The Order Bacillales Hosts Functional Homologs of the Worrisome cfr Antibiotic Resistance Gene

Hansen, Lykke H.; Planellas, Mercè H.; Long, Katherine; Vester, Birte

Published in:
Antimicrobial Agents and Chemotherapy

Link to article, DOI:
10.1128/AAC.00673-12

Publication date:
2012

Document Version
Publisher’s PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
The Order Bacillales Hosts Functional Homologs of the Worrisome \textit{cfr} Antibiotic Resistance Gene

Lykke H. Hansen, Mercè H. Planellas, Katherine S. Long and Birte Vester

Published Ahead of Print 30 April 2012.
The Order *Bacillales* Hosts Functional Homologs of the Worrisome *cfr* Antibiotic Resistance Gene

Lykke H. Hansen, a Mercè H. Planellas, a Katherine S. Long, b and Birte Vester a

Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark, a and Novo Nordisk Foundation Center for Biosustainability and Department of Systems Biology, Technical University of Denmark, Hørsholm, Denmark b

The *cfr* gene encodes the Cfr methyltransferase that methylates a single adenine in the peptidyl transferase region of bacterial ribosomes. The methylation provides resistance to several classes of antibiotics that include drugs of clinical and veterinary importance. This paper describes a first step toward elucidating natural residences of the worrisome *cfr* gene and functionally similar genes. Three *cfr*-like genes from the order *Bacillales* were identified from BLAST searches and cloned into plasmids under the control of an inducible promoter. Expression of the genes was induced in *Escherichia coli*, and MICs for selected antibiotics indicate that the *cfr*-like genes confer resistance to PhLOPSa (phenicol, lincomamide, oxazolidinone, pleuromutilin, and streptogramin A) antibiotics in the same way as the *cfr* gene. In addition, modification at A2503 on 23S rRNA was confirmed by primer extension. Finally, expression of the Cfr-like proteins was verified by SDS gel electrophoresis of whole-cell extracts. The work shows that *cfr*-like genes exist in the environment and that *Bacillales* are natural residences of *cfr*-like genes.

The *cfr* gene was first found in 2000 on a plasmid in a *Staphylococcus sciuri* strain in a veterinary bovine sample from Germany (25). Cfr methylates nucleotide A2503 of 23S rRNA at the ribosomal peptidyl transferase center (16). It provides resistance to antibiotics binding to the ribosomal peptidyl transferase center on the ribosome, defining a PhLOPSa phenotype reflecting resistance to phenicol, lincomamide, oxazolidinone, pleuromutilin, and streptogramin A antibiotic classes (19), and it also confers resistance to some macrolide antibiotics (28). The *cfr* gene is thus a serious threat when it spreads in pathogenic bacteria because many clinically important antibiotics will become useless.

In 2007, the *cfr* gene was found in a methicillin-resistant *Staphylococcus aureus* (MRSA) isolate from a patient from Colombia (30). The *cfr* gene has now been found worldwide in *Staphylococcus* spp. isolated from animals in Germany, Denmark, and China (15, 17, 25, 35) as well as in patients from the United States, Spain, Mexico, Italy, and Ireland (3, 4, 8, 13, 20–24, 27). It has also been found in other Firmicutes, namely, in an *Enterococcus faecalis* isolate from a patient in Thailand (7) and one of animal origin (18) and in *Bacillus* sp. isolates from swine feces (6, 33, 36). Furthermore, the *cfr* gene has recently been detected in animal isolates of the Gram-negative bacteria *Proteus vulgaris* (34) and *Escherichia coli* (32). All findings concern the same gene with only very minor sequence changes. It is also evident that the *cfr* gene has been transmitted to its hosts, as it is always found either on a plasmid or together with insertion sequences.

In 2008, the identity of the Cfr-mediated methylation was determined to be 8-methyladenosine (m8A), a new natural RNA modification (9). It was also established by mutagenesis that Cfr is a radical S-adenosylmethionine (SAM) enzyme. This family includes a wide range of enzymes from a diverse set of bacteria involved in protein radical formation, isomerization, sulfur insertion, anaerobic oxidation, and unusual methylations, as originally described by Sofia et al. (29).

