A simple calibration-independent method for measuring the beam energy of a cyclotron

Gagnon, K.; Jensen, Mikael; Thisgaard, Helge; Publicover, J.; Lapi, S.; McQuarrie, S.A.; Ruth, T.J.

Published in:
The 13th International Workshop on Targetry and Target Chemistry Proceedings

Publication date:
2011

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
The 13th International Workshop on Targetry and Target Chemistry Proceedings

Edited by:
Samar Haroun, SFU, TRIUMF; Alex Givskov and Mikael Jensen, Risø DTU
Risø-R-1787(EN)
June 2011
Abstract:
This report contains the complete proceedings of the 13th International Workshop on Targetry and Target Chemistry. The Workshop was held at Risø National Laboratory for Sustainable Energy on July 26-28 2010.

The workshop deals with the development of methods and systems for efficient production of radioactive isotopes with accelerators. The WTTC series of workshops was initiated for the purpose of exchanging information about the problems and solutions associated with the production of radioisotopes for biomedical research and their applications to the diagnosis and treatment of disease. The goal of the WTTC is to advance the science associated with radioisotope production targetry. The Workshops are designed to bring experienced targetry scientists together with newcomers to the field, both from industry and academia, to discuss issues of targetry and target chemistry and approaches to exploring in situ target chemistry and the engineering required to optimize production yields. In the workshop, experience, ideas and information are freely and openly shared; learning and collaborations are fostered, with active participation by all attendees. This participation includes both formal and informal sessions. The present proceedings captures both submitted abstracts and the actual presentations showed during the very successful workshop meeting number 13 in the row, the WTTC13.
The WTTC13 is grateful for the support from the following sponsors without whom the workshop would have been impossible:

<table>
<thead>
<tr>
<th>Sponsor</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siemens</td>
<td>www.siemens.com/healthcare</td>
</tr>
<tr>
<td>GE Healthcare</td>
<td>www.gehealthcare.com/tracercenter</td>
</tr>
<tr>
<td>Von Gahlen</td>
<td>www.vongahlen.nl</td>
</tr>
<tr>
<td>Canberra</td>
<td>www.canberra.com</td>
</tr>
<tr>
<td>Best Cyclotron Systems Inc.</td>
<td>www.teambest.com</td>
</tr>
<tr>
<td>Bruce Technologies, Inc.</td>
<td>www.brucetech-targets.com</td>
</tr>
<tr>
<td>IBA</td>
<td>www.iba-worldwide.com/gateway</td>
</tr>
<tr>
<td>Comecer</td>
<td>www.comecer.com</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

The workshop has been organised by the following “regional” cross boundary group of cyclotronists:

Mikael Jensen (Chairman), Hevesy Lab, Risø-DTU
Anders Sandell, Skaane Sygehus, Lund
Holger Jan Jensen, Rigshospitalet, Copenhagen
Søren B. Hansen, Århus PET Center, Århus

Our Institutions have contributed effort to the benefit of this meeting.
TABLE OF CONTENTS

PREFACE .. I
SPONSORS .. II
ACKNOWLEDGEMENTS ... III
PROGRAMME .. IV

EXTENDING A SCINTILLATION COUNTER’S DYNAMIC RANGE
L. Carroll
Abstract .. 1
Presentation .. 3

DEVELOPMENT OF A TARGET SYSTEM AT THE BABY CYCLOTRON BC1710 FOR IRRADIATION OF SOLIDS AND GASES AND THE ADAPTATION OF EXISTING TARGET SYSTEMS TO THE EXTERNAL BEAMLINE AT THE INJECTOR OF COSY
B. Scholten, S. Spellerberg, W. Bolten, H. H. Coenen
Abstract ...14
Presentation ...16

SEARCH FOR THE IDEAL CYCLOTRON STRIPPER FOIL
J. O. Stoner, Jr.
Abstract ...19
Presentation ...20

