Particle Filter for Fault Diagnosis and Robust Navigation of Underwater Robot

Zhao, Bo; Skjetne, Roger; Blanke, Mogens; Dukan, Fredrik

Published in:
I E E E Transactions on Control Systems Technology

Link to article, DOI:
10.1109/TCST.2014.2300815

Publication date:
2014

Document Version
Early version, also known as pre-print

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
- You may freely distribute the URL identifying the publication in the public portal.

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Particle Filter for Fault Diagnosis and Robust Navigation of Underwater Robot

Bo Zhao, Roger Skjetne, Member IEEE, Mogens Blanke, Senior Member, IEEE, Fredrik Dukan

Abstract—A particle filter based robust navigation with fault diagnosis is designed for an underwater robot, where 10 failure modes of sensors and thrusters are considered. The nominal underwater robot and its anomaly are described by a switching-mode hidden Markov model. By extensively running a particle filter on the model, the fault diagnosis and robust navigation are achieved. Closed-loop full-scale experimental results show that the proposed method is robust, can diagnose faults effectively, and can provide good state estimation even in cases where multiple faults occur. Comparing with other methods, the proposed method can diagnose all faults within a single structure, it can diagnose simultaneous faults, and it is easily implemented.

Index Terms—Fault diagnosis, fault tolerance, particle filter, switch-mode hidden Markov model, ROV, underwater navigation.

I. INTRODUCTION

Due to the increasing requirements on safety, reliability, and availability, fault tolerant control system design has drawn significant attention. This methodology aims to prevent that a minor fault in a component leads to loss of system functionality. Since fail-operational architectures are costly, a fault tolerant architecture is a natural choice for system design [1]. Towards realization of a fault tolerant system, the first step is to diagnose faults, where the term fault diagnosis (FD) includes fault detection, isolation, and estimation.

Model-based analytical FD is discussed in detail in [1], [2] and [3]. Residual signals in FD are functions of the inputs and measurements of the system and a fault is detected whenever the residual exceeds a pre-designed threshold. This method is practical and has many applications, such as a detailed fault tolerant design for ship propulsion in [4] and fault tolerant design for station-keeping in [5].

Classical techniques in combined state and parameter estimation include the Kalman filter and the Extended Kalman Filter; see [6] for linear systems, and extended to a class of nonlinear systems in [7]. FD based on combined state and parameter estimation were discussed in [8]. Observers for nonlinear systems in using estimated faults as states and sliding mode techniques were suggested in [9]. An unscented Kalman filter (UKF)-based method was developed in [10] to detect and isolate both temperature sensor and valve faults.

Particle filters (PFs) [11], [12] inherited from the Bayesian estimation and the Monte Carlo method, can also be used for this purpose. In [13] the authors developed a method that combined state estimation by a PF in a multiple model environment and likelihood ratio approach to detect and isolate faults in stochastic nonlinear systems.

Another approach using PFs for fault diagnosis was presented in [14], suggesting a hidden Markov model (HMM) with variable transition probabilities that were estimated online from data and applied to multi-sensor fusion for land vehicle positioning. The underwater vehicle problem is quite different. Artifacts in sensor signals, such as outliers and temporal dropouts of signals occur frequently and are essential to consider to obtain robust navigation. Another application of using a PF in fault detection is [15]. In this paper, the fault detection problem for a space rover was studied, and the so-called risk sensitive PF and variable resolution PF were reported. PFs have also been used for failure prognosis; see [16] that dealt with crack growth prediction.

This paper employs a switching-mode HMM as system description. Failure modes are included in the model, and a method is suggested using a PF to solve the FD problem on this model, hereafter called a FDPF design. The computational burden of the approach by [14] is eased significantly by formulating a model with prior and fixed probabilities of failure modes. The paper discusses how to design for a tradeoff between false alarm and detection probabilities, and it describes how this is implemented. The resulting algorithm is shown to be compact, easy to implement, and resulting in moderate computational complexity that makes the algorithm run with ease in real-time. Having introduced the PF design, the paper focus on the realization of a robust FDPF design for a remotely operated underwater vehicle (ROV). A prototype implementation is described together with results from experiments in full-scale at sea where the algorithm was used in closed loop control of the ROV Minerva belonging to the Applied Underwater Robotics Lab (AUR-Lab) at NTNU.

ROVs are widely used in various safety critical operations, where accurate positioning and control of the ROVs are required. It is necessary to realize high-precision and fault tolerant ROV navigation. Applications of ROV integrated navigation are reported in [17], [13]. Sensor and actuator faults are encountered frequently in practice [19], hence, fault detection and fault handling are essential for ROV reliability. For instance, the update intervals of ROV position measurement are relatively long and uneven. This phenomenon combined

B. Zhao, R. Skjetne, and F. Dukan are with the Centre for Ships and Ocean Structures (CeSOS) and the Department of Marine Technology, Norwegian University of Science and Technology (NTNU), Trondheim, 7491 Norway e-mails: Bo.Zhao@ntnu.no, Roger.Skjetne@ntnu.no, and Fredrik.Dukan@ntnu.no.