Phylogenetic comparisons have shown that Cfr is similar to the RlmN methyltransferases that add a methyl group at the C-2 position of 23S rRNA nucleotide A2503 (31), the same nucleotide that is methylated by Cfr. It may be that the *cfr* gene evolved from the *rlmN* gene via gene duplication, but no clear path has emerged yet. A new mechanism involving protein methylation and transitory cross-linking has recently been proposed to explain the detailed mechanism of Cfr and RlmN methylation (10, 11), and an X-ray structure of RlmN has been published (2).

The gene and genome databases contain a wealth of information that can be used to find genes similar to *cfr*. We have selected three Cfr-like proteins from the order *Bacillales*, cloned the genes, and investigated if they indeed confer resistance in a manner similar to that of the Cfr methyltransferase. In addition, the methylation was assayed by primer extension on 23S rRNA and protein expression was assayed by SDS gel electrophoresis. The results confirm that *cfr*-like genes exist in the environment and that the *cfr* gene is not functionally unique.

MATERIALS AND METHODS

Construction of plasmids bearing *cfr*-like genes. Plasmids encoding Cfr-like proteins were constructed by PCR amplification of the genes from genomic DNA (the sources and other information are listed in Table 1), followed by cloning into plasmid pLJ102 for expression of the Cfr-like proteins. *Bacillus amyloliquefaciens* and *Bacillus clausii* were grown in LB. *Brevibacillus brevis* was grown in a medium containing 10 g polypeptone, 2 g yeast extract, and 1 g MgSO4·7H2O per liter. All strains were grown at 37°C. Genomic DNA was isolated with the High Pure PCR template preparation kit (Roche) or the Aqua Pure genomic DNA kit (Bio-Rad). Standard PCR amplification of the relevant genes was performed with the following primers, each containing NdeI or HindIII cleavage sites for standard PCR amplification of the relevant genes was performed with the following primers, each containing NdeI or HindIII cleavage sites for

Received 28 March 2012 Returned for modification 14 April 2012
Accepted 25 April 2012
Published ahead of print 30 April 2012

Address correspondence to Birte Vester, b.vester@bmb.sdu.dk.
Copyright © 2012, American Society for Microbiology. All Rights Reserved.
doi:10.1128/AAC.00673-12
TABLE 1 The cfr-like genes and plasmids used in this study

<table>
<thead>
<tr>
<th>Gene or plasmid</th>
<th>Organism (genome source for cfr-like genes) or features</th>
<th>Strain designation</th>
<th>Source or referencea</th>
<th>Gene IDb</th>
</tr>
</thead>
<tbody>
<tr>
<td>cfrA</td>
<td>Bacillus amyloliquefaciens</td>
<td>FZB42</td>
<td>BGSC</td>
<td>YP 001420189</td>
</tr>
<tr>
<td>cfrC</td>
<td>Bacillus clausii</td>
<td>"domovar"</td>
<td>BGSC</td>
<td>YP 174574.1</td>
</tr>
<tr>
<td>cfrB</td>
<td>Brevibacillus brevis</td>
<td>100599</td>
<td>NBRCC</td>
<td>YP 002773985.1</td>
</tr>
</tbody>
</table>

Plasmids

plB	Inducible ClbA expression	This study
pBb	Inducible ClbB expression	This study
pBC	Inducible Cfr expression	9, 14
pBglII	Constitutive Cfr expression	16
pJL102	Derivative of pQE60	12
plbScript	Cloning vector	Strategene

a BS GC, Bacillus Genetic Stock Center; NBRCC, NITE Biological Resource Center.
b Gene identification numbers indicate database accession numbers.

