The Influence of CO2 Poisoning on Overvoltages and Discharge Capacity in Non-aqueous Li-Air Batteries

Mekonnen, Yedilfana Setarge; Knudsen, Kristian Bastholm; Mýrdal, Jón Steinar Garðarsson; Younesi, Reza; Højberg, Jonathan; Hjelm, Johan; Norby, Poul; Vegge, Tejs

Publication date: 2013

Citation (APA):
The Influence of CO₂ Poisoning on Overvoltages and Discharge Capacity in Non-aqueous Li-Air Batteries

Yediflana S. Mekonnen¹,², Kristian B. Knudsen¹, Jon S. G. Mýrdal¹,², Reza Younesi¹, Jonathan Højberg¹, Johan Hjelm¹, Poul Norby¹, Tejs Vegge¹,²

¹Department of Energy Conversion, Technical University of Denmark, Frederiksbergvej 399 Building 238, DK-4000 Roskilde, Denmark.
²Center for Atomic-scale Materials Design and Department of Physics, Technical University of Denmark, DK-2800 Lyngby, Denmark.

Introduction
The Li-O₂ couple is particularly attractive due to its high specific energy, ~5-10 times greater than currently available Li-ion batteries and mainly intended for onboard storage in vehicles.¹ As first reported by Abraham et al. in 1996, the Li-O₂ cell with aprotic solvent is shown to be rechargeable, when Li₂O₂ is formed during discharge.² However, Li₂CO₃ is also formed from the parasitic reactions between the Li₂O₂ and aprotic electrolytes, air impurities (e.g. CO₂) and the graphite.¹ Both Li₂O₂ and Li₂CO₃ are insulating materials with wide band gap of 4.9 and 8.8 eV, respectively. Hence, these materials deposit (5-10 nm) limit the conductivity and lead to sudden death.³

Methods
✓ Li-air cells were constructed using a Swagelok design. Each cell contained LiTFSI, DME and P50 cathodes. Experiments were performed using a galvanostat.
✓ DFT as implemented in GPAW code⁴ via ASE. RPBE approximation is used. The stepped (1100) Li₂O₂ surface with a super cell consisting of a 56-60 atoms slab with 18 Å vacuum layer and (4,4,1) kpoints are used.

Results
✓ CO₂ binds preferentially at step sites on the (1100) Li₂O₂ surface and blocks the active nucleation sites.
✓ Both DFT and experimental results show that, CO₂ contamination strongly affects the recharging process.
✓ Higher overvoltages and large capacity losses are observed at 50 % CO₂.

Conclusions
✓ CO₂ is the most critical due to its high solubility in aprotic electrolytes & high reactivity with Li₂O₂ to form Li₂CO₃.
✓ CO₂ binds favorably at steps sites on Li₂O₂ surface and once it is adsorbed at the step site, it is unlikely to diffuse elsewhere.
✓ The recharging process is strongly influenced by CO₂, and exhibits higher charging overvoltage, which is observed already at 1 % CO₂ while at 50 % CO₂ a large capacity loss is seen.

References

²Funded by ReLiable Project

Fig 1. Energy densities of M-air wrt Gasoline.

Fig 2: a) Discharge, b) Charge curves for pure & CO₂ contaminated cells.

Fig 3: a) Stepped Li₂O₂ surface. b) CO₂ adsorbs at step. c) 1st LiO₂ binds. d) 2nd Li₂O₂ binds. e) 1st Li binds. f) 2nd Li binds to the surface; end up with 2 Li₂O₂ growth.

Fig 4: Free energy diagrams for discharge mechanism of Li₂O₂ on Cathode surface with and without CO₂.