Effect of subinhibitory concentrations of four commonly used biocides on the conjugative transfer of Tn916 in Bacillus subtilis

Seier-Petersen, Maria Amalie; Jasni, A.; Aarestrup, Frank Møller; Vigre, Håkan; Mullany, P.; Roberts, A. P.; Agersø, Yvonne

Published in:
Journal of Antimicrobial Chemotherapy

Link to article, DOI:
10.1093/jac/dkt370

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Effect of subinhibitory concentrations of four commonly used biocides on the conjugative transfer of Tn916 in *Bacillus subtilis*

M. A. Seier-Petersen, A. Jasni, F. M. Aarestrup, H. Vigre, P. Mullany, A. P. Roberts, and Y. Agersø

Introduction

Biocides are chemical compounds capable of inactivating microorganisms. These are used for disinfection, antisepsis and preservation to inhibit or reduce bacterial loads in various settings, such as healthcare, agriculture and the food industry. In Denmark, the yearly consumption of biocides has been estimated to comprise up to 5000 tonnes, compared with <160 tonnes of antimicrobial agents for therapy. Despite the widespread use of these compounds, our knowledge about their mode of action, especially at subinhibitory concentrations, and the microbial response to exposure is relatively limited. The working concentrations of disinfectants and antiseptics are generally much higher than the lethal dose; however, the efficacy of a biocide can be significantly reduced due to the presence of organic matter (e.g. blood, serum, pus and food debris), overdilution or insufficient contact time with microorganisms. Also, the presence of residual concentrations might result in bacterial exposure to subinhibitory concentrations.

During recent years, it has been suggested that exposure to subinhibitory concentrations of biocides (ethanol, hydrogen peroxide, chlorhexidine digluconate and sodium hypochlorite) can promote the transfer of antibiotic resistance and virulence genes. Mobile genetic elements, such as conjugative transposons, are important vectors in the dissemination of antibiotic resistance determinants. Tn916 is a conjugative transposon and the prototype of a large family of related elements. They have an extremely broad host range, including >30 bacterial genera, and have been found in both pathogenic and commensal bacteria. Most of
these elements contain the tetracycline resistance gene tet(M), but some members of this family also confer resistance to other antimicrobial agents, e.g. macrolides, kanamycin, mercury and cermimium bromide. Furthermore, Tn916-like elements have also been found to contain non-conjugative transposons (e.g. Tn917), which contain additional antibiotic resistance genes. Transcription of tet(M) in Tn916 leads to the transcription of downstream genes involved in recombination and conjugation of the element. Transcription of tet(M) is regulated by a tetracycline-dependent transcriptional attenuation mechanism reliant on the levels of charged tRNA molecules within the cell. It has subsequently been suggested that any stress that the cell encounters (other than exposure to tetracycline) that results in the build-up of charged tRNAs is also likely to cause an increase in the transcription of tet(M) and downstream genes and possibly an increase in transfer.

The aim of this study was to test this hypothesis by investigating the effect of subinhibitory concentrations of four commonly used biocides (ethanol, hydrogen peroxide, chlorhexidine digluconate and sodium hypochlorite) on the conjugative transposition of Tn916 between *Bacillus subtilis* strains. *B. subtilis* was used as it has suitable genetic tools available, is genetically easy to manipulate and is a model organism for the analysis of Tn916 biology.

Materials and methods

Chemicals and reagents

Chloramphenicol, fusidic acid sodium salt, rifampicin, streptomycin sulphate salt and tetracycline hydrochloride were purchased from Sigma. Brain heart infusion (BHI) agar and broth were obtained from either Oxoid or Difco and BBL. Tetracycline discs (30 µg) were purchased from Sigma. Chloramphenicol, fusidic acid sodium salt, rifampicin, streptomycin sulphate and sodium hypochlorite (30% solution) from Fluka, sodium hypochlorite (10%–15% available chlorine) from Sigma and absolute ethanol from either BDH Prolabo or Kemetyl AB. 4-Nitrophenyl β-D-glucuronide was obtained from Sigma.