M. Blanke is with the Department of Electrical Engineering, Technical University of Denmark (DTU) and with AMOS CoE, Institute of Technical Cybernetics, Norwegian University of Science and Technology (NTNU). (mb@elektro.dtu.dk)

Manuscript received March 12, 2013; revised June 2013, accepted January 12, 2014.

UE TO the increasing requirements on safety, reliability, and availability, fault tolerant control systems design has drawn significant attention. This methodology aims to prevent that a minor fault in a component leads to loss of system functionality. Since fail-operational architectures are costly, a fault tolerant architecture is a natural choice for system design [1]. Towards realization of a fault tolerant system, the first step is to diagnose faults, where the term fault diagnosis (FD) includes fault detection, isolation, and estimation.

Model-based analytical FD is discussed in detail in [1], [2] and [3]. Residual signals in FD are functions of the inputs and measurements of the system and a fault is detected whenever the residual exceeds a pre-designed threshold. This method is practical and has many applications, such as a detailed fault tolerant design for ship propulsion in [4] and fault tolerant design for station-keeping in [5].

Classical techniques in combined state and parameter estimation include the Kalman filter and the Extended Kalman Filter; see [6] for linear systems, and extended to a class of nonlinear systems in [7]. FD based on combined state and parameter estimation were discussed in [8]. Observers for nonlinear systems in using estimated faults as states and sliding mode techniques were suggested in [9]. An unscented Kalman filter (UKF)-based method was developed in [10] to detect and isolate both temperature sensor and valve faults.

Particle filters (PFs) [11], [12] inherited from the Bayesian estimation and the Monte Carlo method, can also be used for this purpose. In [13] the authors developed a method that combined state estimation by a PF in a multiple model environment and likelihood ratio approach to detect and isolate faults in stochastic nonlinear systems.

Another approach using PFs for fault diagnosis was presented in [14], suggesting a hidden Markov model (HMM) with variable transition probabilities that were estimated online from data and applied to multi-sensor fusion for land vehicle positioning. The underwater vehicle problem is quite different. Artifacts in sensor signals, such as outliers and temporal dropouts of signals occur frequently and are essential to consider to obtain robust navigation. Another application of using a PF in fault detection is [15]. In this paper, the fault detection problem for a space rover was studied, and the so-called risk sensitive PF and variable resolution PF were reported. PFs have also been used for failure prognosis; see [16] that dealt with crack growth prediction.

This paper employs a switching-mode HMM as system description. Failure modes are included in the model, and a method is suggested using a PF to solve the FD problem on this model, hereafter called a FDPF design. The computational burden of the approach by [14] is eased significantly by formulating a model with prior and fixed probabilities of failure modes. The paper discusses how to design for a tradeoff between false alarm and detection probabilities, and it describes how this is implemented. The resulting algorithm is shown to be compact, easy to implement, and resulting in moderate computational complexity that makes the algorithm run with ease in real-time. Having introduced the PF design, the paper focus on the realization of a robust FDPF design for a remotely operated underwater vehicle (ROV). A prototype implementation is described together with results from experiments in full-scale at sea where the algorithm was used in closed loop control of the ROV Minerva belonging to the Applied Underwater Robotics Lab (AUR-Lab) at NTNU.

ROVs are widely used in various safety critical operations, where accurate positioning and control of the ROVs are required. It is necessary to realize high-precision and fault tolerant ROV navigation. Applications of ROV integrated navigation are reported in [17], [13]. Sensor and actuator faults are encountered frequently in practice [19], hence, fault detection and fault handling are essential for ROV reliability. For instance, the update intervals of ROV position measurement are relatively long and uneven. This phenomenon combined
with frequent outliers makes the navigation problem more complex. Detection of actuator faults and faults in navigation sensors are considered as a combined problem in this paper, and experimental data are used to assess the occurrence of different fault types. Actuator reconfiguration possibilities are rather limited on the vessel considered and are not within the scope of this brief paper.

The paper is organized as follows: Section II describes the model of the ROV used in the experiment and its failure modes. Section III presents the switched Hidden Markov Model, the Particle Filter and the navigation system design. Results from ROV sea trials are presented in Section IV.

II. PROBLEM DESCRIPTION

A. ROV and ROV control system

The ROV Minerva, shown in Figure 1, is a SUB-fighter 7500 ROV. It is powered from and communicates with a surface supply vessel through a 600m umbilical cable. Minerva is equipped with five thrusters and various navigation sensors. A hydroacoustic positioning reference (HPR) system is used to measure the position of the ROV relative to a transducer on the surface vessel. A Doppler velocity log (DVL) is installed to measure the ROV velocity. An inertial measurement unit (IMU) provides turn rate and heading measurements. Depth is provided by the HPR and also by a pressure gauge.

