Danish seine - An environmental friendly fishing method?

Noack, Thomas; Eggers, Florian; Frandsen, Rikke; Krag, Ludvig Ahm; Madsen, Niels

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Background

Although extensive research is devoted to assess the effects of demersal trawling on the marine ecosystem, only a handful of studies considered the Danish seine (ICES, 2010) — an encircling net to catch demersal fish (Sainsbury, 1996). By EU legislation, trawls and seines belong to one category and thus follow the same regulations, although there are differences between both gears, such as the lighter construction of seines and no use of heavy weights or doors. This results in a moderate fuel consumption of seines (Suuronen et al., 2012) and probably in relatively low interactions with the seabed. Furthermore, the fishing process is considered to be more gentle which may increases the chance of discarded fish to survive (Revill, 2012). In total, the seine is regarded as a relatively ecofriendly fishing gear.

Since these statements are only based on a few scientific investigations and many assumptions, this study will test the environmental friendliness of Danish seines compared to trawls and — if necessary — try to improve its properties, e.g. selectivity and bottom impact. This will be done by an analysis of existing catch data (Danish observer program from 1997 to 2012; DOP) and following field trials.

First results

A first analysis of the DOP data (Fig. 2) shows that the diversity of catches in Danish seines (46 species) is lower than in trawls (78 species). The mean number of individuals per hour of species, targeted by Danish seines, is slightly higher for Danish seines in most cases. However, the high standard deviations cause a high degree of uncertainty for most species. The high difference between the gears for Norway lobster is caused by the fact that it does not belong to the targets of Danish seines, but it is one of the main targets of trawlers.

Seven species, caught by Danish seines are classified at least as "near threatened" by IUCN (International Union for Conservation of Nature). This list is extended by two species for trawl catches.

Future tasks

1. Process description (Start: 2014)

Detailed description of all stages of the seining process concerning geometry and forces by Dataloggers for depth, relative distance, tilt, speed, ...

2. Selectivity (Start: 2014)

Experiments to support existing data by usage of codend cover and special collecting bags to estimate vertebrate species as well as invertebrate species.

3. Benthic impacts (Start: 2015)

Estimation of potential interactions of the gear with the sea bottom by using physical (e.g. Sidecan sonar) and biological methods (e.g. grab samples).

4. Discard Survival (Start: 2015)

Assessment of discarded fish’s chance to survive, which is important in terms of the future discard ban in European fisheries.

5. Fish behavior (Start: ~ 2015)

Observing behavior of fish during stages of the capture process with the aim to improve catch efficiency and selectivity of the gear.

Combination of all tasks to provide an overall picture of ecosystem effects of Danish seine fishing

References


Revill, A. S. 2012: Survival of discarded fish, a rapid review of studies on discard survival rates.
