In Situ Study of High Voltage Performance of Li₃Fe₂(PO₄)₃ Cathodes for Li Ion batteries

Christiansen, Ane Sælland; Johnsen, Rune E.; Norby, Poul; Jensen, Søren Højgaard; Frandsen, Cathrine; Mørup, Steen; Kammer Hansen, Kent; Holtappels, Peter

Published in:
Electrochemical Society. Meeting Abstracts (Online)

Publication date:
2013

Citation (APA):
Christiansen, A. S., Johnsen, R., Norby, P., Jensen, S. H., Frandsen, C., Mørup, S., ... Holtappels, P. (2013). In Situ Study of High Voltage Performance of Li₃Fe₂(PO₄)₃ Cathodes for Li Ion batteries. Electrochemical Society. Meeting Abstracts (Online), MA2013-02, 842-842.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
In situ study of high voltage performance of \(\text{Li}_x\text{Fe}_2(\text{PO}_4)_3 \) cathodes for Li ion batteries

Ane S. Christiansen\(^1\), Rune E. Johnsen\(^1\), Poul Norby\(^2\), Søren H. Jensen\(^1\), Cathrine Frandsen\(^1\), Steen Mørup\(^1\), Kent K. Hansen\(^1\), Peter Holtappels\(^1\)

\(^1\): Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde, Denmark. \(^2\): Department of Physics, Technical University of Denmark

In order to meet the increasing demands on energy storage capacities in Li ion batteries, new cathode materials with increased energy density must be developed. One way of achieving this is to use cathodes with multivalent transition metals, which can accommodate more than one Li ion per metal ion. Iron based compounds constitute a very attractive class of cathode materials as they are cheap, environmentally benign, and potentially a candidate for multivalent electrodes, as iron can exist in several different oxidation states. Despite a large interest, cathodes involving Fe\(^{4+}\) have not received the attention as a possible new Fe\(^{4+}\) based cathode material. The work is based on an in situ synchrotron X-ray powder diffraction (XRPD) study of the structural changes, that occur during charging of cathodes containing Fe\(^{4+}\). The change of parameter and an increase in the \(d \)-spacings of the (113) planes in the NASICON framework has been observed. A novel capillary-based micro battery cell for in situ synchrotron XRPD.

References