Reagent deposition for rapid multiplex pathogen identification in human blood culture samples

Mogensen, Klaus Bo; Machado, Ana Manuel; Dufva, Martin

Published in: Proceedings of the Fourth International Workshop on Analytical Miniaturization and NANOtechnologies

Publication date: 2014

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Reagent deposition for rapid multiplex pathogen identification in human blood culture samples

Klaus B. Mogensen*, Ana M. Machado** and Martin Dufva*

* Technical University of Denmark, DTU Nanotech, 2800 Kgs Lyngby, Denmark
** Technical University of Denmark, DTU Systems biology, 2800 Kgs Lyngby, Denmark

Blood stream infections led to 135,000 deads annually in EU and fast treatment significantly increases the survival rate. This condition is diagnosed by means of blood cultures (19 Mill blood cultures are drawn annually in EU). In this work, a multiplex peptide nucleic acid / fluorescence in-situ hybridization assay is used (PNA-FISH) for diagnosis of hospital acquired bacteria, such as staphylococcus aureus, enterococcus faecalis, E. coli, candida albicans etc. The test covers 90-95 % of the species by prevalence. It is based on a microscope slide format with inspection of the fluorescing bacteria viewed in a dual-color microscope configuration. The test takes 20-30 min to perform.

In order to lower the cost of the test, rapid automated reagent deposition is needed. Here, ultrasonic spray coating of polyvinyl alcohol/PNA-probes on microscope glass slides is presented. Different wetting regimes are explored in order to control the spot profile from convex to concave. The spray coated test are compared with manually prepared tests to ensure that the same performance is obtained.

Left) Example of imaging of pathogens in human blood culture samples using a 60x oil immersion objective. Green: E. Coli; Red: P. Aeruginosa; Yellow: K. Pneumonea. Right) Microscope slide used for the test. In each circular well, three pathogens can be detected.