Aeroelastic rotor design minimizing the loads

Døssing, Mads; Bak, Christian

Published in:
Presentations from the Aeroelastic Workshop – latest results from AeroOpt

Publication date:
2011

Document Version
Publisher’s PDF, also known as Version of record

Citation (APA):
Presentations from the Aeroelastic Workshop – latest results from AeroOpt

Morten Hartvig Hansen (Ed.)
Risø-R-1769(EN)
February 2011
Abstract (max. 2000 char.):

This report contains the slides of the presentations at the Aeroelastic Workshop held at Risø-DTU for the wind energy industry in Denmark on January 27, 2011. The scientific part of the agenda at this workshop was

- Anisotropic beam element in HAWC2 for modelling of composite lay-ups (Taeseong Kim)
- Nonlinear beam element in HAWC2 for modelling of mooring systems (Bjarne Kallesøe)
- Enhanced BEM including wake expansion and swirl (Christian Bak)
- Unsteady viscous-inviscid interactive airfoil code for wind turbines (Néstor Ramos García)
- PIV measurements on model scale wind turbine in water channel (Robert Mikkelsen)
- Potential of fatigue and extreme load reductions on swept blades using HAWC2 (David Verelst)
- Aeroelastic modal analysis of backward swept blades using HAWCStab2 (Morten H. Hansen)
- Aeroelastic rotor design minimizing the loads (Christian Bak)
- A small study of flat back airfoils (Niels N. Sørensen)
- Status of airfoil design and plans for wind tunnel tests of new thick airfoils (Christian Bak)

The presented results are mainly obtained in the EUDP project “Aeroelastic Optimization of MW Wind Turbines (AeroOpt)” funded under contract no. 63011-0190.
Contents

Preface 4

1 Anisotropic beam element 5

2 Nonlinear beam element 24

3 Enhanced BEM 42

4 Unsteady viscous-inviscid airfoil code 54

5 PIV measurements on model scale turbine 77

6 Simulations of backward swept blade 102

7 Eigenvalue analysis of backward swept blades 119

8 Aeroelastic rotor design minimizing the loads 137

9 A small study of flat back airfoils 152

10 Status of airfoil design 196
Preface

This report contains the slides of the presentations at the Aeroelastic Workshop held at Risø-DTU for the wind energy industry in Denmark on January 27, 2011. The scientific part of the agenda at this workshop was

- Anisotropic beam element in HAWC2 for modelling of composite lay-ups (Taeseong Kim)
- Nonlinear beam element in HAWC2 for modelling of mooring systems (Bjarne Kallesøe)
- Enhanced BEM including wake expansion and swirl (Christian Bak)
- Unsteady viscous-inviscid interactive airfoil code for wind turbines (Néstor Ramos García)
- PIV measurements on model scale wind turbine in water channel (Robert Mikkelsen)
- Potential of fatigue and extreme load reductions on swept blades using HAWC2 (David Verelst)
- Aeroelastic modal analysis of backward swept blades using HAWCStab2 (Morten H. Hansen)
- Aeroelastic rotor design minimizing the loads (Christian Bak)
- A small study of flat back airfoils (Niels N. Sørensen)
- Status of airfoil design and plans for wind tunnel tests of new thick airfoils (Christian Bak)

The presented results are mainly obtained in the EUDP project “Aeroelastic Optimization of MW Wind Turbines (AeroOpt)” funded under contract no. 63011-0190.
1 Anisotropic beam element
Anisotropic Beam Element in HAWC2 for Modeling of Composite lay-ups

Taeseong Kim
Introduction

• All of composite blades have anisotropic material properties due to different layup angles.
 • It introduces additional bending-bending and bending-twist couplings.

• The existing beam model in HAWC2 is capable for modeling of geometric couplings e.g the offset between elastic axis and shear center
 • The offset introduces the bending and torsion couplings

• Aeroelastic codes such as HAWC2, Bladed, FAST, and Flex are using classical engineering beam models.

• Classical beam models are derived by assuming isotropic material beam properties.
 • Anisotropic material properties of composite beam cannot be modeled with those classical beam models.
Typical layup conditions

\[\begin{bmatrix} F_x \\ F_y \\ F_z \\ M_x \\ M_x \\ M_x \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} - S_{12} = 0 \\ & S_{22} \\ & S_{33} \\ & S_{44} \\ & S_{45} - S_{45} = 0 \\ & S_{55} \end{bmatrix} \begin{bmatrix} \varepsilon_x \\ \varepsilon_y \\ \varepsilon_z \\ K_x \\ K_y \\ K_z \end{bmatrix} \]
Possible new layup conditions

\[
[\theta_1/\theta_2/\theta_3/\theta_4/\theta_5]^T
\]

\[
\begin{bmatrix}
F_x \\
F_y \\
F_z \\
M_x \\
M_x \\
M_x
\end{bmatrix}
= \begin{bmatrix}
S_{11} & S_{12} & S_{14} \\
S_{21} & S_{22} & S_{25} \\
S_{31} & S_{32} & S_{33} \\
S_{41} & S_{42} & S_{44} \\
S_{51} & S_{52} & S_{55} \\
S_{61} & S_{62} & S_{66}
\end{bmatrix}
\begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\varepsilon_z \\
\kappa_x \\
\kappa_y \\
\kappa_z
\end{bmatrix}
\]

- To analyze anisotropic composite blade \textit{anisotropic beam model} should be introduced.
Method

- General FEM approach is considered to develop new a Timoshenko beam model.

- 2 nodes element is fixed for structural elements.
 - 2 nodes element is used for aerodynamic elements.
 - Linear shape function is available.
 - Linear shape function needs to have more elements.
 - Time cost is increased.

- 2 nodes element with higher order of the polynomial shape function is developed.

- Steady deflections are compared.

- Natural frequencies (Hz) for box beams are compared.

- Mode shapes are compared.

- Cross-sectional stiffness and mass matrix are given from the references.
Cases

• CASE 1: Wenbin Yu (2007)
 • Length of the beam: 7.5 in
 • Graphite-Epoxy $[30^\circ]_T$, rectangular box beam

• CASE 2: Hodges et al. (1991)
 • Length of the beam: 100 in
 • Graphite-Epoxy $[20^\circ/-70^\circ/20^\circ/-70^\circ/-70^\circ/20^\circ]_T$, rectangular box beam
Results (case 1)

- Graphite-Epoxy $[30^\circ]_T$, rectangular box beam

- The material properties and the dimensions of the structure

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{11}</td>
<td>18.73×10^6 psi</td>
</tr>
<tr>
<td>E_{22}, E_{33}</td>
<td>1.364×10^6 psi</td>
</tr>
<tr>
<td>G_{12}</td>
<td>0.7479×10^6 psi</td>
</tr>
<tr>
<td>G_{13}</td>
<td>0.6242×10^6 psi</td>
</tr>
<tr>
<td>G_{23}</td>
<td>0.3686×10^6 psi</td>
</tr>
<tr>
<td>$\nu_{12}, \nu_{13}, \nu_{24}$</td>
<td>0.3</td>
</tr>
<tr>
<td>ρ</td>
<td>1.450×10^{-4} lb.sec2/in.4</td>
</tr>
<tr>
<td>Width</td>
<td>0.5 in</td>
</tr>
<tr>
<td>Thickness</td>
<td>0.125 in</td>
</tr>
<tr>
<td>Length</td>
<td>7.5 in</td>
</tr>
</tbody>
</table>
Static analysis with cantilever beam (case 1)

- 2 nodes with 6th order polynomial

where \(L = 7.5\text{in}, \ P = -1\text{lb} \)

\[
\begin{bmatrix}
S_{11} & S_{12} & 0 & 0 & 0 & 0 \\
S_{12} & S_{22} & 0 & 0 & 0 & 0 \\
0 & 0 & S_{33} & 0 & 0 & 0 \\
0 & 0 & 0 & S_{44} & S_{45} & 0 \\
0 & 0 & 0 & S_{45} & S_{55} & 0 \\
0 & 0 & 0 & 0 & 0 & S_{66}
\end{bmatrix}
\]