Table 1. Bacterial isolates and plasmids included in this study

<table>
<thead>
<tr>
<th>B. subtilis</th>
<th>Relevant properties</th>
<th>Reference or source</th>
</tr>
</thead>
<tbody>
<tr>
<td>CU2189</td>
<td>recipient strain</td>
<td>20</td>
</tr>
<tr>
<td>BSCU2189RF</td>
<td>RIF- and FUS-resistant derivative of CU2189</td>
<td>this study</td>
</tr>
<tr>
<td>BS34A</td>
<td>B. subtilis:Tn916 (CU2189×FM12A); TET<sup>®</sup>, contains a single copy of Tn916</td>
<td>21</td>
</tr>
<tr>
<td>BS34A<sup>STR</sup></td>
<td>STR-resistant derivative of BS34A</td>
<td>this study</td>
</tr>
<tr>
<td>BS34A::pHCMC05-Ptet(M)-gusA</td>
<td>BS34A including plasmid pHCMC05 containing a Ptet(M)-gusA construct and CHL<sup>®</sup> marker</td>
<td>this study</td>
</tr>
</tbody>
</table>

Plasmids

<table>
<thead>
<tr>
<th>pHCMC05</th>
<th>E. coli/B. subtilis shuttle vector</th>
<th>Bacillus Genetic Stock Centre, USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>pHCMC05-Ptet(M)-gusA</td>
<td>pHCMC05 containing the tet(M) promoter upstream of gusA</td>
<td>this study</td>
</tr>
</tbody>
</table>

RIF, rifampicin; FUS, fusidic acid; TET, tetracycline; STR, streptomycin; CHL[®], chloramphenicol resistant; TET[®], tetracycline resistant.
no visible growth. MIC determinations were done in duplicate and as a minimum repeated twice.

Effect of biocides on β-glucuronidase enzyme activity

Culture preparation for β-glucuronidase enzyme assay

B. subtilis BS34A::pHCMC05-Ptet(M)-gusA was grown on at 37 °C on BHI agar plates supplemented with 10 mg/L chloramphenicol to select for the reporter plasmid construct. Cells were inoculated in 20 mL of BHI (without chloramphenicol) and grown on at 37 °C with rotary shaking (200 rpm). ON cultures were diluted to an OD₆₀₀ of ~0.1 in 500 mL Erlenmeyer flasks containing a final volume of 100 mL of BHI broth and incubated at 37 °C with shaking. After 2 h of growth, tetracycline (10 mg/L) or sub inhibitory concentrations (0.25 × MIC) of ethanol (4000 mg/L), hydrogen peroxide (20 mg/L), chlorhexidine di glucuronate (0.5 mg/L) or sodium hypochlorite (1250 mg/L) were added to the cultures. The OD₆₀₀ was measured and 5 mL samples were collected before (1.5 and 2.0 h of growth) and after addition of the compounds (0.5, 1.0, 1.5 and 2.0 h of exposure). Cells were harvested by centrifugation (3000 g, 4 °C, 10 min) and pellets were stored at −80 °C. Cells from each of the 2.0 h samples were plated on BHI and BHI supplemented with 10 mg/L chloramphenicol agar to determine the stability of pHCMC05-Ptet(M)-gusA.

Measurement of β-glucuronidase enzyme activity

The β-glucuronidase activity was measured as previously described with some modifications. Cell pellets were thawed at room temperature and resuspended in 800 mL of Z-buffer containing a final volume of 100 mL of BHI broth and incubated at 37 °C with shaking. After 2 h of growth, tetracycline (10 mg/L) or subinhibitory concentrations (0.25 × MIC) of ethanol (4000 mg/L), hydrogen peroxide (10 mg/L), chlorhexidine di glucuronate (0.5 mg/L), sodium hypochlorite (1250 mg/L) and tetracycline (10 mg/L) were added to separate donor cultures and these were further grown for 2.0, 1.5, 0.5, 1.5 and 1.0 h, respectively. The length of exposure time of each compound was equal to the length of that expected to have the greatest effect on transcription from the promoter upstream of tet(M) based on the β-glucuronidase enzyme assay. Within each repetition, one culture where no compound was added served as the donor control. Then, donor and recipient cells were harvested (6000 g, 5 min, 4 °C) and resuspended in BHI broth to an OD₆₀₀ of ~0.5 and 5.0, respectively, and mixed in a 1:1 volume, resulting in an output recipient:donor ratio of ~1:1. An aliquot of 500 mL of each mixture was transferred to a sterile filter (0.45 µm, white gridded, 47 mm; Millipore) placed on a BHI agar plate. The cell mixtures were left to absorb into the filter for 0.5 h and then incubated at 37 °C for 17.5 h. After incubation, mating filters were transferred to 10 mL of 0.9% NaCl and resuspended by vortex mixing. The numbers of donors and recipients were determined by counting on BHI agar supplemented with 10 mg/L tetracycline or 12.5 mg/L rifampicin and 5 mg/L fusidic acid, respectively, after 24 h of incubation at 37 °C. Transconjugants were selected on BHI agar plates containing 10 mg/L tetracycline, 12.5 mg/L rifampicin and 5 mg/L fusidic acid and counted after 48 h of incubation at 37 °C. At least 10 transconjugants from each transfer experiment were verified by subculturing on transconjugant plates twice and once on BHI agar plates supplemented with 100 mg/L streptomycin, on which only donor cells can grow. Transconjugants were also screened for the presence of tet(M) by PCR using primers tet(M)-1 (5′-GGTAAATAGTGTCTGGGAG-3′) and tet(M)-2 (5′-CTAAGATGCTTACCAA-3′). Conjugation experiments were repeated five times.