1) Kinematics: Adopting the notations of [20], the kinematics is described by the degrees-of-freedom (DOFs) in Table I. The ROV is designed to be passive and stable in roll and pitch, and the dynamics in these DOFs are ignored. The kinematic model of the ROV is then given by the 4-DOF model,

\[\dot{\eta} = R(\psi) \nu, \]

(1)

where \(\eta = [N E D \psi]^\top \) is the ROV position and heading in the NED (North-East-Down) reference frame, \(\nu = [u v w r]^\top \) is the body-fixed velocity and yaw rate vector, and \(R(\psi) \) is the rotation matrix, which transforms a vector in the ROV body frame to NED frame coordinates.

2) Kinetics: Following [20] and [18], the ROV dynamics is,

\[\begin{align*}
M \ddot{\nu} &= -C(\nu) \nu - D(\nu_r) \nu_r - g(\eta) + \tau + w_r, \\
\nu_c &= -T_c^{-1} \nu_c + w_c,
\end{align*} \]

(2)

where \(M \) is the combined rigid body and added mass matrix, \(C(\nu) \nu \) is the Coriolis and centripetal force, \(D(\nu_r) \nu_r \) is the nonlinear and linear hydrodynamic damping, \(g(\eta) \) is the restoring force, \(\tau = [X Y Z N]^\top \) is the control force and moment, and \(w_r \) is process noise. All the matrices are in \(\mathbb{R}^{4 \times 4} \), and vectors are in \(\mathbb{R}^4 \). Moreover, \(\nu_c = \nu - \nu_c \) is the relative velocity vector with respect to the current. The current velocity \(\nu_c \) can be modeled as \(\dot{\psi} \), where \(T_c \) is a diagonal matrix, and \(w_c \) is process noise.

B. Sensor modeling and anomaly analysis

1) Hydroacoustic Position Reference (HPR) system: The HPR system determines the position of an underwater target. The HPR measurement is a vector with North and East positions \(p \) and follows a multivariate Gaussian distribution,

\[p \left(p_{A,k} | \eta_k \right) = \mathcal{N} \left([I_{2 \times 2} \ 0_{2 \times 2}] \eta_k, \Sigma_{A,k} \right), \]

(4)

where \(\mathcal{N} \) denotes the Gaussian distribution function and \(\Sigma_{A,k} \) is the covariance of the measurement noise.

When the ROV dives down to deeper water, the HPR update rate becomes nonuniform and lower than nominal. This phenomenon is named HPR dropout and is given the symbol \(\Delta_{HPR}^{HPR} \). In the HPR data logs, as shown in Figure 2 the HPR update intervals were uneven and larger than 1 seconds in general. This is much lower than the sampling time of the control system. The HPR dropout is modeled as

\[p \left(p_{A,k} | \eta_k \right) = \mathcal{N} \left([0 \ 0]^\top, \sigma_{A,k}^2 I \right), \]

(5)

The pressure gauge depth sensor gives more reliable measurements than the HPR measurement in depth, so the depth component in the HPR measurement was not used.
where \(\sigma_{A,d} \) is assigned to a very large positive number representing that the current measurement is noninformative. Figure 2 also indicates that the HPR measurement frequently suffers from outliers, which is given the symbol \(\Delta_{\text{HPR}} \).

The outliers are seen as samples from

\[
p(p_{A,k} | \eta_k) = \mathcal{N} ([I_{2 \times 2} \ 0_{2 \times 2}] \eta_k, \ \sigma_{A,o}^2 I),
\]

where \(\sigma_{A,o}^2 I \) is the covariance of the distribution of the outliers, conceptually chosen as \(\| \sigma_{A,o}^2 \| \gg \| \Sigma_A \| \).

2) Doppler Velocity Log (DVL): The DVL is used to measure the velocity of the ROV in 3D space with respect to sea bottom. We used only the two horizontal components in its measurement. The DVL measurement is transformed into the ROV body frame according to

\[
v_D = R_{\text{DVL}}^{\text{ROV}} (v_{D}^{\text{DVL}} + w_{D}^{\text{ROV}}),
\]

where \(v_{D}^{\text{DVL}} \) is the velocity measurement in the DVL instrument frame, \(R_{\text{DVL}}^{\text{ROV}} \) is the rotation matrix from the instrument frame to the body frame, \(b_{\text{DVL}}^o \) is the lever arm between the two frames expressed in body frame, and \(v_D \) is the resulting ROV velocity measurement in the body frame.

The DVL measurement is simply expressed as \(v_D = [v_D \ \nu_p] \)\(^T\). Assuming the DVL measurement noise in each direction is independently identically normally distributed, the resulting DVL measurement \(v_{D,k} \) is

\[
p(v_{D,k} | \nu_k) = \mathcal{N} ([I_{2 \times 2} \ 0_{2 \times 2}] \nu_k, \ \sigma_{D,k}^2 I),
\]

where \(\sigma_{D,k}^2 I \) is a large positive number. The DVL measurement may suffer from a bias. For instance, an alignment error in the instrument frame can cause a bearing and offset error of the measured velocity. This failure is given the symbol \(\Delta_{\text{DVL}} \).