- Anisotropic stiffness properties
 - Axial-edgewise direction
 - Torsion-flapwise bending

- Isotropic stiffness properties
Static analysis with cantilever beam (case 1)

- 2 nodes with 6th order polynomial

Axial deflection

Edgewise deflection

Flapwise deflection

Torsion

Edgewise bending

Flapwise bending

0.24 in

0.07 rad

0.05 rad
Comparisons of the natural frequencies (case 1)

<table>
<thead>
<tr>
<th>Mode</th>
<th>Isotropic [Hz]</th>
<th>Anisotropic [Hz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(Flap)</td>
<td>70.6</td>
<td>52.6</td>
</tr>
<tr>
<td>2(Edge)</td>
<td>210.3</td>
<td>209.9</td>
</tr>
<tr>
<td>3(Flap)</td>
<td>436.5</td>
<td>327.3</td>
</tr>
<tr>
<td>4(Flap)</td>
<td>1197.9</td>
<td>906.7</td>
</tr>
<tr>
<td>5(Edge)</td>
<td>1304.8</td>
<td>1292.5</td>
</tr>
<tr>
<td>6(Flap)</td>
<td>2282.9</td>
<td>1752.9</td>
</tr>
</tbody>
</table>
Comparisons of the mode shapes (case 1)

1st Flap mode

Flap deflection (U_z)

)| Anisotropic
| Isotropic

Torsion (θ_x)

2nd Flap mode

Flap deflection (U_z)

)| Anisotropic
| Isotropic

Torsion (θ_x)

Length (in)
Results (case 2)

- Graphite-Epoxy $[20^\circ/-70^\circ/20^\circ/-70^\circ/-70^\circ/20^\circ]^T$, rectangular box beam

\[
\begin{bmatrix}
S_{11} & 0 & 0 & S_{14} & 0 & 0 \\
0 & S_{22} & 0 & 0 & S_{25} & 0 \\
0 & 0 & S_{33} & 0 & 0 & S_{36} \\
S_{14} & 0 & 0 & S_{44} & 0 & 0 \\
0 & S_{25} & 0 & 0 & S_{55} & 0 \\
0 & 0 & S_{36} & 0 & 0 & S_{66}
\end{bmatrix}
\]

where $[s]$: sectional stiffness matrix
Static analysis with cantilever beam (case 2)

• 2 nodes with 6th order polynomial

Axial deflection

Edgewise deflection

Flapwise deflection

Torsion

Edgewise bending

Flapwise bending

0.1 in

11.2 in

0.17 rad

0.004 rad

0.1 in

0.17 rad

0.004 rad
Comparisons of the natural frequencies (case 2)

<table>
<thead>
<tr>
<th></th>
<th>Isotropic [Hz]</th>
<th>Anisotropic [Hz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(Flap)</td>
<td>3.69</td>
<td>2.95</td>
</tr>
<tr>
<td>1(Edge)</td>
<td>6.43</td>
<td>5.09</td>
</tr>
<tr>
<td>2(Flap)</td>
<td>23.12</td>
<td>18.44</td>
</tr>
<tr>
<td>2(Edge)</td>
<td>40.23</td>
<td>31.84</td>
</tr>
<tr>
<td>3(Flap)</td>
<td>64.53</td>
<td>51.59</td>
</tr>
<tr>
<td>3(Edge)</td>
<td>112.22</td>
<td>87.95</td>
</tr>
</tbody>
</table>
Comparisons of the mode shapes (case 2)

3rd Flap mode

3rd Edge mode

Edge deflection (U_y)

Flap deflection (U_z)

Anisotropic
Isotropic

Length (in)
Conclusions

- Steady deflections for isotropic and anisotropic cases
 - Anisotropic beam deflects more than isotropic beam.

- Natural frequencies
 - Natural frequencies with isotropic material are higher than the frequencies for anisotropic material.

- Mode shapes
 - More coupling effects are illustrated when anisotropic materials are considered.
 - For the case 1, torsion mode is coupled with flap mode.
 - For the case 2, edge mode is coupled with flap mode.
Future works

- Future works
 - New element is going to be added in HAWC2.

- More validations
 - Simple static analysis
 - Dynamic analysis

- Tailoring study
 - Designing composite blade

What are the effects of anisotropic beam properties on loads ????
Thank you for your attention
2 Nonlinear beam element
Nonlinear beam element in HAWC2 for modeling of mooring systems

Bjarne S. Kallesøe, Risø DTU
Anders M. Hansen, Siemens Wind Power A/S
Background and motivation

- Increasing focus on floating turbine concepts
- Mooring system an integrated part of the overall system dynamic
- Present mooring modeling in HAWC2
 - Quasi-static nonlinear stiffness based on pre-computed mooring line characteristic
- Pros
 - Fast computations, based on well known mooring model
- Cons
 - Quasi-static, symmetric mooring forces, complicated modeling based on external program
- Develop new mooring system model that:
 - Includes dynamic mooring lines to:
 - Analyze the effect and importance of such on overall system dynamic
 - Analyze loads on mooring systems
 - Is capable of modeling different mooring layouts
Hydro-aero-servo-elasticity of floating turbines

Aero-servo-elasticity of Onshore turbines

- Structural Dynamics
- Aerodynamics
- Controller & Actuators

Hydro-aero-servo-elasticity of offshore bottom fixed turbines

- Hydrodynamics
- Buoyancy
- Mooring system

Risø DTU, Technical University of Denmark
Mooring system

• Modeling split into two sections:
 1) Bottom contact section; 2D inelastic quasi-static solution to determine bottom connection point
 2) Dynamic mooring line section; nonlinear element with longitudinal flexibility and no bending stiffness. Includes drag, buoyancy and concentrated masses
Bottom contact section

- Bottom section model quasi-static in 2D, determine the radius to bottom contact point and the height and radius at the connection point to the mooring line
- Highly nonlinear problem
Bottom contact section

• Problem: given a connection point from the main solver, find the bottom contact point, line force and angle at connection point

• Solution scheme
 1. Get a guess on connection point from main solver
 2. Compute the bottom contact point by an iterative solution of the quasi-static equilibrium between free anchor chain and angle at connection point
 3. Compute vertically line force component by weight of floating anchor chain
 4. Compute horizontal line force component by angle at connection point
 5. Return line forces as residual of unconstrained equations to main solver
Dynamic mooring line section

- Mooring line divided into sections with uniform stiffness, mass and hydrodynamic characteristic
- Each section divided equidistantly into a number of 2 node elements
- Concentrated masses and drag points can be added to any node
Nonlinear stiffness term

One line segment with uniform properties

Length of element:
\[L_n = (x_{n-1} - x_n)^2 + (y_{n-1} - y_n)^2 + (z_{n-1} - z_n)^2 \]

Green strain:
\[\epsilon_G = \frac{L_n^2 - L_{n,0}^2}{2L_{n,0}^2} \]

Axial force in element:
\[f = E A \epsilon_G \]

Element stiffness matrix:
\[
K_e = f / L_n \begin{bmatrix}
1 & 0 & 0 & -1 & 0 & 0 \\
0 & 1 & 0 & 0 & -1 & 0 \\
0 & 0 & 1 & 0 & 0 & -1 \\
-1 & 0 & 0 & 1 & 0 & 0 \\
0 & -1 & 0 & 0 & 1 & 0 \\
0 & 0 & -1 & 0 & 0 & 1 \\
\end{bmatrix}
\]

Nodal elastic forces:
\[
K_e \begin{bmatrix}
x_n \\
x_{n+1}
\end{bmatrix} = \begin{bmatrix}
-f \delta \\
f \delta
\end{bmatrix}, \quad \delta = \begin{bmatrix}
\frac{x_{n+1} - x_n}{L_n} \\
\frac{y_{n+1} - y_n}{L_n} \\
\frac{z_{n+1} - z_n}{L_n}
\end{bmatrix}
\]
Equations of motion

Unconstrained equation of motion:

\[M\ddot{x}(t) + K(x, t)x(t) - F_{\text{gravity}} - F_{\text{buoyancy}} - F_{\text{drag}}(x, \dot{x}, t) = \text{residual} \]

