Comparison of effective noise temperatures in YBa2BCu3O7- junctions

Fischer, Gerd Michael; Mygind, Jesper; Pedersen, Niels Falsig

Published in:
IEEE Transactions on Applied Superconductivity

Link to article, DOI:
10.1109/77.622210

Publication date:
1997

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Comparison of Effective Noise Temperatures in YBa$_2$Cu$_3$O$_{7-\delta}$ Junctions

Gerd M. Fischer, Jesper Mygind, and Niels F. Pedersen
Department of Physics, Technical University of Denmark, DK-2800 Lyngby, Denmark

Abstract—The dc voltage response to 70 GHz radiation was measured for YBCO bicrystal junctions, step edge junctions, and ramp edge junctions at temperatures from 4 K to 90 K. Employing the RSJ model and assuming thermal noise, the Josephson radiation is about equal to the voltage difference of the small signal microwave irradiation. In the presence of excess noise, an effective noise temperature can be defined and is used as a figure of merit. In bicrystal grain boundary junctions with zero magnetic field the effective noise temperature was determined to be equal to the physical temperature within experimental error. Bicrystal grain boundary junctions with non-zero magnetic field, step edge junctions and ramp edge junctions showed excess noise. The scaling of the noise temperature is compared with the width of the junction in units of the Josephson penetration depth.

I. INTRODUCTION

The large energy gap of the high-T_c superconductors opens the possibility for high frequency applications and for higher operating temperatures of electronic circuits and devices. The high frequency performance can be determined measuring the linewidth of the Josephson radiation. Comparing the noise temperature deduced from the linewidth with the physical temperature will determine the presence of excess noise. The noise temperature of the single junction will be used as a figure of merit.

In this paper a comparison of the results obtained on YBa$_2$Cu$_3$O$_{7-\delta}$ bicrystal grain boundary junctions, step edge grain boundary junctions and ramp edge junctions is presented.

II. THEORETICAL BACKGROUND

Employing the Resistively Shunted Junction (RSJ) model, thermal noise will lead to a Josephson oscillation linewidth (FWHM) [1],

$$\Delta v = 4\pi \frac{2e}{h} R_n \frac{k_b T}{R_n} \left(1 + \frac{I_c^2}{2I_{dc}^2}\right)$$

(1)

Here, I_c denotes the critical current, R_n the normal state resistance, I_{dc} the bias current and R_2 the differential resistance at $V = h/2e \nu$, where ν is the frequency of the applied rf signal. Assuming thermal noise the linewidth has a Lorentzian shape with FWHM of Δv. In the presence of additional noise sources, it is convenient to define an effective noise temperature, T_{eff} [1] with

$$T_{eff} = \Delta v \cdot \frac{1}{4\pi} \left[\frac{2e}{h} R_n \frac{k_b T}{R_n} \left(1 + \frac{I_c^2}{2I_{dc}^2}\right)\right]^{-1}$$

After determining ΔV, R_n, R_{dc}, I_{dc}, and I_c experimentally, the effective noise temperature can be calculated. Rigorously the derivation holds for small junctions with white noise spectrum, at high temperatures in the zero capacitance limit, where the RSJ model applies. In lack of a theoretical description of the Josephson linewidth for large overdamped Josephson junctions, we will use this derivation for those as well. R_n, R_{dc}, I_{dc}, and I_c can be determined from the dc IV curve. The linewidth of the Josephson radiation, Δv, can either be obtained by direct measurement with a superheterodyne receiver, or using the detector response of the Josephson junction to irradiation at frequency ν. For the latter case, in the small signal limit and the small linewidth limit, $\Delta v \ll \nu$, the linewidth, Δv, is about equal to the...
difference in the bias voltage, $\Delta V/V_c = \nu^+ - \nu^-$, of the extrema of the voltage response, δV. Using the ac Josephson relation $\Delta \nu = 2e/h \Delta V$. If the junction linewidth, $\Delta \nu^{ac}$, is smaller than the external linewidth, $\Delta \nu^{ext}$, then $\Delta \nu^{ac}$ can be extracted using a Hilbert transformation of the response function h [2,3]. In the opposite case, applicable to the measurements presented here, the linewidth $\Delta \nu^{ac}$ differs from the voltage difference ΔV by less than two percent for frequencies up to $3 V_c$ [4], where $V_c = 2e/h I_c R_s$.

III. EXPERIMENTAL TECHNIQUES

Practically, the direct measurement of the Josephson linewidth is limited to low noise junctions with low differential resistance on low loss substrates. For junctions on high loss substrates like SrTiO$_3$, the linewidth of the Josephson radiation can be deduced from the small signal response of the junction to high frequency irradiation.

The samples were mounted in a vacuum can and immersed in a double μ-metall screened cryostat. Dc connections for four point measurements were supplied and the sample placed across the open end of a 70 GHz hollow wave guide providing loose rf coupling. The temperature was monitored with a Si diode thermometer. All the measurements were carried out in an rf shielded room. The samples were irradiated using a 70 GHz Gunn diode with a radiation linewidth (FWHM) $\Delta \nu^{ext} < 10$ kHz. The power could be adjusted with a high precision attenuator.

The rf signal was modulated using an rf off/on switch and the response was extracted employing a lock-in technique. A small coil enabled the application of a small magnetic field perpendicular to the substrate plane. Fig. 2 shows the IV curve of a particular junction (Y-EG6-4) and the voltage response, SV, to high frequency irradiation with $v = 70$ GHz. For positive bias, δV is shown for two microwave power levels differing by 3 dB. In the small signal limit, the difference, ΔV, of bias voltage at the response extrema is independent of the applied power.