The input recipient:donor ratio and the stability of Tn916 in the control and exposed cultures were estimated in two of the conjugation experiments by plating donor pre-mating cultures on BHI agar plates both with and without the addition of 10 mg/L tetracycline and recipient pre-mating cultures on antibiotic-free BHI agar plates.

Data analysis

β-Glucuronidase enzyme activity

Measures of the specific β-glucuronidase enzyme activities in exposed cultures (prior to and after addition of biocides) were standardized to the corresponding control sample as the percentage difference in β-glucuronidase enzyme activity. The transcriptional effect of biocides on enzyme activity was estimated as the difference in the standardized enzyme activity after addition of the compound (0.5, 1.0, 1.5 and 2.0 h samples) relative to the enzyme activity before addition (0 h sample). The enzyme activity before addition was estimated as the average of the two samples collected before addition of the biocides.

Conjugative transposition of Tn916

The transfer frequencies of Tn916 were calculated as (transconjugants per mL)/(output donor cells per mL). The significance of changes in the transfer frequencies between control and treated conjugations was statistically tested using the paired, two-sided, Student’s t-test, where a pair represents the transfer frequency of the control and the treated conjugations with an experimental repetition. The normality of the differences in the transfer frequencies between the control and exposed conjugations were visually assessed using QQ plots.

Results

The MIC values for *B. subtilis* strains BS34A::pHCMC05-Ptet(M)-gusA and BS34A::pHCMC05-Ptet(M)-gusA and BS34ASTR of each of the biocides are shown in Table S1 (available as Supplementary data at JAC Online) together with...
the corresponding subinhibitory concentrations (0.25 × MIC) used in the reporter assays and the Tn916 conjugation experiment.

Determination of the optimum time of exposure to biocides prior to filter-mating experiments

Transcription from the promoter upstream of tet (M) was estimated by cloning it upstream of a promoterless β-glucuronidase (gusA) reporter construct in B. subtilis. The effect of each biocide and tetracycline on the β-glucuronidase enzyme activity is shown in Figure 1. The greatest deviations in GusA activity from the normalized value were chosen for the times for pre-exposure to the biocides prior to filter mating. The stability of the reporter construct pHCMC05-Ptet (M)-gusA during all of the experiments was found to be similar (an average of 74%-85%) at the end of the experiment, apart from the experiment where cells were challenged with tetracycline. In this experiment, the average stability was 64% (Figure S1, available as Supplementary data at JAC Online).

Effect of biocides on the conjugative transposition of Tn916

The conjugative transfer of Tn916 was studied in B. subtilis where donors were pre-grown separately in ethanol, hydrogen peroxide, chlorhexidine digluconate, sodium hypochlorite and tetracycline for 2.0, 1.5, 0.5, 1.5 and 1.0 h, respectively, prior to filter mating. The results for the effects of biocides and tetracycline on the conjugative transposition of Tn916 are presented in Table 2 (full data are provided in Table S2, available as Supplementary data at JAC Online). Tetracycline and ethanol significantly (P=0.01) enhanced the transfer of Tn916, corresponding to an average increase of 12- and 5-fold, respectively. Hydrogen peroxide, chlorhexidine digluconate and sodium hypochlorite did not significantly affect the transfer frequency of Tn916.