One line segment with uniform properties

Constrain forces from constrain conditions:
1) distance from end of 2D bottom contact section to node 1 of first line segment = 0
2) distance from node N of one line segment to node 1 of the next segment = 0
3) distance from node N of last line segment to node n on a HAWC2 body = 0
The mooring system model is implemented in HAWC2 by an external system DLL interface that couples external systems with its one degree of freedom to the HAWC2 model in a tightly coupled manner.
Mooring system model with one line

- Shift from bottom section to dynamic mooring lines
- Bottom contact point
- Tower Connection
- Concentrated mass
Quasi-static results (one line)

- Quasi-static results by moving tower connection point slowly back and forth
- Fits well to MIMOSA results

Result normalized by:
- Aerodynamic trust at rated power
- Rotor diameter and
- Systems natural surge period
Dynamic results (one line)

- Increasing oscillation frequency opens the loop

Result normalized by:
- Aerodynamic trust at rated power
- Rotor diameter and
- Systems natural surge period
Three line mooring system

- Mooring system as the one used in the OC3 project
- Three mooring lines, each with a concentrate mass to increase stiffness
Quasi-static results (three lines)

- Results for 90 degrees direction fits well with MIMOSA results
- Different response for different direction because of unsymmetrical line setup; this effect is not included in the quasi-static implementation in HAWC2

Result normalized by:
- Aerodynamic trust at rated power
- Rotor diameter and
- Systems natural surge period
Dynamic results (three lines)

- Increasing oscillation frequency opens the loop

Result normalized by:
- Aerodynamic trust at rated power
- Rotor diameter and
- Natural surge period
Conclusion

• A nonlinear element that can model a cable with no bending stiffness but longitudinal flexibility has been developed
• A 2D bottom contact section that determine a quasi-static bottom contact point for the mooring system has been developed
• Quasi-static results shows good agreement with MIMOSA results

Further work

• Run selected load cases with detailed mooring model to analysis the mooring system behavior
• Run selected load cases with different model complexities to determine necessary model complexity for different modeling purposes
 • Mooring modeling necessary to determine turbine loads
 • Turbine modeling necessary to determine mooring line loads
3 Enhanced BEM
Enhanced BEM including wake expansion and swirl

Mads Døssing, Christian Bak, Helge A. Madsen
Background
Reporting high aerodynamic efficiency
Background
Design of rotors: Max CP incl. swirl

Pressure

Axial velocity

Red is high pressure
Blue is low pressure

Red is high axial velocity
Blue is low axial velocity

Figure 13. Contour plots of pressure (left) and axial velocity (right) in a vertical plane through the rotor.
Background
Design of rotors: Max CP incl. swirl

Table 1: Mechanical power and Thrust force for the present rotor. The IEA, 5MW RWT is included for comparison

<table>
<thead>
<tr>
<th></th>
<th>Mechanical power, P [MW]</th>
<th>Thrust force, T [kN]</th>
<th>CP</th>
<th>CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>EllipSys3D</td>
<td>2.015</td>
<td>426</td>
<td>0.515</td>
<td>0.872</td>
</tr>
<tr>
<td>Lifting Line</td>
<td>2.011</td>
<td>424</td>
<td>0.514</td>
<td>0.868</td>
</tr>
<tr>
<td>Actuator Disc</td>
<td>1.995</td>
<td>425</td>
<td>0.510</td>
<td>0.870</td>
</tr>
<tr>
<td>IEA, 5MW RWT</td>
<td>1.867</td>
<td>382</td>
<td>0.477</td>
<td>0.782</td>
</tr>
<tr>
<td>EllipSys3D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BEM correction
Axial velocity in rotorplane

\[v_a = (1 - a + \Delta v_w - \Delta v_e) V_0 \]

\(\Delta v_w \) correction for wake rotation
\(\Delta v_e \) correction for wake expansion
\(a \) axial induction factor
BEM correction
The model

- Expansion

\[\Delta v_e = \Delta v_1 - \Delta v_2 \]

\[\Delta v_1 = f(r, v_r) = l_1(r) v_r^3 + l_2(r) v_r^2 + l_3(r) v_r \]

\[\Delta v_2 = f(v_r (r / R = 0.9)) = k_1 v_r^2 + k_2 v_r + k_3 \]

\[v_r = \frac{1}{2.24} \frac{C_{Tav}}{4\pi} \ln \left[\frac{0.04^2 + (r + 1)^2}{0.04^2 + (r - 1)^2} \right] \]

\[C_{Tav} = \frac{\int_0^r C_T 2\pi r dr}{\pi r^2} \]

- Swirl

\[\Delta v_w = 0.7 p_w \]

\[p_w = \int_1^r \frac{v_t^2}{r} dr \]

\[v_t = 2a' \lambda_r \]

Application of BEM corrections

- How does the BEM corrections influence the rotor performance?
- Rotor designs are carried out to
 - investigate the influence of the BEM corrections and
 - investigate how rotors should be designed when corrections for swirl and expansion are included
Validation of implementation in HAWTOPT

Axial velocity

\[v_a [-] \]

\[r/R [-] \]

<table>
<thead>
<tr>
<th>Johansen et al. (ACD)</th>
<th>BEM</th>
<th>BEM_{cor} (\Delta v_w = 0.7 p_w)</th>
<th>BEM_{cor} (\Delta v_w = 1.0 p_w)</th>
</tr>
</thead>
</table>

Tangential velocity

\[v_t [-] \]

\[r/R [-] \]

<table>
<thead>
<tr>
<th>Johansen et al. (ACD)</th>
<th>BEM</th>
<th>BEM_{cor} (\Delta v_w = 0.7 p_w)</th>
<th>BEM_{cor} (\Delta v_w = 1.0 p_w)</th>
</tr>
</thead>
</table>
Rotors optimized for maximum power

Tip speed ratio

Chord

Inflow angle

Riso DTU, Technical University of Denmark
Root bending moments
Optimization for low thrust at reduced CP

\[\lambda = 6 \ (l/d = 110) \]

\[\lambda = 8 \ (l/d = 110) \]
Conclusion

- Rotor designs are carried out using BEM with correction for swirl and expansion.
- No significant differences in designs are seen if λ_{design} is appr. 7-8, when comparing traditional BEM to corrected BEM.
- If λ_{design} is below 7-8
 - Chord lengths and twist close to the root should be increased
 - Power efficiency increased
- If λ_{design} is beyond 7-8
 - Power efficiency decreased
4 Unsteady viscous-inviscid airfoil code
Unsteady Viscous-Inviscid Interactive Airfoil Code for Wind Turbines

Néstor Ramos García
Jens Nørkær Sørensen
Wen Zhong Shen

\[(EIv'') = q - \rho A \ddot{v} \]
• **INTRODUCTION**

• **VISCOUS-INVISCID INTERACTION**

• **INTEGRAL BOUNDARY LAYER SOLVER via VI INTERACTION**
 - STEADY 2D.
 - UNSTEADY 2D, SINGLE WAKE.
 - STEADY QUASI3D

• **POTENTIAL DOUBLE WAKE SOLVER**

• **CONCLUSIONS**
INTRODUCTION

• **Blade-Element Momentum** theory is often used for the design of wind turbines. Required Input: Lift and Drag force coefficients.

• Computer resources are getting more powerful with the years, but it is still behind our limits to realize an active design of airfoils and blades using Navier-Stokes solvers. High cost in computational time.

• The first HAWT Aerodynamics Specialists meeting, Wichita State University, 1983, concluded:
 - Inboard regions are producing more power than predicted.
 - Rotor is producing more power at high angles of attack due to secondary outward flow, caused by centrifugal pumping.
A code has been developed during the last three years that can fit our needs:
- It has to compute accurately steady/unsteady airfoil forces.
- It has to be fast in order to use it as a design method.
- It has to take into account rotational effects. Centrifugal and Coriolis forces.

The code uses the already known concept of UNSTEADY VISCOUS-INVISCID STRONG INTERACTION via transpiration velocity.