The size of this error is unknown and time-varying, and a 1st-order Markov process is used to model DVL bias,

\[
b_{\text{DVL}} = -T_{\text{DVL}}^{-1} b_{\text{DVL}} + w_{\text{DVL}},
\]

where \(b_{\text{DVL}} \in \mathbb{R}^2 \) is the bias, \(T_{\text{DVL}} \) is a diagonal time constant matrix, and \(w_{\text{DVL}} \in \mathbb{R}^2 \) is the driving noise. It follows that \(v_D \) is biased from the ROV velocity according to

\[
p(v_{D,k} | \nu_k, b_{\text{DVL}}) = \mathcal{N} ([I_{2 \times 2} \ 0_{2 \times 2}] \nu_k + b_{\text{DVL}}, \sigma_{D,k}^2 I). \tag{11}
\]

3) IMU and depth sensors: The ROV is also equipped with an IMU as heading sensor and a depth sensor, such that

\[
\psi_{M,k} = [0 \ 0 \ 0 \ 1] \eta_k, \tag{12}
\]

\[
D_{P,k} = [0 \ 0 \ 1 \ 0] \eta_k. \tag{13}
\]

C. Thruster control and thruster faults

1) Thruster control: The Minerva ROV has five thrusters, lateral (l), vertical port (vp), vertical starboard (vs), longitudinal port (p), and longitudinal starboard (s). The thruster control, described in [18], models the achieved thrust by

\[
\tau = TKu \tag{14}
\]

where \(T \in \mathbb{R}^{4 \times 5} \) is a thrust allocation matrix that reflects thruster position and orientation, \(K \in \mathbb{R}^{5 \times 5} \) is a diagonal gain matrix, and \(u \in \mathbb{R}^5 \) is the thrust rotational speed command from the controller. Since the thruster speed control is openloop due to lacking rotational speed sensors, an unknown error between the commanded and actual speed of each thruster could be present. We categorize the thruster anomalies into the following failure modes,

1) The actual rotational speed is slightly lower than commanded. Such a fault is typically negligible, as it is handled by integral action.
2) The actual speed is much lower than the commanded value. We assign it mode \(\Delta_{\text{THR}}^{1} \), where \(t \in \{l, \ \nu_p, \ \nu_{vp}, \ \nu_s, \ \nu_{vs} \} \) is the thruster index.
3) The actual speed is zero, e.g., due to blocking the propeller. We name this failure mode “zero thrust” and assign it mode \(\Delta_{\text{THR}}^{2} \).

We augment the state space with the vector \(\alpha = [a_l \ a_{vp} \ a_{vs} \ a_p \ a_s] \in [0, 1]^5 \) to model the thrust loss, whose entries represent the ratio between the desired thrust and the actual thrust for the 5 thrusters. It follows for the fault-free case that all entries of \(\alpha \) are 1. Inserting this into the thruster model (14) yields,

\[
\tau = \delta(\alpha)TKu. \tag{15}
\]

D. Resulting ROV model

Collecting the ROV kinematics (1), kinetics (2), current (3), the measurements (4), (8), (12), (13), and thruster control (14) [14][15], we obtain the ROV model as

\[
\dot{\eta} = R(\psi) \nu \tag{16a}
\]

\[
M\dot{\nu} = -C(\nu) \nu - D(\nu) \nu_t - g(\eta) + \text{diag}(\alpha)TKu + w_{\text{nu}}, \tag{16b}
\]

\[
\dot{\nu}_c = -T_{\text{c}}^{-1} \nu_c + w_{\text{nu}}, \tag{16c}
\]

\[
\dot{b}_{\text{DVL}} = -T_{\text{DVL}}^{-1} b_{\text{DVL}} + w_{\text{DVL}}, \tag{16d}
\]

\[
p(a_t, k) = \left\{ \begin{array}{ll}
\rho(a_{t,k-1}) & [\Delta_{\text{THR}}^{1} \Delta_{\text{THR}}^{2}] = [0 \ 0] \\
U(0,1) & [\Delta_{\text{THR}}^{1} \Delta_{\text{THR}}^{2}] = [1 \ 0].
\end{array} \right. \tag{16f}
\]

\[
p(p_{A,k}) = \left\{ \begin{array}{ll}
\mathcal{N}(0, \Sigma_A) & [\Delta_{\text{HPR}}^{1} \Delta_{\text{HPR}}^{2}] = [0 \ 0] \\
\mathcal{N}([0 \ 0] \Sigma_A, I) & [\Delta_{\text{HPR}}^{1} \Delta_{\text{HPR}}^{2}] = [1 \ 0].
\end{array} \right. \tag{16g}
\]

\[
p(p_{D,k}) = \left\{ \begin{array}{ll}
\mathcal{N}(0, \sigma_{D,k}^2 I) & [\Delta_{\text{DVL}}^{1} = 0] \\
\mathcal{N}([0 \ 0] \sigma_{D,k}^2 I, I) & [\Delta_{\text{DVL}}^{1} = 1].
\end{array} \right. \tag{16h}
\]

where \(\rho(c) \) is the Dirac delta function.
III. PARTICLE FILTER BASED ROV ROBUST NAVIGATION

A FDPF-based ROV robust navigation system is outlined in this section, introducing first some elements of the theory of fault diagnosis of switching-mode hidden Markov chain models, and then focusing on the particular implementation for navigation filter design, which has some novel elements.