NEW GASEOUS XENON TARGET FOR 123I PRODUCTION
J. J. Čomor, D. Jovanović, J. Geets, B. Lambert
Abstract ...23
Presentation ...24

MASS PRODUCTION OF 64Cu WITH 64Ni(p,n)64Cu NUCLEAR
K. S. Chun, H. Park, J. Kim
Abstract ...28
Presentation ...30

ACTIVITY DELIVERY SYSTEM
D. B. Mackay, C. Lucatelli, R. van Ham, M. Willemsen, P. Thoonen, B. Kummeling, J. C. Clark
Abstract ...34
Presentation ...36

INTEGRATED GMP PET RADIOTRACER PRODUCTION AND DISPENSING FACILITY
C. Lucatelli, D. B. Mackay, G. Mokosa, C. Arth, R. C. van Ham, M. A. B. Willemsen, J. C. Clark
Abstract ...40
Presentation ...42

SYNTHESIS OF $^{4-}$[18F]FLUOROBENZALDEHYDE IN A CPCU FOR PEPTIDE LABELING
V. M. Lara-Camacho, J. C. Manrique-Arias, E. Zamora-Romo, A. Zarate-Morales, A. Flores-Moreno, M. A. Avila-Rodriguez
Abstract ...45
Presentation ...46

A COMPARISON OF Nb, Pt, Ta, Ti, Zr, AND ZrO$_2$-SPUTTERED HAVAR FOILS FOR THE HIGH-POWER CYCLOTRON PRODUCTION OF REACTIVE [18F]F$^-$
K. Gagnon, J. S. Wilson, S. A. McQuarrie
Abstract ...49
A SIMPLE CALIBRATION-INDEPENDENT METHOD FOR MEASURING THE BEAM ENERGY OF A CYCLOTRON
K. Gagnon, M. Jensen, H. Thisgaard, J. Publicover, S. Lapi, S. A. McQuarrie, T. J. Ruth
Abstract ...54
Presentation ...56

THERMAL MODELLING OF A SOLID CYCLOTRON TARGET USING FINITE ELEMENT ANALYSIS: AN
EXPERIMENTAL VALIDATION
K. Gagnon, J. S. Wilson, S. A. McQuarrie
Abstract ...60
Presentation ...62

RDS-111 TO ECLIPSE HP UPGRADING WITH IMPROVEMENT IN 18F PRODUCTION
A. Zarate-Morales, A. Flores-Moreno, J. C. Manrique-Arias, E. Zamora-Romo, M. A. Avila-Rodriguez
Abstract ...65
Presentation ...66

CYCLOTECH – A METHOD FOR DIRECT PRODUCTION OF 99mTc USING LOW ENERGY MEDICAL
CYCLOTONS
R. R. Johnson, Wm. Gelbart, M. Benedict, L. Cunha, L. F. Metello
Abstract ...69
Presentation ...71

EFFECTS OF THE TANTALUM AND SILVER TARGETS ON THE YIELD OF FDG PRODUCTION IN THE EXPLORA
AND CPCU CHEMISTRY MODULES
J. C. Manrique-Arias, E. Zamora-Romo, A. Zarate-Morales, A. Flores-Moreno, M. A. Avila-Rodriguez
Abstract ...81
Presentation ...82

FULLY AUTOMATED SYSTEM FOR THE PRODUCTION OF [123I] AND [124I]-IODINE
LABELLED PEPTIDES AND ANTIBODIES
P. Bedeschi, S. Bosi, M. Montroni, G. Brini, S. Caria, M. Fulvi, G. Calisesi
Abstract ...85
Presentation ...87

ROUTINE AUTOMATED PRODUCTION OF 18F-LABELLED RADIOPHARMACEUTICALS ON IBA SYNTHERA®
MULTI-PURPOSE PLATFORM
Shirvan, I. Ziv
Abstract ...91
Presentation ...93

