 5d).
Thus, the spectrum deviated signi�cantly but only slightly
from linearity. These deviations are real features of the
data, but they do not in�uence our understanding of
broad patterns in diversity, because they are small com-
pared with the overall pattern.

The diversity spectrum slope estimated by �tting the tP
distribution was � 0�561, with 95% con�dence intervals
(� 0�585, � 0�536) and 99% intervals (� 0�590, � 0�532).
These intervals did not contain the predicted slope,� 0�49,
but were close to it, possibly indicating that the model
contains the most important mechanisms controlling the
diversity spectrum but omits some less in�uential mecha-
nisms. Alternatively, model-data deviations may be
because we used �sh to approximate the whole commu-
nity. Although �sh are expected to dominate marine pela-
gic biomass and diversity in them� range 1 to 1000 kg
(Jennings et al. 2008), to precisely evaluate the accuracy
of this approximation would require the compilation of a
large amount of data for other groups, probably not cur-
rently possible for the global region. We instead examined
the approximation by looking at the group other than �sh
that seems most likely to contribute diversity that may
affect estimates of diversity spectrum slopes: marine mam-
mals. Marine mammals are large and hence contribute
diversity to the upper end of the range 1 to 1000 kg.
Estimates of slope are most sensitive to additional diver-
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Fig. 5. Example results for testing the
hypothesis that diversity spectra are linear.
Empirical diversity spectra (see the section
‘Methods for testing model predictions’)
and diversity spectra corresponding to
�tted tP distributions for selected regions
(a, e, i). Log-scale probability plots for
truncated Pareto (tP; b, f, j) and quadratic
truncated Pareto (qtP; c, g, k) �ts. Com-
parison of diversity spectra corresponding
to tP and qtP �ts (d, h, l). Panels are as
follows: a–d, the global region (all 63
LMEs combined); e–h, the Brazil Shelf;
i–l the West Greenland Shelf. Numeric
codes in the upper corners also identify
regions – Tables S3 and S4 list the system
names that correspond to the codes. See
Fig. S11 for other regions.
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sity at the upper end of the range, where there are few
species. Of approximately 120 known, extant marine
mammals, body mass data were provided by Smithet al.
(2003) for 113, of which 80 had average body mass in the
range 1 to 1000 kg. When these 80 mammals were com-
bined with the 2885 �sh species in the global region, the
tP distribution was still a good description, with spectrum
linearity statistic greater than 98% (Fig. S12; Table S5),
and the slope was even closer to model predictions (slope
� 0�521, 95% con�dence intervals (� 0�544, � 0�498) and
99% intervals (� 0�551, � 0�494)).

Prediction 2 was generally validated, but with a few
interesting exceptions: regional diversity spectra were usu-
ally, but not always linear or very close to linear. Of the
58 LMEs for which suf�cient data were available, the tP
distribution was statistically rejected (1% level) and spec-
trum linearity statistics were less than 98% for only �ve
LMEs, namely the Baltic Sea, the Faroe Plateau, the Ice-
land Shelf, the Norwegian Sea and the West Greenland
Shelf. Empirical diversity spectra were close to linear
except for these examples (Figs 5 and S11). Probability
plots con�rmed that the tP distribution was a reasonable
�t, and comparison between tP and qtP �ts revealed only
small differences, except for the �ve exceptional examples
(Figs 5 and S11). These �ve systems had empirical diver-
sity spectra that were clearly not straight, spectrum linear-
ity statistics less than 98% and probability plots that
indicated substantial nonlinearity (Figs 5i–l and S11 and
Table S6). The qtP was preferred to the tP for these sys-
tems, that is, spectra were curved. These systems violated
theoretical predictions for unknown reasons. These LMEs
were all located in the same area. Three of them (the West
Greenland Shelf, the Iceland Shelf and the Norwegian
Sea) were part of the North Atlantic province, which was
the only province for which the tP distribution was
rejected and the spectrum linearity statistic was less than
98%. Basins and latitudinal bands were deemed linear
(either the tP was not rejected or the spectrum linearity
statistic was greater than 98%), except for the South
Atlantic basin, which was close to linear, with spectrum
linearity statistic 0�978. Diversity spectra were thus gener-
ally close to linear, validating prediction 2, except for
some atypical LMEs in the North Atlantic.