A. A generalized model for the system with possible faults

We describe a system with possible failure modes by a switching-mode HMM. This is a combined model of a 1st-order Markov chain representing the mode transitions, and a bank of HMMs representing the fault-free system model and the models associated with different failure modes, that is,

\[\Pr(\Delta_{k+1} = \delta^{ij} | \Delta_k = \delta^j) = p_{ij,k} \]

\[X_{k+1} | (X_k = x_k, u_k, \Delta_k = \delta_k) \sim p(x_{k+1} | x_k, u_k, \delta_k) = f_k(x_k, u_k, \delta_k) \]

\[Y_k | (X_k = x_k, u_k, \Delta_k = \delta_k) \sim p(y_k | x_k, u_k, \delta_k) = h_k(x_k, u_k, \delta_k). \]

Equation (17a) is the mode transition Markov chain to transfer the system between system modes, where \(\Delta = [\Delta^{(1)}, \Delta^{(2)}, \ldots, \Delta^{(N_m)}]^T \) is a discrete random variable defining the system mode. The components \(\Delta^{(p)} \in \{0, 1\} \) denote whether the fault “f(p)m” occurs in the system, Equation (17b) is the process equation, and \(X \in \mathbb{R}^{N_x} \) is the state vector, its realization is \(x \).

\(u \in \mathbb{R}^{N_u} \) is the input, \(p(\cdot) \) is a probability density function (PDF) on \(\mathbb{R}^{N_x} \), and \(f_k(\cdot) : \mathbb{R}^{N_x} \times \mathbb{R}^{N_u} \times \{0, 1\}^{N_m} \rightarrow \mathbb{R}^+ \) is the state transition mapping from the states, input, and system mode at time \(k \) to the PDF of the states for time \(k+1 \). Equation (17c) is called the measurement equation, where \(Y \in \mathbb{R}^{N_y} \) is a random vector representing the measurement and \(y \) is its realization. \(p(\cdot) \) is a PDF on \(\mathbb{R}^{N_y} \) and \(h_k(\cdot) : \mathbb{R}^{N_x} \times \mathbb{R}^{N_y} \times \{0, 1\}^{N_m} \rightarrow \mathbb{R}^+ \) is the measurement mapping, which maps the states, input, and system mode at current time to the PDF of the measurement.

Define an augmented system state vector to consist of the system state and system mode by \(\xi_k = [\delta_k x_k]^T \). Then the system can be written as

\[p(\xi_{k+1} | \xi_k, u_k) = \Pr(\Delta_{k+1} = \delta^{ij} | \Delta_k = \delta^j) \cdot p(x_{k+1} | \xi_k, u_k) \]

\[p(y_k | \xi_k, u_k) = h_k(\xi_k, u_k). \]

B. The PF algorithm of the switching-mode HMM

Solving the FDPF problem in (18) and (19) includes to estimate the system mode sequence \(\delta \). Assuming for instance the sequence \(\delta \) has already been estimated and that \(\Delta^{(p)} \) is 1 for \(i = k - l, \ldots, k \), then it can be concluded that the fault

From now on we do not distinguish a random variable from its realization. Both of them will be denoted by lowercase letters.
2) Time update: The time update process is to obtain the a priori estimation of the states as \(p(\xi_k | y_{1:k-1}) \). In the PF context, this is done by drawing samples from an importance density. The SIR-PF uses the most convenient distribution \(p(\xi_k | y_{1:k-1}, u_k) \) as the importance density. We determine the new system state by drawing samples from

\[
p(\xi_k | \xi_{k-1}, u_k) = p(x_k | x_{k-1}^{(i)}, \delta_{k-1}^{(i)}, u_k) \cdot \Pr(\delta_k | \delta_{k-1}^{(i)}).
\]

(21)

At the end of the time update process, the new positions \(\xi_k^{(i)} \) of the particles are obtained.

3) Measurement update: At this step the weights of the particles are updated according to the observation \(y_k \). Given the current observation \(y_k \) and the importance density \(p(\xi_k | y_{1:k-1}) \), this yields

\[
w_k^{(i)} \propto \Pr(\xi_k | y_k^{(i)}, u_k),
\]

(22)

where \(p(y_k | \xi_k^{(i)}, u_k) \) is defined by (19).

4) Resampling: To counteract the degeneracy problem, resampling is applied following (21).

C. Fault diagnosis using a particle filter

It is concluded that the system is in mode \(\delta^{(m)} \) when \(\Delta_k = \delta^{(m)} \), termed the significant mode, has the largest marginal probability mass. This is given by

\[
\max \Pr(\Delta_k = \delta^{(m)} | y_{1:k}) = q, \quad i \in \{0, \ldots, 2^N - 1\},
\]

where the probability mass is obtained by marginalizing the distribution \(p(\xi_k | y_{1:k}) \), according to

\[
\Pr(\Delta_k = \delta^{(m)} | y_{1:k}) \approx \sum_{i=0}^{2^N} w_k^{(i)} p_{\delta^{(m)}, \delta_k^{(i)}}.
\]

(23)

When the significant mode is other than fault-free, a fault is detected. The particular failure is determined by the estimated system mode, meaning that the fault is isolated, and its size is obtained from the PF state estimate.