- Inviscid flow \(\rightarrow\) Unsteady potential flow, panel method.
- Viscous flow \(\rightarrow\) Quasi 3-D integral BL equations + Closures.
QUASI-3D BOUNDARY LAYER EQUATIONS

- The boundary layer equations are used with all the necessary assumptions in order to reduce them into the integral quasi-3D ones.

Integral θ-momentum

\[
\frac{\partial \theta_1}{\partial s} = -\frac{\theta_1}{u_e} \frac{\partial u_e}{\partial s} (2 + H) + \frac{C_f}{2} + s_w p_r \frac{2 Ro \cdot l_s}{u_{2D} c} \delta_2 - \frac{1}{u_e} \frac{\partial u_e}{\partial s} (2\theta_2 - \delta_2) - \frac{l_s}{c} (2\theta_2 - \delta_2)
\]

Integral r-momentum

\[
\frac{\partial \theta_2}{\partial s} = -\frac{2\theta_2}{u_e} \frac{\partial u_e}{\partial s} + \tan \beta_w \frac{C_f}{2} + \frac{l_s}{c} \left(\frac{\theta_1}{u_e} - \delta - \delta_2 - s_w p_r \frac{2 Ro}{u_{2D} c} (\delta - \delta_1) \right) - \frac{1}{u_e} \frac{\partial u_e}{\partial r} (2\delta_3 + \delta)
\]

A set of 3D turbulent closure equations are used in order to close the system (semi-empirical)
ASSUMPTION OF AN EQUIVALENT FLOW, where the effects of real flow can be added. Transpiration velocity will take into account the effects of the real flow in the potential flow solver.

\[v_T = \frac{d}{dx} \int_0^\infty (u_e - u) \, dz = \frac{d}{dx} (u_e \delta_1) \]
Comparison in between: **Experiments**, EllipSys2D, and the VI code: lift, drag and pitch moment coefficients in function of the angle of attack for the NACA 65415 at $Re = 3e6$

The measurements were performed at NASA's low-turbulence pressure tunnel and reported in the book by Abbott and von Doenhoff.
STEADY VI, REYNOLDS VARIATION

NACA 4412
N.A.C.A Variable-Density Wind Tunnel.
UNSTEADY VISCOUS INVISCID SOLVER SINGLE WAKE
- NACA 0015
- Re = 1.5e6
- k = 0.1
- \(\alpha = 13.37 \ A = 7.55 \)

- Unsteady experiments, University of Glasgow, G.U Aero Report 9221.

- Unsteady Viscous-Inviscid strong coupling code.
• NACA 63421
• $k = 0.0785$

- EXP, Unsteady experiments, *Institut AéroTechnique, S4 wind tunnel, TI = 1.1.*
- eNRG, Unsteady Viscous-Inviscid strong coupling code.
Q3D STEADY VISCOSUS INVISCID SOLVER
• Dimensional variables of interest in rotational study: c, r, Ω, V_w

• In order to proceed with a parametric study of the rotational effects in a wind turbine blade, two variables are defined:

1. The ratio between the chord length and the radial position,
 $$ls = \frac{c}{r}$$

2. The ratio between the rotational speed and the relative velocity,
 $$RO = \frac{\Omega r}{U_{rel}}$$

Where Ω is the blade angular velocity, U_{rel} is defined typically,

$$U_{rel} = \sqrt{((1 + a')\Omega r)^2 + ((1 - a)V_w)^2}$$

The four dimensional variables of interest are reduced to two adimensional parameters ls & RO, base for our parametric study.
• Artificial rotor.
• S809 Airfoil.
• $Re = 1e6$.
• $R = 10$ m.
• $\Omega = 70$ rpm.

• Tip speed ratio, $\lambda = \frac{\Omega R}{Q_w}$

 • $Q_w = 12.20$ m/s \rightarrow $\lambda = 6$
 • $Q_w = 8.14$ m/s \rightarrow $\lambda = 9$
 • $Q_w = 6.11$ m/s \rightarrow $\lambda = 12$
QUASI-3D BOUNDARY LAYER

\[C_L = f(r/R) \]

\[\alpha = 12 \]

\[\lambda = 6 \]
\[\lambda = 9 \]
\[\lambda = 12 \]
\[\lambda = 14 \]
DOUBLE WAKE
POTENTIAL SOLVER
DOUBLE WAKE MODEL

![Graph showing the pressure coefficient (C_p) vs. normalized location (x) for experimental (EXP) and 2-wake models.](image1)

![Graph showing the pressure coefficient (C_p) vs. normalized location (x) for experimental (EXP) and 2-wake models.](image2)
DOUBLE WAKE MODEL
CONCLUSIONS

• VISCOUS INVISCID SOLVER IMPLEMENTED
 – STEADY 2D
 – UNSTEADY 2D
 – STEADY Q3D
 – STEADY / UNSTEADY 2D/Q3D WITH FLAP

• DOUBLE WAKE POTENTIAL SOLVER IMPLEMENTED
 – DEEP STALL CONDITIONS
THANK YOU FOR YOUR ATTENTION.
5 PIV measurements on model scale turbine
PIV measurements on a wind turbine in a water flume

by

Robert Mikkelsen, Svend Petersen, Kasper Damkjær

Content

• Setup in flume
• Some results
• Summary
Flume

[Diagram of a flume setup with various components labeled, including a sled, adjustable rig, rotor model, and computer.]
The turbine – Glauert opt. $\lambda = 5$

- $D = 0.35m$
- SD7003 aerofoil
Fluorescein on tips - TSR 5
Fluorescein on tips - TSR 4
Fluorescein on tips - TSR 7
PIV set-up
Focus areas
PIV, Mean(500) Axial Velocity, TSR 4-7
PIV, Mean Axial Velocity Urms TSR 4-7
PIV, Mean Axial Velocity U TSR 4-7
PIV, Phase ave., U-vel, TSR 6
PIV, Phase Average (100) Uax TSR 4-7

\(\lambda = 4 \)

\(\lambda = 5 \)

\(\lambda = 6 \)

\(\lambda = 7 \)
MEXICO PIV, Phase Ave., Uax
MEXICO PIV, Phase Ave., W
PIV, Tangentiel Vel, W-mean TSR 4-7
PIV, Phase ave., U-rms, TSR 4-7
PIV, U-vel, TSR 6 unfolded, 5deg/s
Expansion of the wake

Normalised expansion at measured tip speed ratios, TSR
PIV, U-vel, TSR 6 unfolded, 5deg/s
Rotation of the wake
Thrust measurements

\[T = \dot{m}(V_0 - u_1) \]

\[C_T = \frac{T}{\frac{1}{2}\rho V_0^2 A} \]
Visualisation with upstream injection
Summary

- Experimental facilities were found useable
- Visualization captures dynamics of helical structures
- Full mapping of the mean flow in the wake at TSR 4-7
- Wake expansion at different TSR’s
- 3D mapping of the wake near the rotor plane
- Strain gauge measurements needs improvement
- Improvement of PIV data
 - More measurements planed 2011
 - Out of plane vel.
 - Upstream measurements
 - Phase triggering
6 Simulations of backward swept blade
Potential of fatigue and extreme load reductions on swept blades using HAWC2

David Verelst
RISØ DTU
UPWIND Turbine: 5MW NREL

Reference turbine by J. Jonkman et al (NREL 2009)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rating</td>
<td>5 MW</td>
</tr>
<tr>
<td>Configuration</td>
<td>Upwind, 3 blades</td>
</tr>
<tr>
<td>Control</td>
<td>Variable speed, collective pitch</td>
</tr>
<tr>
<td>Drivetrain</td>
<td>High speed, Multiple-stage gearbox</td>
</tr>
<tr>
<td>Rotor, Hub diameter</td>
<td>126m, 3m</td>
</tr>
<tr>
<td>Cut-in, Rated, Cut-out wind speed</td>
<td>3 m/s, 11.4 m/s, 25 m/s</td>
</tr>
<tr>
<td>Cut-in, Rated rotor speed</td>
<td>6.9, 12.1 RPM</td>
</tr>
<tr>
<td>Rated tip speed</td>
<td>80 m/s</td>
</tr>
<tr>
<td>Overhang, Shaft tilt, Precone</td>
<td>5m, 0 deg, 0 deg</td>
</tr>
</tbody>
</table>
Previous swept blade studies

• This presentation is based on a public Risø report:
 Load Consequences when Sweeping Blades – A Case Study of a 5 MW Pitch
 Controlled Wind Turbine, D.R.S. Verelst, T.J. Larsen, 2010

• Sandia – Night & Karver STAR blade
 – Objective: increase energy consumption on Zond 750 turbine
 for low wind speed sites (average wind speed around 5.8 m/s)
 – Zond 750 is a variable speed pitch controlled machine
 – Larger swept blade but load level maintained (blade root
 bending moments)
 – Increased energy capture in below rated conditions.
 Full scale tests shows energy increase of 10-12%
 – Thomas Ashwill et al., Development of the Swept Twist
Why sweep?

