Mapping wind resources - state of the art

Mortensen, Niels Gylling; Hansen, Jens Carsten

Publication date: 2008

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Mapping wind resources – state of the art

Niels G. Mortensen and Jens Carsten Hansen
Wind Energy Division, Risø DTU
Technical University of Denmark

Observational wind atlas
European Wind Atlas

- 12 countries in Europe
 - EU project 1981-89
- 220 met. stations
 - Wind data for 10 years
 - wind atlas analyses
- 656-page book
 - EU wind potential
 - handbook of siting
 - database of wind
- CD-ROM containing
 - observed wind data
 - modelled wind data
- Applications
 - only overall planning

Numerical wind atlas – mesoscale

- Inputs
 - NCEP/NCAR reanalysis data-set
 - terrain topography – elevation and roughness – satellite and SRTM data
- Outputs
 - generalised regional wind climate for large domains
- Applications
 - planning and project preparation
 - assessment of mesoscale effects at wind farm projects
Numerical Wind Atlas for Egypt

- Numerical wind atlas
 - NCEP/NCAR data
 - mesoscale modelling
 - SRTM30 elevations
 - GLCC land use
- Observational wind atlas
 - 30 met. stations
 - microscale modelling
 - SRTM3 elevations
 - Land use from GE
- Comprehensive outputs
 - Wind Atlas for Egypt
 - OWC/RWC databases
 - > 50,000 *.lib files!
 - Verified and reliable
 - Application ready!

Verification – example

Typical mean absolute error on the wind speed: 5-10 %
State-of-the-art wind atlas methodology

<table>
<thead>
<tr>
<th>Pre-processing</th>
<th>Modelling</th>
<th>Post-processing</th>
<th>Numerical WA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind classes</td>
<td>KAMM, WRF</td>
<td>Predicted wind climate (Regional wind climate)</td>
<td>Mesoscale maps Database</td>
</tr>
<tr>
<td>Terrain roughness</td>
<td>MC2, MMS etc.</td>
<td>Predicted wind resource for selected terrain site coordinates</td>
<td>WAsP® *</td>
</tr>
<tr>
<td>Input specifications</td>
<td></td>
<td></td>
<td>Uncertainties</td>
</tr>
<tr>
<td>Model setup</td>
<td></td>
<td></td>
<td>Parameters</td>
</tr>
</tbody>
</table>

Met. stations
- **Sino-Danish Wind Energy Development Programme** - Dongbei 2008-2009
- **Strategy**
 - Twinning arrangement – initiate long-term, strategic cooperation between CMA and Risø DTU
 - Development of numerical wind atlas methodologies
 - Development of measurement practices
 - Emphasis on application of results for wind energy planning and project preparation.
 - Emphasis on verification and uncertainties
 - Full-scale testing and verification in Dongbei: Liaoning, Jilin and Heilongjiang

Mesoscale and microscale modelling in China

“Sino-Danish Wind Energy Development Programme” - Dongbei 2008-2009

- **Pre-processing**
 - Wind speed distributions
 - Wind direction distribution
 - Terrain elevation
 - Terrain roughness
 - Sheltering obstacles

- **Modelling**
 - WAsP
 - MS-Micro
 - CFD-models etc.

- **Post-processing**
 - Regional wind climate
 - Predicted wind climate
 - Predicted wind resource for selected terrain site coordinates

- **Applications**
 - Best practices
 - Courses and training
 - Microscale flow model
 - Wind term wake model

Observational WA
- **Mesoscale maps**
- **WAsP®** LUF files
- **Uncertainties**
- **Parameters**
Measurements

- Lattice-type meteorological towers
 - 12 tall masts (70 & 100 m)
 - accurate installation of sensors
 - easy inspection and maintenance

- Sensors
 - high-quality, double instrumented
 - wind speeds at 3 or 4 levels ⇒ vertical wind profile
 - temperature difference sensors ⇒ atmospheric stability

- Data acquisition system
 - Daily GSM transfer to database
 - local backup in logger
 - high data recovery rates

70-m mast installed in Dongbei
70-m mast installed in Dongbei
Modelling

• **Mesoscale modelling**
 - KAMM/WAsP numerical wind atlas
 - covers large areas
 - fast and cost-effective
 - regional wind climate @ grid points
 - provides inputs for microscale
 - comparisons of several models: KAMM, WRF, MMS and MC2

• **Microscale modelling**
 - analysis of 12 met. towers
 - analysis of CMA met. stations
 - WAsP observational wind atlas
 - regional wind climate @ tower
 - parameter studies used for localisation of model setup
 - same model as for applications

By the end of 2009

• **12 measurement stations** in operation
 - nine 70-m + three 100-m masts
 - double instrumentations: Risø and CMA

• **Observational Wind Atlas**
 - measurements and microscale modelling
 - for regions close to the towers and met. stations

• **Numerical Wind Atlas**
 - reanalysis data and mesoscale modelling
 - covering all of Dongbei with a resolution of 5 km

• **Verification** of numerical wind atlas against towers and met. stations

• **Databases, tools and guidelines**
Ideas for the future

So, the mean wind climate is being done now, what’s next...?

Here are some quick ideas:
• Wind conditions and site assessment (IEC 61400-1)
 - extreme winds
 - wind profiles and shear
 - terrain and flow angles
 - free-stream turbulence intensity
 - wind farm wake turbulence
• Extreme Wind Atlas
• More on stability effects
• Long-term wind climatologies at reference stations
• ...

And, not to forget, application of improved methodologies to all of China!