All-polymer chip system for magnetic bead-based solid phase extraction

Kistrup, Kasper; Jørgensen, Karen Skotte; Østergaard, Peter Friis; Taboryski, Rafael J.; Wolff, Anders; Hansen, Mikkel Fougt

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
 ALL-POLYMER CHIP SYSTEM FOR MAGNETIC BEAD-BASED SOLID PHASE EXTRACTION

INTRODUCTION

Paramagnetic particles or magnetic beads (MBs) are commonly used as the solid phase matrix for magnetic bead-based solid phase extraction (SPE). A variant of MB-based SPE exists, where an immiscible phase is used as a filtering step in order to circumvent the washing steps otherwise needed to perform a successful extraction (1-3). The principle of the technique is presented in the sketch below. In this study we present an injection moulded cyclic olefin copolymer (CCO) planar chip system that has been bonded together using ultrasonic welding – both techniques that can be readily applied in mass production and it is what sets this system apart from ones previously published. The chip is fitted with geometric capillary micro valves for MB-based SPE using the immiscible phase filtration approach. See figure 1 for a photograph of the chip. We

- Characterise the chip in regard to carry-over volume and further investigate the influence of surfactants on the efficacy of the system.
- Present initial performance results, by detecting respiratory syncytial virus (RSV) in a mucus sample.

PRINCIPLE OF OPERATION

Results

The chip was performance tested in regard to volume carry-over and ability to detect RSV. The chip was tested with various surfactants and the carry-over volume was quantified. Figure 2 shows the determination of volume carry-over vs. amount of MyOne SILENE magnetic beads for pure water and a typical XNA lysis/binding buffer. We find that the volume carry-over;

- is proportional to the amount of beads through a linear correlation.
- is the same for Milli-Q water and the typical lysis/binding buffer.

Figure 3 shows initial results on RNA extraction, comparing the on-chip assay with an off-chip reference. We find that;

- Reducing the MB amount to one compatible with the chip had no effect on Cq.
- The on-chip extraction performed on par with the off-chip extraction.

CONCLUSION/OUTLOOK

We have demonstrated a mass-producible all-polymer chip created for MB-based solid phase extraction via immiscible phase filtration. It shows a low volume carry-over and is capable of extracting viral RNA from a mucus sample. Future studies include a more thorough investigation of RNA extraction and a possible switch in polymer type for chip manufacturing. The COC used here is not optimal for a system where you wish to employ surfactants. A polymer with

- Characterise the chip in regard to carry-over volume and further investigate the influence of surfactants on the efficacy of the system.
- Present initial performance results, by detecting respiratory syncytial virus (RSV) in a mucus sample.

CHIP FABRICATION

The chip consists of two cyclic olefin copolymer parts of the grade TOPAS 5013; an injection moulded main part and a 0.152 mm extruded film. The fabrication process is as follows:

- (a) Moulding via master insert with essential channels.
- (b) Injection moulding.
- (c) Ultrasonic welding of chip main part with COC film to complete chip fabrication.

METHODS

We have demonstrated a mass-producible all-polymer chip created for MB-based solid phase extraction via immiscible phase filtration. It shows a low volume carry-over and is capable of extracting viral RNA from a mucus sample. Future studies include a more thorough investigation of RNA extraction and a possible switch in polymer type for chip manufacturing. The COC used here is not optimal for a system where you wish to employ surfactants. A polymer with a higher surface energy would be more beneficial.

Kasper Kistrup, PhD Student

Kasper Kistrup*, Karen Skotte Sørensen*, Peter Friis Østergaard, Rafael Taborsky*, Anders Wolff, Mikkel Fougnt Hansen

*Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby, Denmark

**Center for Integrated Point of Care technologies (CiPoC), DELTA, Venlighedsvej 4, DK-2870 Hørsholm, Denmark

E-mails: kkis@nanotech.dtu.dk and mikkel.hansen@nanotech.dtu.dk

www.nanotech.dtu.dk/MagSys \ | www.PolyNano.org

Phone: +45 4525 6383

kris@polyhealth.com