cloning; 5′CTGCATACATATGCAAACAAAAACAGTATAT3′ and 5′ CAGAATAAAGCTTATTTGTTCTATTTTTTGATATA3′ for the Bacillus amyloliquefaciens gene (cfrA), 5′CTGCATACATATGAAAGTTGATCA ATCATTGG3′ and 5′ CAGAATAAAGCTTATTTTTCCTCGCTAGA3′ for the Bacillus clausii gene (cfrC), and 5′CTGCATACATATGAAA CTAACCTCGAAATATGAA3′ and 5′CAGAATAAAGCTTATTTTTGATATA3′ for the Brevibacillus brevis gene (cfrB). The PCR fragments were cut with the appropriate restriction enzymes and ligated into plasmid pLJ102, cut with the same enzymes (whereby another gene was removed), such that the genes are positioned after an IPTG (isopropyl-β-D-thiogalactopyranoside)-inducible promoter. The ligations were transformed into the E. coli TOP10 strain (Invitrogen), and plasmid-containing clones were selected on agar plates with 100 µg/ml ampicillin. Plasmids were isolated from these clones and retransformed into E. coli strains AS19 (26) and JW2501-1 (1). All three plasmid constructs were sequenced at the inserted gene to verify the identity of the cloned genes.

Verification of cfr-like gene expression by SDS gel analysis. E. coli AS19 cells harboring the plasmids with the cfr-like-look alike genes were grown at 37°C to an optical density at 450 nm (OD450) of 0.2 to 0.3, followed by addition of IPTG (to 1 mM) for induction of the genes. Cells were harvested after 3 to 3.5 h of growth and stored at −80°C. For gel analysis, samples were dissolved in 1× SDS/dithiothreitol (DTT) loading buffer, boiled for 5 min, and loaded onto standard SDS gels along with standard markers. Gels were run at 180 V and then stained with brilliant blue G.

Antibiotic susceptibility testing of strains expressing Cfr-like proteins. Drug susceptibility testing was done in a microtiter plate format by measuring optical density values at 450 nm with a Victor 3 spectrophotometer (Perkin Elmer). LB medium was inoculated with single colonies of E. coli AS19 strains harboring plasmids with cfr or the cfr-like genes and incubated overnight. The cultures were diluted to an OD450 value of 0.01, followed by mixing of 100 µl diluted culture with 100 µl of antibiotic solution in a series with 2-fold concentration steps. Expression of cfr and the cfr-like genes was induced by addition of 1 mM IPTG. The tested concentration ranges were as follows: florfenicol, 0.5 to 32 µg/ml; clindamycin and linezolid, 2 to 128 µg/ml; tiamulin, 0.25 to 128 µg/ml; and a mixture of streptogramin A and streptogramin B antibiotics (Synercid), 1 to 64 µg/ml. The MIC was defined as the drug concentration at which the growth of the cultures was completely inhibited after 24 h of incubation at 37°C.

Primer extension analysis. RNA was extracted from E. coli JW2501-1 strains harboring the plasmids following induction with 1 mM IPTG and 3 to 4 h of growth using the GeneJET RNA purification kit (Fermentas). Methylation at A2530 was examined by primer extension analysis with avian myeloblastosis virus (AMV) reverse transcriptase (Finnzymes). The Cys5-labeled deoxyoligonucleotide primer (5′-GAACAGCCATACCCCTTG-3′), complementary to nucleotides 2540 to 2556 of E. coli 23S rRNA, was used. The cDNA extension products were separated on 6% polyacrylamide gels. The positions of the stops were visualized by fluorescence scan and identified by referencing to dideoxyribonucleotide sequencing reactions on 23S rRNA that were electrophoresed in parallel.

RESULTS AND DISCUSSION

BLAST search and selection of cfr-like genes. BLAST searches were performed against the nonredundant protein sequences database with the S. sciuri Cfr protein sequence as the query sequence. As expected from the literature, the top hits corresponded to the Cfr proteins found in Bacillus sp., S. aureus, and E. faecalis, with 99 to 100% identity to the query sequence. Other hits with over 50% identity to Cfr are proteins found in Firmicutes, including organisms in the genera Bacillus, Brevibacillus, Paenibacillus, Bacillus, Clostridium, and Enterococcus. Of these, the proteins with highest identity to Cfr (60 to 80%) are, with one exception, found in Bacillus and Brevibacillus. Three proteins with high degrees of identity to Cfr that were found in organisms from these two genera, namely, Bacillus amyloliquefaciens, Bacillus clausii, and Brevibacillus brevis, were selected for further analysis. An alignment showing the homology is presented in Fig. 1. As we are interested in discovering Cfr and not RlmN homologs, RlmN is included in the alignment to show that the selected sequences are more similar to Cfr than to RlmN (Fig. 1).