Prediction 3 was validated: estimates of regional diver-
sity spectrum slopes were broadly consistent with the pre-
dicted range � 0�5 to � 0�1. Of the 53 LMEs with
adequately linear diversity spectra, none had estimated
slope above� 0�1, only six had slopes below� 0�5, only
three had 95% con�dence intervals of the slope that did
not overlap with the range � 0�5 to � 0�1, and only two
had 99% intervals that did not overlap with the range
(the Antarctic and Sea of Okhotsk). Other than the Ant-
arctic, all provinces, basins and latitudinal bands had con-
�dence intervals that overlapped with the range� 0�5 to
� 0�1 (Table S5).

Before testing predictions 4 and 5, we tested the under-
lying assumption about the regions, R, that is, that

temperature, T, for the regions was not positively related
to net primary productivity. Across the 53 LMEs for
which suf�cient data were available to estimate diversity
spectra and for which diversity spectra were linear,T and
net primary productivity were actually signi�cantly nega-
tively related (R = � 0�326, P = 0�017). The association
was weak. Similar results held using log10 net primary
productivity ( R = � 0�347, P = 0�011). T and

�������
AR

p
/ rR

were not signi�cantly related (Pearson’s R = 0�113,
P = 0�419). Similar results held using log10(AR)
(R = 0�112, P = 0�426) or AR (R = 0�108, P = 0�443) in
place of

�������
AR

p
. Net primary productivity and AR were not

signi�cantly related (R = � 0�184, P = 0�188).
Predictions 4 and 5 were validated: warmer or smaller

regions had shallower diversity spectrum slopes. A linear
model with predictors log10(AR) and T explained 30�4%
of the variation in slopes, and the coef�cients of both pre-
dictors were signi�cantly different from 0 (t-tests,
P = 6�82 9 10� 5 for T, P = 0�032 for log10(AR)). The T
coef�cient was positive (5�86 9 10� 3, standard error
1�35 9 10� 3) and the log10(AR) coef�cient was negative
(� 0�086, standard error 0�039), as predicted by theory.
Results were qualitatively the same when models were
used in which LMEs were weighted by the inverses of the
variances of diversity spectrum slope estimates (Appendix
S10�4). The effects of area may have appeared weak in
the linear model because variation in area among LMEs
was modest. But area effects were clearly seen across spa-
tial scales, by comparing diversity spectrum slopes of
LMEs, provinces, basins, latitudinal bands and the global
region (Fig. 6). Diversity spectrum slopes for LMEs are
mapped in Fig. 7.

Discussion

We proposed a mechanistic theory of the diversity spec-
trum and showed that it predicts: linearity of the diversity
spectrum; its slope for the world’s continental shelf seas;
the range of possible slopes for smaller regions; and shal-
lower slopes for warmer or smaller regions. To test our
theory, we provided the �rst systematic global empirical
estimates of the diversity spectrum and its geographical
variation. Theoretical predictions were correct, broadly
speaking, but with deviations in some details and with a
few exceptional systems in the North Atlantic. Our princi-
pal qualitative conclusion is that variation in diversity
with body mass can be explained, in large part, from
well-known life history, predation and dispersal informa-
tion and a neutral null assumption about speciation and
extinction.

Our theory predicted that diversity spectra are linear,
with slopes between� 0�5 and � 0�1; a similar range was
found empirically. Slopes � 0�5 and � 0�1 are strikingly
different. For every species in the mass categorym� ,l to
am� ,l, a community with diversity spectrum slope � 0�5
has 3�2 species in the categorym� ,l/10 to am� ,l/10 and 10
species in the categorym� ,l/100 to am� ,l/100. Diversity
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