• Sweep adds a geometric coupling between bending and twist deformations of the blade

• Increase blade size while maintaining blade root bending moment load levels. As a result, increased energy capture due to larger rotor

• For backward sweep, pitch to feather decreases angle of attack variations over one rotor revolution (cfr. turbulence, shear): passive cyclic pitch

• Preliminary results indicate decreased yawing moments (work in progress for EWEC 2011)
Methodology

• 5 sweep curve exponents combined with 24 tip offsets = 120 + 1 (ref.) blade variants

• 2 different controller implementations (Risø and NREL)

• Steady wind speeds (4..26 m/s, 1m/s steps)

• Turbulent wind speeds (4..26 m/s, 2m/s steps, 10 min series) same seed number, TI=0.18

• Equivalent loads for standard wind speed distribution and 20 years

\[x = a \left(\frac{Z-Z_0}{Z_e-Z_0} \right)^b \]
Blade structural characteristics

Start sweep curve at 14.35m (blade radial pos)
Equivalent loads – blade flap

Forward sweep

No sweep

Backward sweep
Equivalent loads – blade edge

Forward sweep

No sweep

Backward sweep

Normalised Equivalent load blade1 Root My value for for different sweep variants

a - tip offset (negative is swept back)

b - sweep curve exponent

Risø DTU
Equivalent loads – blade torsion

Forward sweep

No sweep

Backward sweep

Normalised Equivalent load blade1 Root Mz value for for different sweep variants
Extreme loads – blade flap

Forward sweep

No sweep

Backward sweep
Extreme loads – blade edge

- Forward sweep
- No sweep
- Backward sweep

% difference extreme loads w.r.t. nosweep: Blade root edge-wise moment

- a - tip offset (negative is swept back)
- b - sweep curve exponent

Risø DTU
Overview of Approximate Load Consequences

<table>
<thead>
<tr>
<th>Controller</th>
<th>Risø fat.</th>
<th>Risø ext.</th>
<th>NREL fat.</th>
<th>NREL ext.</th>
<th>NREL wrt Risø fat.</th>
<th>NREL wrt Risø ext.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blade root flap</td>
<td>-8 %</td>
<td>-15 %</td>
<td>-10 %</td>
<td>-15 %</td>
<td>0 %</td>
<td>+2 %</td>
</tr>
<tr>
<td>Blade root edge</td>
<td>+7 %</td>
<td>+6 %</td>
<td>+3 %</td>
<td>-4 %</td>
<td>+3 %</td>
<td>+12 %</td>
</tr>
<tr>
<td>Blade root torsion</td>
<td>+50 %</td>
<td>+50 %</td>
<td>+50 %</td>
<td>+50 %</td>
<td>+1 %</td>
<td>+2 %</td>
</tr>
<tr>
<td>Tower base FA</td>
<td>-3 %</td>
<td>-8 %</td>
<td>-3 %</td>
<td>-4 %</td>
<td>na</td>
<td>-3 %</td>
</tr>
<tr>
<td>Tower base SS</td>
<td>+2 %</td>
<td>-12 %</td>
<td>+4 %</td>
<td>-6 %</td>
<td>na</td>
<td>-10 %</td>
</tr>
<tr>
<td>Tow. base torsion</td>
<td>-10 %</td>
<td>-15 %</td>
<td>-8 %</td>
<td>-15 %</td>
<td>na</td>
<td>-2 %</td>
</tr>
<tr>
<td>Shaft-end tilt</td>
<td>-10 %</td>
<td>-2 %</td>
<td>10 %</td>
<td>-10 %</td>
<td>na</td>
<td>+20 %</td>
</tr>
<tr>
<td>Shaft-end yaw</td>
<td>-15 %</td>
<td>-20 %</td>
<td>-14 %</td>
<td>-20 %</td>
<td>na</td>
<td>-3 %</td>
</tr>
<tr>
<td>Shaft-end torsion</td>
<td>+1.5 %</td>
<td>0.5 %</td>
<td>+1.0 %</td>
<td>-2.5 %</td>
<td>na</td>
<td>+1.5 %</td>
</tr>
</tbody>
</table>

Table 3. Overview of approximate load consequences for a pitched controlled, extreme swept wind turbine
Energy Yield – steady wind

Forward sweep

No sweep

Backward sweep
Power Curve

At rated wind speed and above the power is not affected.

Reduced power output below rated for swept back blade.
Tip Twist and Pitch Angle

To compensate for the changed twist (lower), pitch setting for the backward swept blade is lower and starts later (at higher wind speed).

Zero pitch angle not changed

Blade twist at the tip is decreased for the backward sweep wrt to the unswept blade.
Conclusions

• Forward sweep (pitch to stall):
 – Edge- and flap-wise blade loading increases
 – Pitch control induced instabilities
• Backward sweep (pitch to feather):
 – Flap-wise blade loading decreased, edge-wise increased
• Blade root torsional moment increased significantly
• Decreased tower and shaft loadings
• Sensitive for sweep shape (exponent) and controller
• Passive load shedding mechanism is expected to be relevant for even larger wind turbines
7 Eigenvalue analysis of backward swept blades
Aeroelastic modal analysis of backward swept blades using HAWCStab2

Morten Hartvig Hansen

Old findings: - Lower flapwise loads for backward sweep

New findings: - Lower flapwise damping but higher flapwise stiffness
 - Flutter limit decreases
Field test at Sandia Nat. Lab.

 - 26.1 m STAR prototype blade can increase the annual energy capture by 10-12% compared to a baseline 23.5 m blade without increasing the blade root bending moments
What is HAWCStab2?

Linear aeroelastic model for eigenvalue and frequency domain analysis of wind turbines and blades

Nonlinear kinematics based on co-rotational elements with possibility of bearings e.g. generator and pitch.

Uniform inflow to give a stationary steady state.

Analytical linearization about the stationary steady state.

Unsteady aerodynamics based on Leishman-Beddoes. A two state (per calc. point) model of dynamic inflow will soon be included.
Nonlinear kinematic formulation for blade

Unloaded backward swept blade

Blade in steady state equilibrium

Aerodynamic calculation point on element number k

Plane of airfoil chord coordinate system

Updated element coordinate system of element number k

Element positions and orientations

$$r_{e,k} = \sum_{n=1}^{k-1} T_{e,n} \left(\delta u_n + (l_n + \Delta l_n) e_3 \right)$$

$$T_{e,k} = \left(\prod_{n=1}^{k-1} E_n T[\delta \theta_n] \right) E_k$$

Rotation

Wind
Nonlinear steady state

Compute aerodynamic forces and moment using BEM

Compute external node forces F_{ext} and geometric stiffness matrix K_{sf} from aerodynamic forces and moments

Compute elastic and centrifugal stiffness matrix K and internal node forces F_{int} from potential energy stored in elements

Solve $(K + K_{sf}) \delta u = F_{ext} - F_{int}$ and update element positions and their coordinate systems

Is $|\delta r_{tip}| < 10^{-4} R$?

Compute tip displacement δr_{tip} since last BEM update

Is $|\delta r_{tip}| < 10^{-4} R$?