Cloning, sequencing, and expression of the selected Cfr-like proteins. After extraction of genomic DNA from the Bacillus amyloliquefaciens, Bacillus clausii, and Brevibacillus brevis strains, their cfr-like genes were amplified by PCR for cloning (see Materials and Methods). The genes were introduced into plasmid pJL102 (12) in the same way that plasmid pCfrhis was constructed with the S. sciuri cfr gene (9, 14) except that no histidine tag was added. The insertions were verified by sequencing of the cloned genes, and the plasmids named pBa, pBb, and pBb were transformed into E. coli AS19. Expression of the genes was induced by addition of IPTG and investigated by SDS gel analysis of total protein from the strains. Each strain was assayed with and without IPTG induction. Samples of E. coli AS19 without plasmid and with plasmid pBglII (16), which constitutively expresses Cfr, were included as controls. The gels presented in Fig. 2 show expression of Cfr and the Cfr-like proteins (here referred to as ClbA, ClbB, and ClbB), for which the pBb and pBc samples show very strong expression. As the plasmids are identical except the cloned gene sequences, the differences in expression may be due to differences in translation, rare codons, or the stability of the mRNAs or the enzymes themselves.

Antibiotic susceptibilities of strains expressing Cfr-like proteins for PhLOPSa antibiotics. To establish if the Cfr-like proteins ClbA, ClbB, and ClbB confer a resistance pattern similar to that of the Cfr methyltransferase, MICs were determined for the plasmids harboring the respective plasmids with the five antibiotics florfenicol, clindamycin, linezolid, tiamulin, and streptogramin A/streptogramin B. These antibiotics represent the five antibiotic classes in the PhLOPSa phenotype defined from the Cfr methyltransferase (19). The E. coli AS19 strain is used as a host for these experiments because it is much more sensitive to many antibiotics than other E. coli strains that have a naturally low sensitivity level. Expression of the plasmid-borne genes was induced by adding IPTG when the strains were transferred to LB medium containing 3564 aac.asm.org Antimicrobial Agents and Chemotherapy
the antibiotics. The MICs are summarized in Table 2 together with those of the control strains without plasmid, the parent pLJ102 plasmid, the pBglII plasmid that constitutively expresses Cfr, and its parent plasmid pBluescript with no cfr gene. All in all, expression of the ClbA, ClbC, and ClbB proteins lowers the sensitivity to all five tested antibiotics. Thus, all three proteins are Cfr-like. The general tendency is that Cfr provides more resistance than ClbA, ClbC, and ClbB. The expression level of each protein and the MIC effects do not necessarily correlate quantitatively. This may be because the MIC values reflect a longer induction effect than do the SDS gels and the enzymes are not acting on their natural targets. Although the peptidyl transferase region of the ribosome is well conserved, there are species-specific differences. Despite this, the ClbA, ClbC, ClbB, and Cfr proteins all seem to act relatively efficiently in E. coli.

Verification of RNA methylation at A2503 in 23S rRNA by primer extension. Although the combined resistance to five different antibiotic classes is a strong argument for ClbA, ClbC, and ClbB, the expression level of each protein and the MIC effects do not necessarily correlate quantitatively. This may be because the MIC values reflect a longer induction effect than do the SDS gels and the enzymes are not acting on their natural targets. Although the peptidyl transferase region of the ribosome is well conserved, there are species-specific differences. Despite this, the ClbA, ClbC, ClbB, and Cfr proteins all seem to act relatively efficiently in E. coli.