The stability of Tn916 in the donor cells was assessed in pre-mating cultures and was not found to be significantly different between the exposed and the control cultures (Table S3, available as Supplementary data at JAC Online). Some variation in the output recipient-donor ratio occurred between matings with pre-growth of donors in tetracycline and ethanol and the corresponding controls. When the output recipient-donor ratios were compared with the transfer frequencies, the results did not suggest that differences in transfer were due to variations in this ratio. Furthermore, the input recipient-donor ratio was determined for two experiments. In both cases, differences in transfer frequencies were not found to correlate with variations in the input recipient-donor ratio, since this ratio for the treated matings was within the range of the controls (Figure S2, available as Supplementary data at JAC Online).

Discussion

The effects of subinhibitory concentrations of ethanol, hydrogen peroxide, chlorhexidine digluconate, sodium hypochlorite and tetracycline on the conjugal transfer of Tn916 between B. subtilis strains were analysed. The MIC values of the four biocides for B. subtilis BS34A were comparable to the MIC values found for other Gram-positive bacteria. The subinhibitory concentration of each biocide used in this study was set to one-quarter of the MIC.

In order to determine the optimal time of pre-exposure to the various biocides prior to filter mating, we determined the GusA activity of a plasmid-based gusA gene under the control of the Tn916 promoter upstream of tet (M). The greatest difference for increase in GusA activity occurred at 2 h after exposure for ethanol, 1.5 h for hydrogen peroxide, 0.5 h for chlorhexidine digluconate and 1.5 h for sodium hypochlorite. Although this is a relatively crude assessment of the transcriptional activity of the tet (M) promoter in response to biocide exposure, it provided valuable data on which to base the design of the conjugation experiments. The variability of the data is likely due to the fact that we added the biocides after 2 h of growth rather than at an identical OD of the culture; therefore, there may have been slight differences in the cellular response to biocides.
Table 2. Effect of the presence of ethanol, hydrogen peroxide, chlorhexidine digluconate, sodium hypochlorite and tetracycline in the pre-growth medium on the conjugative transfer of Tn916 between B. subtilis strains.

<table>
<thead>
<tr>
<th>Biocide</th>
<th>Control output cells (cfu/mL)</th>
<th>Exposure to biocide output cells (cfu/mL)</th>
<th>TF ratio (exposed/control)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D</td>
<td>R/D</td>
<td>TF</td>
<td></td>
</tr>
<tr>
<td>ETOH 20000 mg/L</td>
<td>2.8 × 10^9 ± 1.4 × 10^9</td>
<td>1.2 ± 0.5</td>
<td>6.5 × 10^-10 ± 3.7 × 10^-10</td>
<td>1.5 × 10^9 ± 3.3 × 10^8</td>
</tr>
<tr>
<td>HP 10 mg/L</td>
<td>2.6 × 10^9 ± 5.7 × 10^9</td>
<td>1.2 ± 0.2</td>
<td>9.0 × 10^-10 ± 6.2 × 10^-10</td>
<td>2.3 × 10^9 ± 9.7 × 10^8</td>
</tr>
<tr>
<td>CHX 0.5 mg/L</td>
<td>2.1 × 10^9 ± 7.1 × 10^9</td>
<td>1.7 ± 0.5</td>
<td>9.4 × 10^-10 ± 7.0 × 10^-10</td>
<td>2.4 × 10^9 ± 7.1 × 10^8</td>
</tr>
<tr>
<td>SH 1250 mg/L</td>
<td>2.6 × 10^9 ± 5.7 × 10^9</td>
<td>1.2 ± 0.2</td>
<td>9.0 × 10^-10 ± 6.2 × 10^-10</td>
<td>3.2 × 10^9 ± 1.1 × 10^9</td>
</tr>
<tr>
<td>TET 10 mg/L</td>
<td>2.9 × 10^9 ± 6.0 × 10^9</td>
<td>1.3 ± 0.5</td>
<td>1.4 × 10^-10 ± 1.1 × 10^-9</td>
<td>5.8 × 10^8 ± 2.9 × 10^8</td>
</tr>
</tbody>
</table>

R, recipient; D, donor; TF, average transfer frequency; ETOH, ethanol; HP, hydrogen peroxide; CHX, chlorhexidine digluconate; SH, sodium hypochlorite; TET, tetracycline. Transfer frequencies were calculated as (transconjugants per mL)/(output donor cells per mL) and the P value was determined using the paired Student's t-test.

SH solution containing 14% available chlorine.
Supplementary data

Tables S1 to S3 and Figures S1 and S2 are available as Supplementary data at JAC Online (http://jac.oxfordjournals.org).

References

