Triboplasma - its generation and application for surface modification

Kusano, Yukihiro; Taormina, Stefania; Michelsen, Poul; Nakayama, K.

Publication date: 2008

Triboplasma – its generation and application for surface modification

Supported by a grant from Danish Technical Research Council
(Forskningsrådet for Teknologi og Produktion project nr. 274-06-0530)

28th March 2008

Risø National Laboratory for Sustainable Energy, Technical University of Denmark

Yukihiro Kusano, Stefania Taormina, Poul K Michelsen

Advanced Industrial Science and Technology (AIST), Japan

Keiji Nakayama
Outline

1 Process plasmas
 1.1 What is a plasma?
 1.2 Atmospheric pressure plasmas

2 Triboplasma
 2.1 Processes with tribological activation
 2.2 Magma-plasma model
 2.3 Tribo-electrification model
 2.4 Generation of triboplasma
 2.5 Tribo-electrification
 2.6 Surface modification by triboplasma
 2.7 Experimental setup

3 Summary
1.1 What is a plasma?

Characteristics of low temperature plasma

- Non-equilibrium \((T_{\text{electron}} \gg T_{\text{ion}}, T_{\text{molecule}})\)
- Radicals, ions, electrons
- UV emission
- Surface modification, Polymerization, film synthesis
- Environmental compatibility
- High treatment effect
- High reproducibility
- Bulk property unchanged
- Easily generated at low pressures, but also possible at atmospheric pressure
1.2 Atmospheric pressure plasmas

need power supplies
2 Triboplasma

2.1 Processes with tribological activation

Triboemission

Emission of electrons, ions, radicals, photons, phonons etc. caused by tribological activation

Tribo-luminescence

Optical emission caused by the breaking of asymmetrical bonds in a material with tribological activation

Triboplasma

Gas discharge with tribological activation

Surface modification
2.2 Magna-plasma model

Impact stress of flying grain
quasi-adiabatic energy accumulation
formation of energy bubble
at the deformation zone
high excitation states
strong lattice loosenings
structural disruptions
detachment of lattice components,
photons, ions, electrons

Generation of triboplasma

Temperature by rubbing peaks
between 600 - 1000 K in the course of
period smaller than 10^{-4} s, leading the
hot-spot theory.

based on Thiessen “Grundlagen der Tribochemie” 1967
& Heinricke “Tribochemistry” 1984
2.2 Magma-plasma model

Ceramization with Rocatec (3M) – dental application

SiO_2 coated alumina particles are blasted onto a surface.

A triboplasma is generated at the contact.

SiO_2 coatings are partially delaminated from the particles and attached onto the blasted surface.

The alumina particles are removed.

Detection of a triboplasma is not reported.

2.3 Tribo-electrification model

strong impact unnecessary!
2.4 Generation of triboplasma

Observation of optical emission around the sliding contact

Intense UV emission NOT at the sliding contact

Materials with higher resistivity show higher charge-emission intensity

(Nakayama, Tribology Lett. 6 (1999) 37-40)

Supporting tribo-electrification model
2.5 Tribo-electrification

The production of electro-static by rubbing together of dissimilar material surfaces.

The detailed physical mechanism in tribo-electrification is a long unsolved problem

Tribo-electric series
- a classification scheme for the ordering of the tendency for charge acquisition in rubbing

Surface morphology
2.5 Tribo-electrification

Tribo-electric series

Air (*?) positive Borosilicate glass (ground surface)
Human hands Amber
Asbestos Sealing wax
Rabbit fur Natural rubber
Silicone elastomer with silica filler Nickel, Copper
Borosilicate glass (fire polished) Brass, Silver
Glass Gold, Platinum
Mica Sulphur
Human hair Acetate, Rayon
Nylon Polyester
Wool Polystyrene (Styrofoam)
Fur Orlon
Lead Saran
Silk Polyurethane
Aluminium Polyethylene (PE)
Polyethylene (PE) Polypropylene (PP)
Polypropylene (PP) polyvinylchloride (PVC)
Paper Silicon
Cotton PTFE (Teflon)
Steel, iron negative
Wood

Adams "Nature’s electricity 1987, Freeman_ Mater.Sci.Technol._1999. Note that the order of the above list is different in different books"
2.5 Tribo-electrification

Tribo-electric series (polymers)

Coehn’s law: the order of materials corresponds with that of dielectric constants

<table>
<thead>
<tr>
<th>Material</th>
<th>Dielectric Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nylon</td>
<td>4.0 – 4.5</td>
</tr>
<tr>
<td>PMMA</td>
<td>3.0 – 3.5</td>
</tr>
<tr>
<td>Polystyrene</td>
<td>2.4 – 2.65</td>
</tr>
<tr>
<td>polyethylene (PE)</td>
<td>2.25 – 2.35</td>
</tr>
<tr>
<td>PTFE (Teflon)</td>
<td>2.0</td>
</tr>
</tbody>
</table>

“contact and separation” is important for charging. Some surfaces, such as adhesive tape or plastic sheets, can attain intimate contact over a large area, and do exhibit strong charging when they are simply touched to another surface and pulled away.

http://amasci.com/emotor/tribo.html
The ordering of the tribo-electric series can be different when surfaces are rubbed or simply touched, or surfaces of differing roughness are rubbed together.

- Asymmetric rubbing
- Asymmetric heating
- Greater charge supply from a contaminant at the larger area
- Concentration of mobile carriers increases
- Charge transfer from hotter to cooler (smaller area to larger area)
- Charge transfer from larger area to smaller area
2.5 Tribo-electrification

Controllability of tribo-electrification

- physical and chemical nature of the contacting surfaces (bulk properties, surface morphology, surface layers of water, oxides, hydrocarbons, dusts etc.)
- pressure and duration of contact
- heating, transfer of bulk materials
- ambient medium
2.6 Surface modification by triboplasma

Good agreement of optical emission spectra between a triboplasma and other general discharge plasmas

A triboplasma can be useful for surface modification such as adhesion improvement of certain surfaces

Potential advantages
• simple system
• simultaneous mechanical rubbing to enhance the treatment effect.

Fluoropolymer lubricant is decomposed
Polymeric coatings can be synthesized by a triboplasma
(K. Nakayama, Tribology Int. 29(5) (1996) 385-393)
2.7 Experimental setup

From the side

sphere

balance

bearing

sample (rotating disk)

load cell

wear track

From the top
3 Summary

- Processes with tribological activation
- triboplasma by tribo-electrification
- mechanisms of tribo-electrification
- surface modification effects
- experimental setup