An alternative method is motivated by the CUSUM algorithm [1]. The time cumulation of the marginal masses of the modes are used as indicators, and the detection of faults is done by assessing the behavior of these indicators. This is applied to diagnose the thruster fault in Section IV-F.

D. ROV robust navigation system

The heave DOF can be controlled and observed separately from other DOFs, since they are not coupled [20]. In addition, the corresponding sensor are reliable, so they are not included in our robust navigation design. Consequently, the failure modes regarding the two vertical thrusters are not considered in this design for simplicity.

Since the failure modes are induced by different mechanisms, it is reasonable to assume that their occurrence are independent from each other. Hence, the mode transition Markov chain can also be designed independently for each equipment and then assembled. Table II shows the mode transition probabilities for the HPR failure modes, using

\[
\Pr(\Delta^{HPR,1}_{k+1} | \Delta^{HPR,2}_{k+1})^T = \delta^{(m)} | \Delta_{k+1}^{HPR,1} | \Delta_{k+1}^{HPR,2}) = \delta^{(m)}
\]

AND

\[
\frac{\delta_{(m)}}{\delta_{(n)}} = \frac{\delta_{(n)}}{\delta_{(m)}}.
\]

TABLE II

<table>
<thead>
<tr>
<th>(\Delta^{HPR,1}_{k+1})</th>
<th>(\Delta^{HPR,2}_{k+1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta^{HPR,1}_{k+1})</td>
<td>(\Delta^{HPR,2}_{k+1})</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

(24)

The transition probabilities for \(\Delta^{HPR,1}, \Delta^{HPR,2} = [1,0] \) is not considered in this Markov chain since the system adopts the HPR dropout mode whenever the HPR measurement is not available in the last sampling interval.

The DVL dropout is handled as the HPR dropout, that is, the DVL measurement adopts (9) whenever its measurement is not available. The DVL bias, on the other hand, has been modeled as an additional state of the system. Hence, there is no probabilistic mode switching for the DVL.

The mode transition probabilities for the thruster modes are given in Table III using

\[
\Pr(\Delta^{THR,1}_{k+1} | \Delta^{THR,2}_{k+1}) = \delta^{(m)} | \Delta_{k+1}^{THR,1} | \Delta_{k+1}^{THR,2})^T = \delta^{(m)}
\]

\[
\delta^{(m)} = \delta^{(m)} | \delta^{(m)} = \delta^{(m)}.
\]

We then construct the system mode vector \(\Delta = \Delta_{HPR,1}^{HPR,2} \Delta_{DVL,1}^{DVL,2} \Delta_{THR,1}^{THR,2} \). The mode transition Markov chain subjects to the combination of (24) and (25) is

\[
\Pr(\Delta_{k+1} = \delta^{(i)} | \Delta_{k+1} = \delta^{(i)}) = p_{ij}.
\]

(26)

The total switching-mode HMM for the ROV is obtained by combining (26) and the ROV model (16).

There are 3 modes for the HPR, 3 modes for the DVL, and we consider the 3 modes for the 3 thrusters in the horizontal plane, resulting in \(3 \times 3 \times 3^3 = 243 \) modes for the PF.

IV. FULL-SCALE TEST CAMPAIGN

The full-scale test was performed on October 17-18, 2012, in the Trondheimsfjord, Norway. The test was focused on the performance of the proposed FDPF-based navigation filter in a real environment, real sensor measurements, and its cooperation with the ROV control system. Besides the FDPF-based navigation filter [18],
TABLE IV
PARTICLE FILTER PARAMETERS IN THE EXPERIMENT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w_v)</td>
<td>([m/s] \sim N(0,0.002I))</td>
</tr>
<tr>
<td>(T_c)</td>
<td>([s] \sim 0.01I)</td>
</tr>
<tr>
<td>(w_c)</td>
<td>([m/s] \sim N(0,0.01I))</td>
</tr>
<tr>
<td>(T_{D,FDPF})</td>
<td>([s] \sim 0.01I)</td>
</tr>
<tr>
<td>(w_{D,FDPF})</td>
<td>([m/s] \sim N(0,0.01I))</td>
</tr>
<tr>
<td>(\sigma_D)</td>
<td>([m^2/s^2] \sim (0.02)^2)</td>
</tr>
<tr>
<td>(\Sigma_A)</td>
<td>([m^2] \sim (0.2I)^2)</td>
</tr>
<tr>
<td>(\Sigma_{A,o})</td>
<td>([m^2] \sim (3I)^2)</td>
</tr>
</tbody>
</table>

