The effects of mixing air distribution and heat load arrangement on the performance of ceiling radiant panels under cooling mode of operation

Research output: Contribution to journalJournal article – Annual report year: 2017Researchpeer-review

Documents

DOI

View graph of relations

The cooling power of radiant panels can be effected by the arrangement of heat loads and by the room air distribution system. This impact can be important because often the cooling output is the critical factor for the design and usability of radiant panels. In this study, the impact of heat load arrangement and air distribution generated in a room by linear slot diffuser, radial multi-nozzle diffuser and radial swirl induction unit on the cooling power of radiant panels was compared. The impact on the thermal environment was also studied. Measurements were carried out without and with supply air in a test chamber equipped with two ceiling radiant panels and air distribution units flush with the radiant panels. The heat load was generated through the walls and with heated cylinders. The cooling power of the radiant panels was increased with the studied air distribution methods. The increase was from 5% to 17% depending on the air distribution method and the heat load arrangement. The most significant effect of the heat load arrangement occured when heat loads are located unevenly and their convection flow turns or weakens the supply air jet flushing the radiant panels.
Original languageEnglish
JournalScience and Technology for the Built Environment
Volume23
Issue number7
Pages (from-to)1090-1104
ISSN2374-4731
DOIs
Publication statusPublished - 2016
CitationsWeb of Science® Times Cited: No match on DOI
Download as:
Download as PDF
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 134226323