IV. SAMPLES

The measurements were performed on YBa$_2$Cu$_3$O$_{7-\delta}$ Josephson junctions on SrTiO$_3$ bicrystal substrates prepared at NKT Research Center (NKT), and the University of Tübingen (Y-EG), step edge junctions on LaAlO$_3$ from the Forschungszentrum Jülich (SEJ) and ramp edge junctions (LEJ) from IBM Research Laboratories, Yorktown Heights.

The NKT samples were prepared by pulsed laser deposition (PLD) of a 330 nm thick YBa$_2$Cu$_3$O$_{7-\delta}$ layer on a symmetric 24$^\circ$ misorientation angle bicrystal SrTiO$_3$ substrate. Microbridges with widths from 2 to 48 μm were patterned using e-beam lithography and Ar ion milling [5]. The Tübingen samples (Y-EG) were prepared on similar substrates by dc magnetron sputtering and patterned to microbridges of 5 to 20 μm width with optical lithography and Ar ion milling [6]. For the step edge junctions (SEJ) first a step of 120 nm height and 80$^\circ$ angle was etched into the substrate. Then the substrate was covered with a YBa$_2$Cu$_3$O$_{7-\delta}$ thin film by PLD and microbridges of width 16 and 32 μm patterned by optical lithography and Ar ion milling [7]. The ramp edge junctions (LEJ) were fabricated in a three step process [8]. After depositing a 300 nm YBa$_2$Cu$_3$O$_{7-\delta}$ base layer, and a 500 nm insulating MgO layer through a stencil mask, the base layer was patterned with Ar ion milling. Prior to the deposition of the MgO barrier of roughly 2 nm by rf sputtering, an in-situ ion milling was performed to clean the junction surface. The YBa$_2$Cu$_3$O$_{7-\delta}$ counter electrode and Ag contact pads were then deposited. Patterning with photoresist and ion milling completed the fabrication of the devices with widths between 5 μm and 20 μm.

V. EXPERIMENTAL RESULTS

Figure 3. Noise temperature $T_{\sigma\nu}$ versus physical temperature T for the bicrystal junctions Y-EG. The data points were obtained with an applied magnetic field to maximize the critical current with bias polarity, case I_c^+ (for details see text).
Figure 4. Noise temperature T_{eff} versus physical temperature T for bicrystal junctions NKT3.2 and NKT3.3. Measurements were taken with an applied magnetic field to maximize the critical current with bias polarity (closed symbols), $\text{max } I_c^+$, and opposite to bias polarity (open symbols), $\text{max } I_c^-$.

A. Bicrystal junctions Y-EG

In Fig. 3 the effective noise temperature, T_{eff}, of the junctions on chip Y-EG2 and Y-EG6 is plotted versus the physical temperature, T. The noise temperatures are within the experimental error equal to the physical temperature.

B. Bicrystal junctions NKT

Due to the large I_cR_n product, the junctions exhibited a very large resistance at $V = 145 \mu V$, corresponding to 70 GHz. Under the condition of a maximized critical current ($\text{max } I_c^+$), using a small applied magnetic field, the linewidth of the Josephson radiation could only be measured for the three smaller junctions and above 30 K. For these measurements, the noise temperature T_{eff} is equal to the physical temperature T within experimental error [6].

C. Step edge junctions SEJ

Only at temperatures close to T_c, T_{eff} approaches the physical temperature T. Decreasing T increases the noise temperature with a maximum in the intermediate temperature range (see Fig. 5). The noise temperature resembles the dependence observed for the sample NKT for the case $\text{max } I_c^-$. In contrast to those measurements, here the applied magnetic field always was chosen to maximize the critical current of the same polarity as the bias current ($\text{max } I_c^+$).
The effective noise temperature T_{eff} could not be reduced by adjusting the magnetic field. Even for junctions with widths smaller than $4\lambda_J$, T_{eff} is considerably larger than the physical temperature T (see Fig. 7).

D. Ramp edge junctions LEJ

Below 50 K some junctions showed flux flow behavior, above 50 K all RSJ like IVc's. Only measurements with RSJ characteristics were used. Again, a small magnetic field was applied to maximize the critical current with the same $(\text{max } I_c)$. Having small values of differential resistance, the linewidth of the Josephson oscillation was small with the lowest value equals 97 MHz [11]. The calculated noise temperatures are higher than the physical temperatures, indicating excess noise (see Fig. 6).

VI. DISCUSSION AND CONCLUSION

Fig. 7 shows the normalized effective noise temperature T_{eff}/T versus W/λ_J. Differently shaped symbols are used for different junction types. The data points for the NKT sample are divided up into the two measurement regimes, $\text{max } I_c$ (closed symbols), and $\text{max } I_c$ (open symbols). The bicrystal junctions data (NKT and Y-EG) are approximately equal to unity for the case $\text{max } I_c$. Maximizing the critical current with opposite polarity, $(\text{max } I_c)$, the NKT data points (open symbols) show an elevated noise temperature for widths $W > 4\lambda_J$. The other junction types show increased noise temperatures already for smaller widths. This is probably due to the intrinsic inhomogeneous current distribution caused by the microstructure of the latter junctions.

ACKNOWLEDGMENT

The authors thank R. Gross and Yu. Ya. Divin for stimulating discussions. Provision of samples by A. Beck and R. Gross, University of Tübingen, Y. Shen, P. Vase and F. Freltoft from NKT Research Center, K. Herrmann, M. Siegel and A. Braginski, Forschungszentrum Jülich and R. Laibowitz, IBM Yorktown Heights is gratefully acknowledged.

REFERENCES