Compute tip displacement δr_{tip} since last element update

Stop
Linear equations for small vibrations about the nonlinear steady state

\[
\begin{align*}
M \ddot{x}_s + (C + G + C_a) \dot{x}_s + (K + K_{sf} + K_a) x_s + A_f x_a &= F_s \\
\dot{x}_a + A_d x_a + C_{sa} \dot{x}_s + K_{sa} x_s &= F_a
\end{align*}
\]

\[x_s = \text{elastic (and bearing) degrees of freedom}\]
\[x_a = \text{aerodynamic state variables}\]
\[F_s, F_a = \text{forces due to actuators and wind disturbance}\]
Backward swept blades
Baseline – NREL 61.5m with CG at EA

![Graph showing sweep and sweep angle vs radius for baseline and swept blades.](image-url)
Steady state power and pitch angle & torque

- **Power**
 - Aerodynamic power [MW]
 - Baseline blade
 - Swept blade 1
 - Swept blade 2

- **Pitch angle**
 - Blade pitch [deg]
 - Baseline blade
 - Swept blade 1
 - Swept blade 2

- **Relative power diff.**
 - Relative power difference [%]
 - Swept 1 - Baseline
 - Swept 2 - Baseline

- **Pitch torque**
 - Aerodynamic pitch torque [KNm]
 - Baseline blade
 - Swept blade 1
 - Swept blade 2

Wind speed [m/s]
Steady state thrust and tip deflection

Thrust

Tip deflection downwind

Steady state thrust and tip deflection

Flapwise blade moment

Spanwise tip deflection
Modal frequencies and damping – 1st flap

![Graph showing modal frequencies and damping for different flap conditions.](image)
Mode shapes at 12 m/s – 1st flap

![Graph showing mode shapes at 12 m/s – 1st flap]
Blade section motion at 75% radius – 1st flap

5 m/s
10 m/s
15 m/s
20 m/s

Baseline
Swept 1
Swept 2

Downwind
Flapwise blade root moment

- Mean wind 5 m/s
- Mean wind 10 m/s
- Mean wind 15 m/s
- Mean wind 20 m/s

Frequency of mean wind speed variation [Hz]

Magnitude [MNm/m/s]

Phase [deg]
Edgewise blade root moment

- Log magn. [Nm/(m/s)]
- Phase [deg]
- Frequency of mean wind speed variation [Hz]

Mean wind: 5 m/s, 10 m/s, 15 m/s, 20 m/s

Graphs showing the log magnitude and phase of the edgewise blade root moment for different wind speeds and configurations.
Conclusions

• Backward swept blades twist towards feathering for flapwise bending in both structural and aeroelastic first flapwise bending modes

• This structural coupling of bending and torsion leads to higher aeroelastic modal frequency and lower aeroelastic damping of this mode

• The increased flapwise frequency of a backward swept blade is caused by added aerodynamic flapwise stiffness due to the twisting towards feathering when bending downwind

• This increased flapwise stiffness lowers the frequency response of backward swept blades at frequencies below the first flapwise frequency which can explain the reduced fatigue loads observed in previous studies

• The previously reported slight increase in edgewise blade root loads of backward swept blades can be explained by a slight reduction of aeroelastic damping of the first edgewise bending mode
Flutter test case – Typical Section analogy

HAWCStab2 model

- stiff & massless beam
- section
- small element flexible in flap & torsion

Graph:
- Y-axis: Flutter relative speed [m/s]
- X-axis: Position of CG from LE [%]
- Points and curves indicating different sections.
Lowest damped modes for 0 deg pitch and increasing relative speed \((\lambda = \sqrt{99})\)
8 Aeroelastic rotor design minimizing the loads
Aeroelastic rotor design minimizing the loads

Mads Døssing, Christian Bak
Outline

- Background
- Simplified structural model
- Simplified fatigue model
- Influence of wide/slender blade on loads
- Optimization procedure
- Blade with DU airfoils (NREL 5MW)
- Blade with Risø-B1 airfoils (NREL 5MW)
- Conclusions
Background

- Design of rotors purely based on aerodynamics have been carried out several times e.g. by Johansen et al.

- Design of rotors and the influence on loads have been investigated e.g. by Fuglsang in Research in Aeroelasticity, EFP2002. However, constant structural layout was assumed.

- Also, design of rotors and the influence on loads have been investigated e.g. by Fuglsang et al in the EU project SITEOPT. However, structural correlation to rotor design was very simple.

- In this work more advanced models (however still simple) are developed to take into account mass and stiffness variations
Simplified structural model
Simplified structural model

<table>
<thead>
<tr>
<th>Property</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section area (closed section)</td>
<td>(A_0 = c^2 C_{A_0})</td>
</tr>
<tr>
<td>Section mass</td>
<td>(m = c^2 \sum_i \alpha_i \rho_i C_{A_i})</td>
</tr>
<tr>
<td>Longitudinal stiffness</td>
<td>(EA = c^2 \sum_i \alpha_i E_i C_{A_i})</td>
</tr>
<tr>
<td>Moment of stiffness about the x axis</td>
<td>(ES_x = c^3 \sum_i \alpha_i E_i C_{S_{x_i}})</td>
</tr>
<tr>
<td>Moment of stiffness about the y axis</td>
<td>(ES_y = c^3 \sum_i \alpha_i E_i C_{S_{y_i}})</td>
</tr>
<tr>
<td>Moment of mass about the x axis</td>
<td>(\rho S_x = c^3 \sum_i \alpha_i \rho_i C_{S_{x_i}})</td>
</tr>
<tr>
<td>Moment of mass about the y axis</td>
<td>(\rho S_y = c^3 \sum_i \alpha_i \rho_i C_{S_{y_i}})</td>
</tr>
<tr>
<td>Moment of stiffness inertia about the x axis</td>
<td>(EI_x = c^4 \sum_i \alpha_i E_i C_{I_{x_i}})</td>
</tr>
<tr>
<td>Moment of stiffness inertia about the y axis</td>
<td>(EI_y = c^4 \sum_i \alpha_i E_i C_{I_{y_i}})</td>
</tr>
<tr>
<td>Moment of centrifugal stiffness</td>
<td>(ED_{xy} = c^4 \sum_i \alpha_i E_i C_{D_{xy_i}})</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
C_{A_0} &= \int_i \text{sgn}(y^*) y^* \, dx^* \\
C_{A_i} &= \int_i \text{ds}^* \\
C_{S_{x_i}} &= \int_i y^* \, ds^* \\
C_{S_{y_i}} &= \int_i x^* \, ds^* \\
C_{I_{x_i}} &= \int_i y^* \, ds^* \\
C_{I_{y_i}} &= \int_i x^* \, ds^* \\
C_{D_{xy_i}} &= \int_i x^* y^* \, ds^* \\
\end{align*}
\]
Simplified fatigue model

\[R_{eq} \propto (1 - a)^{1/m} \Omega^{1+1/m} \int_{r}^{R} (r' - r) r' C'_t c' dr' \]

\[R_{eq} \propto c_1 = \Omega \int_{r}^{R} (r' - r) r' c' dr' \]
Influence of wide/slender blade on loads

<table>
<thead>
<tr>
<th></th>
<th>M [kg]</th>
<th>AEP [GWh]</th>
<th>f_1 [Hz]</th>
<th>f_2 [Hz]</th>
<th>f_3 [Hz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased chord ($f_c=1.1$)</td>
<td>16900</td>
<td>19.72</td>
<td>0.647</td>
<td>1.10</td>
<td>1.91</td>
</tr>
<tr>
<td>NREL 5MW</td>
<td>15100</td>
<td>19.51</td>
<td>0.665</td>
<td>1.05</td>
<td>1.94</td>
</tr>
<tr>
<td>Decreased chord ($f_c=0.9$)</td>
<td>13340</td>
<td>19.23</td>
<td>0.683</td>
<td>9.84</td>
<td>1.99</td>
</tr>
</tbody>
</table>
Optimization procedure

• Optimization using steady state aerodynamic design and simplified fatigue model to reduced blade root flap fatigue load. Constraints on power and blade mass in design point (design point: 11m/s i.e. at rated wind speed for load reduction)