ROUTINE PRODUCTION OF Cu-61 AND Cu-64 AT THE UNIVERSITY OF WISCONSIN
J. W. Engle, T. E. Barnhart, R. J. Nickles
Abstract ...97
Presentation ...99

SUSTAINABLE PET TRACER PRODUCTION AT WISCONSIN
Hillmer, R. J. Nickles
Abstract ...105
Presentation ...107
PRODUCTION OF 34M VIA THE (d,α) REACTION ON AR-36 GAS AT 8.4 MEV
J. W. Engle, T. E. Barnhart, O. DeJesus, R. J. Nickles
Abstract ... 110
Presentation .. 112

OPTIMISATION OF AN ELECTROPLATING PROCESS TO PREPARE A SOLID TARGET FOR (p,n) BASED PRODUCTION OF COPPER-64
C. Jeffery, S. Chan, D. Cryer, A. Asad, RAPID Group, R. I. Price
Abstract .. 115

STREAMLINED MEASUREMENT OF THE SPECIFIC RADIOACTIVITY OF IN TARGET PRODUCED $[^{11}]$C METHANE BY ON-LINE CONVERSION TO $[^{13}]$C HYDROGEN CYANIDE
J. Koziorowski, N. Gillings
Abstract .. 117
Presentation .. 119

RECENT ADVANCES AND DEVELOPMENTS IN IBA CYCLOTRONS
J-M. Geets, B. Nactergal, M. Abs, C. Fostier, E. Kral
Abstract .. 122
Presentation .. 123

PRODUCTION OF THERAPEUTIC QUANTITIES OF 64Cu AND 119Sb FOR RADIONUCLIDE THERAPY USING A SMALL PET CYCLOTRON
H. Thisgaard, M. Jensen, D. R. Elema
Abstract .. 128
Presentation .. 130

THE CHEMISTRY OF HIGH TEMPERATURE GAS PHASE PRODUCTION OF METHYLIODIDE
L. van der Vliet, G. Westera
Abstract .. 134
Presentation .. 136

TARGET PERFORMANCE – $[^{11}]$CCO_2 AND $[^{13}]$CCH_4 PRODUCTION
S. Helin, E. Arponen, J. Rajander, J. Aromaa, O. Solin
Abstract .. 140
Presentation .. 142

A SOLID 114mIn TARGET PROTOTYPE WITH ONLINE THERMAL DIFFUSION ACTIVITY EXTRACTION—WORK IN PROGRESS
J. Siikanen, A. Sandell
Abstract .. 146
Presentation .. 148

UPGRADE OF A CONTROL SYSTEM FOR A SCANDITRONIX MC 17 CYCLOTRON
J. Siikanen, K. Ljunggren, A. Sandell
Abstract .. 152

NEW SOFTWARE FOR THE TRACERLAB MX
D. Fontaine, D. Le Bars, D. Martinot, V. Tadino, F. Tedesco, G. Villeret
Abstract .. 153
Presentation .. 155

PRODUCTION OF NO CARRIER ADDED 64Cu & 55Co FROM A NATURAL NICKEL SOLID TARGET USING AN 18 MEV CYCLOTRON ON PROTON BEAM
A. H. Asad, C. Jeffery, S. V. Smith, S. Chan, D. Cryer, R. I. Price
Abstract .. 159
REPORT BACK FROM IThemba LABS: SOME TALES OF BROKEN TARGETS, SPLIT BEAMS AND PARTICLE TRACKING