TABLE V
NOTATIONS IN THE EXPERIMENTAL RESULTS FIGURES

<table>
<thead>
<tr>
<th>Notation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N)</td>
<td>North and East position.</td>
</tr>
<tr>
<td>(u, v)</td>
<td>Surge and sway velocity.</td>
</tr>
<tr>
<td>subscript (\downarrow)</td>
<td>FDPF estimate.</td>
</tr>
<tr>
<td>subscript (\downarrow)</td>
<td>Desired position/velocity from the guidance system.</td>
</tr>
<tr>
<td>subscript (\downarrow)</td>
<td>Measurement without triggered failure modes.</td>
</tr>
<tr>
<td>subscript (\downarrow)</td>
<td>Estimation from the sector heading KF in open-loop.</td>
</tr>
<tr>
<td>(1\sigma)</td>
<td>1\sigma upper bound of the FDPF estimate.</td>
</tr>
<tr>
<td>(1\sigma)</td>
<td>1\sigma lower bound of the FDPF estimate.</td>
</tr>
</tbody>
</table>

A. Basic navigation

The results of using the FDPF for state estimation of the ROV are shown in Figure 5a. In this test the ROV was controlled to move along a triangular path with heading along the path. It is seen that the HPR measurement suffers from outliers and low update rate. The state estimate by the FDPF is generally good, and this verifies its success as a state observer exposed to a nonuniform measurement update rate and measurement outliers. The state estimation performance of the PF was close to the Kalman filter, but a small high-frequency oscillation was observed due to tuning.

B. Outliers

Outliers mislead the state estimation, for instance the estimation of the offline observer in Figure 5b jumps after some outliers. Therefore, they have to be detected. The principle of detecting outliers embedded in the PF is just as the following hypothesis testing. Define

\[
\begin{align*}
\mathcal{H}_{0,k} & : \text{HPR measurement at time } k \text{ is fault free;} \\
\mathcal{H}_{1,k} & : \text{HPR measurement at time } k \text{ is an outlier.}
\end{align*}
\]

It can be derived

\[
\Pr(\mathcal{H}_{0,k} | p_{A,k}, \eta_k) = \frac{\Pr(p_{A,k} | \mathcal{H}_{0,k}, \eta_k) \Pr(\mathcal{H}_{0,k})}{\Pr(p_{A,k} | \mathcal{H}_{1,k}, \eta_k) \Pr(\mathcal{H}_{1,k})},
\] \(27\)

where \(\eta_k\) is the prior estimation, \(\Pr(\mathcal{H}_{0,k})\) and \(\Pr(\mathcal{H}_{1,k})\) are the transition probabilities defined in the Markov chain, and \(\Pr(p_{A,k} | \mathcal{H}_{0,k}, \eta_k)\) and \(\Pr(p_{A,k} | \mathcal{H}_{1,k}, \eta_k)\) are determined by the measurement relation \(16\). In the PF the same process is implicitly done by the importance sampling \(21\) and the measurement update \(22\). This hypothesis testing is influenced by the variance of the prior estimation. Table VI shows the detectability of an outlier based on the size of the outlier and the dropout time before the outlier measurement is made. Naturally it is more difficult to detect an outlier the longer the dropout time is, and outliers with large amplitude are more easily detected.

To test outlier detection, outliers of known amplitudes were injected during an position-keeping test. The statistics of the outlier detection is presented in Figure 5c which coincides compares with Table VI.

3\(\times \) means a outlier is determined to be fault-free, and “\(\bigcirc \)“ means a outlier is determined to be outlier.
C. HPR dropout

Figure 6a shows the performance of the FDPF when the HPR drops out for about 30sec while the ROV was moving straight in an Eastern direction. As discussed earlier, the HPR dropout does not have to be diagnosed since it is handled within the nonuniform sampling interval mechanism, even for such a long interval, all the while the FDPF outputs a steady stream of position estimates. In state-of-the-art observers this is typically achieved by entering a “dead-reckoning” mode [22], such that the position is estimated open-loop based on the thrust force and, possibly, velocity measurement. However, such an observer may fail to estimate the ROV position correctly when then HPR drops out for too long time, as seen in the large deviation between the ROV position and the offline filter estimation in Figure 6a. When the position measurement drops out here, the variance of the estimation cannot be reduced by new position information and the uncertainty of the estimation grows due to system noise. This is observed by the increasing distance between the upper and lower 1σ bounds. The estimated position during the dropout is shown to be close to the original fault-free measurement, and this confirms the good “dead-reckoning” capability of the FDPF.

D. DVL dropout

When the DVL drops out, the state estimation is based on the thrust force command and the HPR measurement. The performance of the FDPF is for this case presented in Figure 6b, showing that the estimated velocity is satisfactorily close to the original fault-free measured velocity during the DVL dropout. Similar to the HPR dropout case, the variance of the velocity estimation increases during the DVL dropout. However, this increase only lasts for about 3 seconds until
TABLE VII
ANALYSIS OF THRUSTER FAULT DETECTION RESULT

<table>
<thead>
<tr>
<th>Thruster mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta_{\text{THR},0}$</td>
</tr>
<tr>
<td>90.1%</td>
</tr>
<tr>
<td>not enough samples</td>
</tr>
</tbody>
</table>

Fig. 7. Probabilities of detection P_D and false alarm P_F versus value of threshold. The difference $P_D - P_F$ is an indicator for the tradeoff between P_D and P_F. It settles at a stationary value. This can be explained by the Bayesian properties of the PF: The particles with estimated velocity that are significantly different from the actual velocity will not be supported by the observations since these will also yield a large difference between the estimated position and the measured position. This is an information back propagation feature of PFs.