Verification of RNA methylation at A2503 in 23S rRNA by primer extension. Although the combined resistance to five different antibiotic classes is a strong argument for ClbA, ClbC, and ClbB, the expression level of each protein and the MIC effects do not necessarily correlate quantitatively. This may be because the MIC values reflect a longer induction effect than do the SDS gels and the enzymes are not acting on their natural targets. Although the peptidyl transferase region of the ribosome is well conserved, there are species-specific differences. Despite this, the ClbA, ClbC, ClbB, and Cfr proteins all seem to act relatively efficiently in E. coli.

FIG 2 Analysis of whole-cell extracts by SDS-PAGE to verify expression of Cfr and Cfr-like proteins. The extracts are from E. coli AS19 harboring the plasmids indicated on top of the gels. Lanes marked with “+ induc.” denote samples with induced expression. The marker protein sizes in kilodaltons are, from the top, 70, 66.2, 45, and 31. The arrows point to bands appearing as a result of Cfr or Cfr-like protein expression.

FIG 1 Protein alignment and sequence conservation of Cfr, ClbA, ClbC, ClbB, and RlmN. Alignment of the four investigated proteins plus RlmN, which is placed below the lines. Shaded text indicate >90% consensus. Bolded text indicate >50% consensus. Consensus symbols: !, one of I or V; $, one of L or M; %, one of F or Y; #, one of N, D, Q, E, B, or Z. The underlined consensus sequence is from only Cfr, ClbA, ClbC, and ClbB. The alignment was made using MultAlin (5) (http://multalin.toulouse.inra.fr/multalin/multalin.html).
against antibiotics or if it also has some other function. The similar \textit{rimN} genes that do not confer resistance are abundant, but there is also a third group of sequences that code for proteins that are a bit different from \textit{RlmN} and \textit{Cfr} (14). This study is a very first step to shed light on some of these questions. Our data clearly confirm that the three investigated genes from \textit{Bacillus amyloliquefaciens}, \textit{Bacillus clausii}, and \textit{Brevibacillus brevis} are \textit{cfr}-like. They confer decreased susceptibility to five classes of antibiotics when expressed in \textit{E. coli} by modification of position A2503 in 23S rRNA. The verification of functional \textit{cfr}-like genes in the environment is a disturbing finding regarding antibiotic resistance that warrants further investigation.

\begin{table}
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
Plasmid & Presence of \textit{cfr}/\textit{cfr}-like gene & Florenicol & Clindamycin & Linezolid & Tiamulin & Streptogramin A/ B streptogramin B \\
\hline
No plasmid & – & 1 & 32 & 8–16 & 0.5 & 4 \\
pLI102 & – & 1 & 16 & 8 & 0.5 & 4 \\
pBa & + & 4 & >128 & 32 & 4–8 & 32 \\
pBc & + & 8 & >128 & 16–32 & 4–8 & 32 \\
pBb & + & 16 & >128 & 16 & 8–16 & 32 \\
pCfrhis & + & 16 & >128 & 128 & 32 & 64 \\
pBluescript & – & 1 & 16–32 & 8 & 0.5 & 4 \\
pBglII & + & 16 & >128 & 64 & 16 & 64 \\
\hline
\end{tabular}
\caption{MICs of \textit{E. coli} AS19 strains in the presence or absence of plasmids expressing \textit{cfr} or \textit{cfr}-like genes.}
\footnote{The tabulated MICs are the averages from at least three independent experiments. An interval is given when no clear distinction between the numbers was observed. Only greater-than-2-fold differences are considered significant.}
\end{table}

\textbf{ACKNOWLEDGMENTS}

We thank Stephen Douthwaite for providing pLI102.

We thank The Danish Medical Research Council, the Danish National Research Foundation, and the Novo Nordisk Foundation for financial support.

\textbf{REFERENCES}

\textbf{FIG 3} Primer extension analysis of reverse transcriptase stops on 23S rRNA from \textit{E. coli} JW2501-1 strains harboring various plasmids expressing \textit{Cfr}-like proteins. The arrow points to the stop mediated by methylation from \textit{Cfr} or the \textit{Cfr}-like proteins.