C. Vermeulen, G. F. Steyn, N. Stodart, J. L. Conradie, A. Buffler, I. Govender

Abstract ...167
Presentation ...169

TECHNICAL PITFALLS IN THE PRODUCTION OF 64Cu WITH HIGH SPECIFIC ACTIVITY

J. Rajander, J. Schlesinger, M. Avila-Rodriguez, O. Solin

Abstract ...173
Presentation ...175

SUPPORTED FOIL SOLUTION FOR LEGACY HELIUM-COOLED TARGETS WHEN AN ALTERNATIVE TO HAVAR FOIL MATERIAL IS DESIRED

B. R. Bender, G. L. Watkins

Abstract ...178
Presentation ...180

A SIMPLE TARGET MODIFICATION TO ALLOW FOR 3-D BEAM

J. S. Wilson, K. Gagnon, S. A. McQuarrie

Abstract ...184
Presentation ...185

EVOLUTION OF A HIGH YIELD GAS PHASE 11CH$_3$I RIG AT LBNL

J. P. O’Neil, J. Powell, M. Janabi

Abstract ...188
Presentation ...190

ONE YEAR EXPERIENCE WITH A IBA 18/9 CYCLOTRON OPERATION FOR F-18 FDG RUTIN PRODUCTION

Abstract ...194
Presentation ...195

COMPARISON OF $^{[11]}$CCH$_3$I YIELDS FROM 2 IN-HOUSE METHYL IODIDE PRODUCTION SYSTEMS – DOES SIZE MATTER?

Abstract ...200
Presentation ...202

CYCLOTRON PRODUCTION OF 99mTc VIA THE 100Mo(p,2n)99mTc REACTION

K. Gagnon, F. Bénard, M. Kovacs, T. J. Ruth, P. Schaffer, S. A. McQuarrie

Abstract ...205
Presentation ...207

CYCLOTRON PRODUCTION OF 99mTc

A. Zyuzin, B. Guérin, E. van Lier, S. Tremblay, S. Rodrigue, J. A. Rousseau, V. Dumulon-Perrault, R. Lecomte, J. E. van Lier

Abstract ...210
Presentation ...212

TARGETS FOR CYCLOTRON PRODUCTION OF Tc-99M

E. J. van Lier, J. Garret, B. Guerin, S. Rodrigue, J. E. van Lier, S. McQuarrie, J. Wilson, K. Gagnon, M. S. Kovacs, J. Burbee, A. Zyuzin

Abstract ...216
A FURTHER EXPLORATION OF THE MERITS OF A NIOBium/NIOBIUM VS NIcobium/HAVAR TARGET BODY/FOIL COMBINATION FOR $[^{18}\text{F}]$FLUORIDE PRODUCTION: A DETAILED HP γ-SPECTROMETRY STUDY

Abstract .. 222
Presentation .. 224

A MULTI-WIRE PROPORTIONAL COUNTER FOR MEASUREMENT OF POSITRON-EMITTING RADIONUCLIDES DURING ON-LINE BLOOD SAMPLING

H. T. Sipila, A. Roivainen, S-J. Heselius

Abstract .. 227
Presentation .. 229

LIQUID TARGET SYSTEM FOR PRODUCTION OF 90Y

J. Ráliš, O. Lebeda, J. Kučera

Abstract .. 234
Presentation .. 236

CAN HALF-LIFE MEASUREMENTS ALONE DETERMINE RADIONUCLIDIC PURITY OF F-18 COMPOUNDS?

T. Jørgensen, M. A. Micheelsen, M. Jensen

Abstract .. 240
Presentation .. 242

PC-CONTROLLED RADIOCHEMISTRY SYSTEM FOR PREPARATION OF NCA 64Cu

L. Adam Rebeles, P. Van den Winkel, L. De Vis, R. Waegeneer

Abstract .. 246
Presentation .. 247

PRODUCTION OF 124I, 64Cu AND $[^{11}\text{C}]$CH$_4$ ON AN 18/9 MEV CYCLOTRON

M. Leporis, M. Reich, P. Rajec, O. Szöllös

Abstract .. 252
Presentation .. 254

A SIMPLE AND FLEXIBLE DEVICE FOR LABVIEW APPLICATIONS

A. Hohn, E. Schaub, S. Ebers, R. Schibli

Abstract .. 258
Presentation .. 260

THREE YEARS EXPERIENCE IN OPERATION AND MAINTENANCE OF THE $[^{18}\text{F}]$F$_2$ PROTON TARGET AT THE ROSSENDORF CYCLONE$^\text{®}$ 18/9 CYCLOTRON