• Optimization using aeroelastic computations (HAWC2) with reduced number of design load cases to reduce blade root flap fatigue load. Constraints on power and blade mass in design point (design point: 10m/s)

• The load cases should as far as possible be controller independent

• No power optimization
Blade with DU airfoils (NREL 5MW)
Blade with DU airfoils (NREL 5MW)
Blade with Risø-B1 airfoils (NREL 5MW)
Blade with Risø-B1 airfoils (NREL 5MW)
Comparing blades

<table>
<thead>
<tr>
<th></th>
<th>M [kg]</th>
<th>f_1 [Hz]</th>
<th>f_2 [Hz]</th>
<th>f_3 [Hz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>NREL 5MW</td>
<td>16880</td>
<td>0.672</td>
<td>1.05</td>
</tr>
<tr>
<td>6.2</td>
<td>NREL 5MW (H)</td>
<td>16330</td>
<td>0.665</td>
<td>1.06</td>
</tr>
<tr>
<td>6.4</td>
<td>Point Opti. (DUxx)</td>
<td>15945</td>
<td>0.658</td>
<td>1.03</td>
</tr>
<tr>
<td>6.5</td>
<td>Point Opti. (B1-xx)</td>
<td>15500</td>
<td>0.798</td>
<td>1.19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>AEP [GWh]</th>
<th>Airfoils</th>
<th>λ</th>
<th>C_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>NREL 5MW</td>
<td>21.3425</td>
<td>DUxx</td>
<td>7.7</td>
</tr>
<tr>
<td>6.4</td>
<td>Point Opti. (DUxx)</td>
<td>21.0414</td>
<td>DUxx</td>
<td>6.4</td>
</tr>
<tr>
<td>6.5</td>
<td>Point Opti. (B1-xx)</td>
<td>20.9682</td>
<td>B1-xx</td>
<td>6.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$R_{eq,1(100s)}(M_x)$</th>
<th>$R_{eq}(M_x)$</th>
<th>$R_{eq}(M_y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>NREL 5MW</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6.2</td>
<td>NREL 5MW (H)</td>
<td>4202.0</td>
<td>5983.0</td>
</tr>
<tr>
<td>6.4</td>
<td>Point Opti. (DUxx)</td>
<td>3142.0</td>
<td>5787.5</td>
</tr>
<tr>
<td>6.5</td>
<td>Point Opti. (B1-xx)</td>
<td>3466.0</td>
<td>5258.1</td>
</tr>
</tbody>
</table>
Conclusions

• A simplified structural model has been formulated
 ➢ Comparison to existing blades show good agreement

• A simplified fatigue model has been formulated
 ➢ Comparison to aeroelastic calculations show good agreement
 ➢ Slender blades show lower loads

• Design with DU airfoils showed
 ➢ 3.3% reduction in fatigue loads
 ➢ 2.4% reduction in mass
 ➢ 1.4% reduction in AEP

• Design with Risø B1 airfoils showed
 ➢ 12.1% reduction in fatigue loads
 ➢ 5.1% reduction in mass
 ➢ 1.8% reduction in AEP
9 A small study of flat back airfoils
A Small Study of Flatback Airfoils

Niels N. Sørensen

Wind Energy Division · Risø DTU

RISØ-DTU, 27-01-2011
Outline

1. Introduction
2. Flow solver settings
3. Grid Generation
4. Evaluation of Performance, 2D
5. 3D Investigation
6. Parametric Study, 2D
7. Conclusion and Further Work
Why are ‘flatback’ airfoils interesting for rotor root design

- They may be desirable from a structural point of view
- They are claimed to be more roughness insensitive
- They can provide relatively high lift (Cl > 2)
- The drag penalty of the thick trailing edge may not be important at the inboard sections
- They are sometimes claimed to be more efficient than traditional truncated airfoils
What problems must be foreseen when designing ‘flatback’ airfoils, designed for the root section where the thickness is larger than 30%:

- Typical design codes as the Xfoil code will eventually fail to give answers due to the trailing edge thickness
- The validity of CFD codes for these airfoils must be checked
- Wind tunnel testing of thick airfoils at high Re and AOA may be difficult
- What should the design philosophy be

How will the flatback airfoils work during operational conditions:

- How will the 3D effects often referred to as ‘Stall Delay’ influence the performance
- How are there dynamical behaviour in stall
Introduction

Present Study

The present study will not answer all these questions, but is the first step towards the design and testing of a flatback airfoil.

- We will evaluate the capability of our in-house CFD solver (EllipSys) to predict flatback and truncated airfoils
- We will briefly investigate possible wall junction problems for thick airfoils in tunnels
- We will do a small parametric study of possible ways to generate truncated airfoils
Flow solver settings

EllipSys2D/3D

- Two dimensional simulations and a few three dimensional simulations are performed
- Both steady and transient runs $\Delta t = \Delta \tilde{t} \frac{C}{U_\infty} = 1 \times 10^{-2}$
- For the 2D simulations we use both fully turbulent and transitional computations based on the $k-\omega$ SST model
- For the 3D simulations we use a so called Delayed Detached Eddy Simulation technique based on the SST model, along with the transition modeling
- Transition modeling is based on the $\gamma - Re_\theta$ model
- The diffusive terms are model using central differences
- In 2D the third order accurate QUICK scheme is used for the convective terms
- In 3D a hybrid fourth order central/QUICK scheme is used to resolve the DES areas
Grid Generation

Grid Generation 2D

All grids are generated with the hyperbolic grid generation code HypGrid2D

- The grid has 320 cells in chordwise direction, and 128 cells in the wall normal direction
- The height of the first cell is $1 \times 10^{-6} \times \text{Chord}$
- The outer boundary are placed 45 Chords away from the airfoil
Grid Generation

Grid Generation 3D

All grids are generated with the hyperbolic grid generation code HypGrid2D
- The inner O-grid has 320 cells in chordwise direction, and 128 cells in the wall normal direction
- The inner O-grid is embedded in a stretched square grid
- The height of the first cell is $1 \times 10^{-6} \times$ Chord
- The upstream and downstream boundaries are placed 9 chords away, while the bottom and lid are approximately 5 chords away
- In the spanwise direction, the domain is 1 Chord long and 128 cells are used
Grid Generation

Grid Generation 3D (2)
Evaluation of Performance, 2D

FX-77-W-343

Conditions: $Re = 3 \times 10^6$, free transition

Data from University of Stuttgart
Evaluation of Performance, 2D

FX-77-W-343

Conditions: \(Re = 3 \times 10^6 \), free transition

Data from University of Stuttgart

![Graph 1](chart1.png)

![Graph 2](chart2.png)

![Graph 3](chart3.png)
Evaluation of Performance, 2D

FX-77-W-400

Conditions: $Re = 4 \times 10^6$, free transition
Evaluation of Performance, 2D

FX-77-W-400

Conditions: $Re = 4 \times 10^6$, free transition
Evaluation of Performance, 2D

FX-77-W-500

Conditions: $Re = 2.75 \times 10^6$, free transition
Evaluation of Performance, 2D

FX-77-W-500

Conditions: $Re = 2.75 \times 10^6$, free transition

![Graphs showing performance metrics for FX-77-W-500](image-url)
Evaluation of Performance, 2D

FB-3500-0050

Conditions: $Re = 666.000$, free transition left and fixed right

Data from University of California (UC Davis)
Evaluation of Performance, 2D

FB-3500-0050

Conditions: $Re = 666.000$, free transition left and fixed right
Data from University of California (UC Davis)

![Graphs showing performance data for FB-3500-0050, Re=666.000, with measured and simulated results for free and fixed transition conditions.](image-url)
Evaluation of Performance, 2D

FB-3500-0050

Conditions: \(Re = 666.000 \), free transition left and fixed right

Data from University of California (UC Davis)

Graph 1:

- **FB-3500-0050, Re=666.000**
- Measured, Free
- EllipSys, Free, ST
- EllipSys, Free, US

Graph 2:

- **FB-3500-0050, Re=666.000**
- Measured, Fixed
- EllipSys, Fixed, ST
- EllipSys, Fixed, US
Evaluation of Performance, 2D

FB-3500-0875

Conditions: $Re = 666.000$, free transition left and fixed right
Conditions: \(Re = 666.000 \), free transition left and fixed right
Evaluation of Performance, 2D

FB-3500-0875

Conditions: $Re = 666.000$, free transition left and fixed right

![Graph showing drag coefficient (C_d) vs. angle of attack (AOA [deg]) for FB-3500-0875, $Re=666.000$. The graph compares measured data with calculations using EllipSys for both free and fixed conditions.](image-url)
Evaluation of Performance, 2D

FB-3500-1750

Conditions: $Re = 666.000$, free transition left and fixed right
Evaluation of Performance, 2D

FB-3500-1750

Conditions: \(Re = 666.000 \), free transition left and fixed right
Evaluation of Performance, 2D

FB-3500-1750

Conditions: \(Re = 666.000 \), free transition left and fixed right

\[\text{AOA [deg]} \quad \text{CD} \]

FB-3500-1750, Re=666.000

- Measured, free
- EllipSys, Free, ST
- EllipSys, Free, US
Evaluation of Performance, 2D

FB-3500

Comparison of the three flat back airfoils

FB-3500-0050, Re=666.000

FB-3500-0875, Re=666.000

FB-3500-1750, Re=666.000

Niels N. Sørensen,
Risø DTU
Evaluation of Performance, 2D

FB-3500

Comparison of the three flat back airfoils

FB-3500-0050, Re=666.000

FB-3500-0875, Re=666.000

FB-3500-1750, Re=666.000

Niels N. Sørensen,
Risø DTU

A Small Study of Flatback Airfoils 27-01-2011
Resume of performance evaluation

- The solver is capable of reproducing effect of changing from free to fixed transition
- Generally the drag is well captured for the flatback airfoils, (it is mainly pressure based)
- In all 2D cases the steady state results are closer to the measured lift (slightly surprising)
- The tendency of the drag is not as clear, in some cases the unsteady agrees better
- We can use CFD to compare the quality of different designs
3D Investigation

- How will the flatback airfoils behave in the tunnel?
- Is the fact that 2D steady computations perform better due to some 2D artifact?
- Can 3D provide improved insight?
3D Investigation

3D Flow Patterns

Operational conditions
- \(Re = 666.000 \)
- Free transition
- Span length is equal to 2 chords

AOA= 5 deg.
3D Investigation

3D Flow Patterns

Operational conditions

- $Re = 666.000$
- Free transition
- Span length is equal to 2 chords

AOA = 10 deg.
3D Investigation

3D Flow Patterns

Operational conditions

- $Re = 666.000$
- Free transition
- Span length is equal to 2 chords

AOA = 15 deg.
3D Investigation

3D Flow Patterns

Operational conditions

- $Re = 666.000$
- Free transition
- Span length is equal to 2 chords

AOA = 17 deg.
3D Investigation

3D Flow Patterns

Operational conditions

- $Re = 666.000$
- Free transition
- Span length is equal to 2 chords

AOA = 19 deg.
3D Investigation

Comparison between different techniques

FB-3500-1750, Re=666.000, Free transition

- 3D unsteady comp. agrees better than 2D unsteady comp
- By coincidence 2D steady captures nearly the same value as 3D unsteady
3D unsteady comp. agrees better than 2D unsteady comp

By coincidence 2D steady captures nearly the same value as 3D unsteady
Results for the FB-3500-1750 Airfoil

- At low angles of attack (<17 degrees) the inclusion of the wall junction only caused minor changes
- At high angle of attack (>17 degrees) the wall junction induces severe 3D flow and low lift
- Tunnel effects may play an important role in experimental and computational evaluation of FB airfoils
Parametric Study, 2D

Flatbacking the DU-97-W-300

Operational conditions, $Re = 3.2 \times 10^6$, Free transition
Opening the trailing edge, towards suction or pressure side
Parametric Study, 2D

Airfoil performance

Operational conditions, $Re = 3.2 \times 10^6$, Free transition

All generated flatback airfoils have higher max lift

![Graph showing lift coefficient (C_l) vs. angle of attack (AOA)]
Parametric Study, 2D

Airfoil performance

Operational conditions, $Re = 3.2 \times 10^6$, Free transition

All generated flatback airfoils have higher drag

![Graph showing airfoil performance](image-url)
Resume of parametric study

- The flatback version has a higher lift
- The most efficient one is the one opened solely to the pressure side
- The drag increases for all airfoils, and generally to the same level
Conclusions:

◆ We believe that both the 2D/3D CFD solvers can be used to evaluate flatback airfoils
◆ Computations indicate that high lift can be obtained, and the exp. of FB-3500-1750 indicates that this may be true
◆ It is clear from the parametric study that to increase the lift the opening of the trailing edge most be done towards the pressure side

Further work:

◆ We need to design an airfoil for tunnel test
◆ We need to evaluate the dynamic performance (3D dynamic stall comp.)
◆ We need to evaluate the performance of flatback in rotational environment
◆ Noise issues from the vortex shedding at the thick trailing edge
10 Status of airfoil design
Status of airfoil design and plans for wind tunnel tests of new thick airfoils

Christian Bak, Mac Gaunaa, Niels Sørensen, Franck Bertagnolio
Background

Airfoils designed and tested in the past

- **Risø-A1**: High cl-cd-ratio, good stalling characteristics, good roughness sensitivity
- **Risø-P**: High cl-cd-ratio, **very good stalling characteristics**, good roughness sensitivity
- **Risø-B1**: Medium cl-cd-ratio, **high lift, very good roughness insensitivity**
- **Risø-C2**: High cl-cd ratio, high lift, very good roughness insensitivity, **high moment of resistance**

- Stall regulation, t/c 12% to 24%
- Pitch regulation, t/c 15% to 24%
- Pitch reg var speed, t/c 15% to 53%
- Pitch reg var speed, t/c 15% to 36%
Status

Recent designs

• New aspects taken into account:
 – Trailing edge noise (mainly thin and medium thick airfoils)
 • TNO model
 • Glegg model
 – Thick airfoils with high lift and low sensitivity to roughness
 • Flat back airfoils
 • Multielement airfoils
Thick multielement airfoils
Slat size investigation

Big slats
0.3c and 0.5c

Small slats
0.1c and 0.2c
Thick multielement airfoils
Slat size investigation

<table>
<thead>
<tr>
<th>Slat/main chord length ratio</th>
<th>c_{slat}/c_{main}</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative angle of slat</td>
<td>β</td>
<td>-30.0°</td>
<td>-30.0°</td>
<td>-27.5°</td>
<td>-27.5°</td>
</tr>
<tr>
<td>Position of slat TE along main airfoil</td>
<td>$s_{TE,slat}$</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>Distance between slat TE and main airfoil</td>
<td>$n_{TE,slat}$</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Slat additional parabolic camber</td>
<td>$k_{camber,slat}$</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Lift ratio slat/main airfoil at max l/d</td>
<td>L_{slat}/L_{tot}</td>
<td>1%</td>
<td>33%</td>
<td>50%</td>
<td>64%</td>
</tr>
<tr>
<td>Max lift ratio multiple/isolated main airfoil</td>
<td>L_{mult}/L_1</td>
<td>~ 1</td>
<td>~ 1.5</td>
<td>~ 2.2</td>
<td>$>\sim 2.5$</td>
</tr>
</tbody>
</table>
Further work

• Airfoil designs
 – Thin low noise airfoil will be designed (in EUDP 2009 Low Noise Airfoil project)
 – Final multielement airfoil will be designed
 – Flat back airfoil will be designed

• Wind tunnel tests
 – Multielement airfoil and flat back airfoil will likely be tested in the LM LSWT around summer 2011
Risø DTU is the National Laboratory for Sustainable Energy. Our research focuses on development of energy technologies and systems with minimal effect on climate, and contributes to innovation, education and policy. Risø has large experimental facilities and interdisciplinary research environments, and includes the national centre for nuclear technologies.