E. DVL bias

In the sea trial, a DVL bias was injected in the ROV surge direction while the ROV was in position-keeping operation. The bias was first increased slowly in steps before decreased back to 0. The corresponding experimental responses are shown in Figure 8. The bias estimate is close to the value of the manually triggered fault, especially if taking the variances of the DVL measurement noise and the system noise into account. This indicates that the DVL bias is well diagnosed by the algorithm.

F. Insufficient thrust and zero thrust

The reduced thrust failure mode was tested by decreasing the thrust from the two surge-directed thrusters, as shown in the third graph in Figure 9a, in such a way as to avoid spin of the ROV. The KF estimates rapidly diverged from the true state when the fault was triggered. In contrast, the FDPF provides good state estimates during presence of these failures.

When the thrust failure is present, the FDPF shows more frequent confirmation of zero thrust and insufficient thrust modes than in fault-free conditions. Table VII shows the thruster mode and estimated thruster mode during the period in Figure 9a where the thruster modes are referring to the two thrusters in the surge direction.

Thus, we obtain the probabilities $P_r \{ \delta_k = \Delta_{\text{THR},i} \mid \delta_k = \Delta_{\text{THR},j} \}, (i, j \in \{0, 1, 2\})$. Defining two statistics $D_k^1 = \sum_{j=k-n}^{k} \rho(\delta_j, \Delta_{\text{THR},i})$ ($i = 1, 2$) as the time cumulations of the estimated system modes, where n is a moving window length, we can calculate the probabilities of detection $P\{D_k^1 > h \mid \delta_k = \Delta_{\text{THR},0}\}$, $P\{D_k^2 > h \mid \delta_k = \Delta_{\text{THR},0}\}$, $P\{D_k^1 > h \mid \delta_k = \Delta_{\text{THR},1}\}$, $P\{D_k^2 > h \mid \delta_k = \Delta_{\text{THR},1}\}$, $P\{D_k^1 > h \mid \delta_k = \Delta_{\text{THR},2}\}$, $P\{D_k^2 > h \mid \delta_k = \Delta_{\text{THR},2}\}$, where h is a threshold to be decided by examining the false-alarm-rate and time-to-detection. As an example, Figure 7 shows the probability of detection and false alarm against the threshold when the window size is 100 (which is 15sec). This suggests to use the thresholds 12 for $\Delta_{\text{THR},0}$ and 10 for $\Delta_{\text{THR},2}$ to restrain the false alarms. To this end, the fourth graph in Figure 9a shows the D_k^1, D_k^2 with moving window size 100, and the threshold. The statistic D_k^1 exceeds the corresponding threshold in 16sec after the fault happens. Figure 8 shows the result when applying this method and thresholds to another set of experiments, where a thruster fault was injected. The result validates the proposed diagnosis method where the two statistics helps to make the fault detection robust to model uncertainty.

G. Multiple failure modes

Two combinations of simultaneous failures were tested. Figure 9b shows the state estimation for a DVL drop-out during a HPR dropout. At the end of the 30sec HPR dropout, the position estimate has deviated about 1m from the measurement, while the velocity estimate is intact.

The other multiple failure mode test was assessing the system response to HPR outliers during a DVL dropout period, and the results are shown in Figure 9c. When HPR outliers occur during a DVL dropout, the variance of the position estimate becomes large, and this makes detection of outliers increasingly difficult.

The position and velocity estimation is again good. In this case one should also notice that the variance of the velocity estimation did not increase as much as in the previous multiple failure case (but more than the fault-free case) since the information from the HPR is back propagated to the velocity estimation through the system model.
V. CONCLUSION

In this paper, we have proposed a PF-based algorithm for fault diagnosis (FDPF) built on a switching-mode hidden Markov model. The algorithm was applied to robustify the navigation of an ROV, where the navigation sensors and thrusters are vulnerable and fault diagnosis is essential. The design was tested in a full-scale ROV sea trial, for which the design process and the test responses have been presented and discussed in detail. The experimental results confirm that the performance of the fault diagnosis was generally good and that the proposed algorithm provided robust and efficient state estimation for the ROV under different combinations of failure modes, signal artifacts and disturbances.

ACKNOWLEDGMENT

We gratefully acknowledge funding from the Research Council of Norway, project 199567 Arctic DP with consortium partners Kongsberg Maritime, Statoil, and Det Norske Veritas. Experiments were supported by AUR-Lab at NTNU.

REFERENCES

[22] A. Sørensen, Marine Control Systems: Propulsion and Motion Control Systems of Ships and Ocean Structures, 2nd ed. Trondheim, Norway: Department of Marine Technology at the Norwegian University of Science and Technology, 2012.