St. Preusche, F. Fuechtner, J. Steinbach

Abstract .. 262
Presentation .. 264

NON-HPLC METHODS FOR THE PRODUCTION OF F-18, C-11 AND GA-68 PET TRACERS

A. Yordanov, D. Stimson, D. Le Bars, S. Shulman, M. J. Combs, A. Soylu, H. Bagci, M. Mueller

Abstract .. 268
Presentation .. 270

EVALUATION ON METALLIC Sc AS TARGET FOR THE PRODUCTION OF 44Ti ON HIGH ENERGY PROTONS

K. Zhernosekov, A. Hohn, M. Ayranov, D. Schumann, R. Schibli, A. Türler

Abstract .. 276
OPERATING RbCl TARGETS BEYOND THE BOILING POINT? – WORK IN PROGRESS
Abstract ...278
Presentation ...280

[18O]WATER TARGET DESIGN FOR PRODUCTION OF [18F]FLUORIDE AT HIGH IRRADIATION CURRENTS
A. D. Givskov, M. Jensen
Abstract ...283
Presentation ...285

DIRECT PRODUCTION OF GA-68 FROM PROTON BOMBARDMENT OF CONCENTRATED AQUEOUS SOLUTIONS OF [Zn-68] ZINC CHLORIDE
M. Jensen, J. Clark
Abstract ...288
Presentation ...290

USING THE NEUTRON FLUX FROM p,n REACTIONS FOR n,p REACTIONS ON MEDICAL CYCLOTRONS
J. Siikanen, A. Sandell
Abstract ...293
Presentation ...294

REPAIRING WATER LEAKS IN THE TR-19 CYCLOTRON: A CASE STUDY IN WHAT NOT TO DO
M. J. Schueller, D. J. Schlyer
Abstract ...298

IMPROVED HIGH CURRENT LIQUID AND GAS TARGETS FOR CYCLOTRON PRODUCED RADIOISOTOPES
Abstract ...299

120+ μA SINGLE 18F- TARGET AND BEAM PORT UPGRADE FOR THE RDS/ECLIPSE
M. H. Stokely, T. M. Stewart, B. W. Wieland
Abstract ...300

AUTHOR INDEX ..302

TOPIC INDEX ..305
Abstract 001

Extending a Scintillation Counter’s Dynamic Range

Lewis Carroll
Carroll & Ramsey Associates
Berkeley, CA, USA

Introduction Our compact, solid-state scintillation probes are widely used as HPLC / GC radiation detectors for quality assurance in PET/nuclear medicine research labs and radio-pharmacies. The detector probes operate in AC-coupled, pulse-counting mode, with a threshold discriminator to exclude noise and to minimize baseline fluctuation and drift.

The threshold discriminator is followed by an analog ratemeter to produce a voltage signal that is proportional to the time-rate of photon-induced pulses which exceed the pre-set threshold. Using this scheme, the ability to discern and evaluate the smallest radio-chromatography peaks – the minimum detectable signal – is governed by fluctuations in the base-line from ambient radiation background in the lab which, in turn, requires that the detector probe be well shielded so that it ‘sees’ only the radiation emanating from a loop of flow-tubing placed in tight proximity to the probe.

While this scheme is optimum for detection at low-to-moderate levels of radioactivity encountered in a typical quality-assurance radio-assay, pulse-counting detectors generally suffer from saturation effects due to counting system dead-time when exposed to high levels of radioactivity. In an effort to broaden the potential application of our scintillation detector products, we are engaged in an ongoing development program to enhance detector system linearity and dynamic range by reducing saturation effects at the ‘high-end’ while preserving system sensitivity at the ‘low end’.

Stress-Testing at high count-rates To facilitate our development, we use home-made random pulse generators operating in parallel. Each pulse generator drives its own light-emitting diode to simulate scintillation pulses (pulse width ~ 200 nsec) from a CsI(Tl) scintillator crystal. The fixed-amplitude, random light-pulses are pre-set to match the 511 KeV principal peak in our 1 cm³ crystal, and are directed at a 1 cm² Si PIN diode + charge-integrating preamplifier (to include the effects of electronic noise inherent in a room-temperature semiconductor diode detector) all placed inside a light-tight enclosure to emulate our scintillation detector probe’s ‘front end’. Each generator delivers pulses at Poisson random intervals with an adjustable mean rate covering a range of ~100 pulses per second up to ~125K pulses per second. A pair of generators can produce a mean rate up to ~250K pulses per second, providing a convenient, readily-controllable source of detector system excitation over a wide range of count-rates, without having to handle large quantities of radioactive material. The ‘Poisson-ness’ of our random pulse generators was validated by recording the distribution of inter-pulse waiting times for various mean rates, using a calibrated time-to-amplitude converter plus multi-channel analyzer.

Extending Dynamic range In a radiation counter, input pulses which exceed a pre-determined threshold generate corresponding output pulses of fixed amplitude which, in turn, are either counted digitally or time-averaged in an analog rate-meter circuit. A different solution, now under development, entails giving up on the notion of pulse ‘counting’, per se, and replacing the standard threshold discriminator with a new circuit combining the functions of a threshold discriminator, a pedestal generator, and a linear gate. The sketch below compares the input-output characteristic of a standard discriminator versus our new circuit.

The output of a standard discriminator circuit is zero for input pulses less than the threshold, and steps to a fixed, pre-determined value for input pulses which exceed the threshold. In the new circuit, the output is again zero for input pulses which are less than the threshold; when the input pulse exceeds the threshold, the output steps, then linearly follows the amplitude of the input.

The analog time-averaged (analog rate-meter) output signal from this circuit is proportional to the time-average of energy absorbed (i.e., dose-rate) in the detector probe. The new circuit retains the noise-reducing and drift-reducing advantages of a standard threshold discriminator at low count rates, but with the added advantage that integrated energy/amplitude information contained in

signal pulses which overlap and ‘pile up’ is preserved over a substantially greater range of input excitations. Our useful range now extends well beyond the point where a standard discriminator’s output has ‘flat-lined’.

The plots below compare three different detector outputs versus input count rate excitation. The vertical scales are normalized so that all the curves are tangent at low input count rates. In our present system, ‘busy time’ for a single event is governed by the shaping-amplifier’s pulse-width, which is on the order of ~25 micro-seconds – in our case a necessary but reasonable compromise between low dead-time and low noise floor. A wider system bandwidth (shorter shaping time-constant) would allow a narrower pulse which, in turn, would yield a higher maximum count rate, but that would come at the cost of a higher noise floor, requiring a correspondingly higher threshold setting, potentially compromising performance for lower-energy photon-emitters.

As shown below, the digital output count-rate peaks at ~17 kHz for 50 kHz input, then gradually declines due to a ‘paralyzing dead-time’ component and finally plateaus at ~13 kHz. However, the analog-rate-meter – or analog average – of that same time-over-threshold discriminator signal has a significantly greater dynamic range, since the discriminator’s output pulses vary in duration, staying ‘high’ when responding to multiple, overlapping input pulses as long as they are of sufficient amplitude to exceed the pre-set threshold. Of course the time-over-threshold analog-rate-meter’s output eventually saturates as well, but with a gradual and asymptotic, ‘non-paralyzing’ characteristic.

New Circuit Our new discriminator circuit significantly extends the useable range of the detector. With this circuit, saturation effects begin to set in at ~150 kHz input count-rate, but the analog output is monotonic – still increasing – up to the present limit of our test apparatus.

The simplest, most common means to achieve detector system DC baseline stability – absolutely vital at low count-rates – is to employ capacitive AC coupling with base-line restoration at the input to the discriminator. That, however, combined with the shaping amplifier’s constrained bandwidth, leads to a loss of ‘DC-average’ information, ultimately causing the apparent signal drop-off at high count rates.

We are currently revisiting many of our prior circuit design assumptions. At the time of this submission, we are seeing preliminary, albeit intriguing and very encouraging test-bench results suggesting there is reason to expect significant improvement over the results posted here.

Our solid-state radiation detector products are categorized according to two distinct modes of Signal Processing:

1) Pulse mode
 - Pulse mode entails processing each detected photon event - pulse by pulse.
 - This permits the use of a threshold discriminator to eliminate noise and to minimize base-line fluctuation and drift.

2) DC-current mode

Extending a Scintillation Counter’s Dynamic Range
Pulse mode is preferred for low to moderate levels of activity (e.g., analytic HPLC).

Hence this mode is more subject to baseline fluctuation and drift.

There is no threshold discriminator in DC mode.

But since there is no processing of individual pulses, there is no inherent saturation effect.

DC current mode is therefore preferred for use with higher activities (e.g., prep HPLC).

There is no threshold discriminator in DC mode.

Hence this mode is more subject to baseline fluctuation and drift.

DC current mode integrates or averages the radiation-induced photo-current produced in the semiconductor diode.
For low to moderate activity

chromatography signal peaks.

Quantitation of the smallest pulse mode for detection and levels, we are committed to
Any pulse counting system is subject to count-rate saturation at high activity levels.

What happens at much higher levels of activity?

- A pulse counting system is subjected to count-rate saturation at high activity levels.
- The pulse height at high levels of activity is affected.
- A multi-channel system might be used to count the pulses.
Raw signal pulses from our semiconductor diode probe are approximated by $e^{-t/(4 \, \mu\text{sec})}$.

The 'raw' signal pulses are quite noisy and must be 'shaped' (smoothed and stretched) to ~25 μsec wide Gaussian pulse to optimize signal-noise ratio. Is it possible to exploit the noise-rejecting properties of pulse-mode for low-to-moderate activity and the inherent linearity of DC current for high activity?

Suppose we give up the notion of pulse-counting, per se, and simply measure the mean value of the detector's analog wave-form to read radiation intensity. Suppose we give up the notion of pulse-counting per se and simply measure the mean value of the detector's analog wave-form to read radiation intensity.

The raw signal pulses are quite noisy and must be shaped. The raw signal pulses from our semiconductor diode probe are approximated by $e^{-t/(4 \, \mu\text{sec})}$. The true count rate (1/sec) is proportional to dose rate in the crystal volume.
Introduce a new type of threshold circuit.

To facilitate our bench tests, we employ an ensemble of Poisson random pulse generators driving LED’s to stimulate our scintillation detector at high count-rates.

The saturating trend still evident results from loss of ‘DC-level’ information due to capacitive interstage coupling with the new discriminator circuit.

The new type of discriminator threshold circuit
While I f i d

While

e sat
i
s f.
factory
f or mo
do rate
t effic.
tive

Introduce DC interstage coupling.

Time for a major circuit revision!

amplifier is what it will.

what this mean?

...extreme count-rate overload.

is not well-suited for conditions of
amplifier's constrained band-width."

While satisfactory for moderate count rates, capacitive interstage coupling, combined with our shaping circuits, is not well-suited for conditions of extreme count-rate overload.

At the input to the post-amplifier, we lock the signal base-line to a fixed reference, and let the signal envelope at the output of the post-amplifier do what it will.
Observe the signal at the output of the shaping amplifier.
Our new discriminator circuit accepts this as a valid signal. As the signal base-line exceeds the discriminator threshold, the discriminator's output is a linear replica of the input yielding a proper measure of the signal's mean value relative to the fixed base-line. Under conditions of extreme pulse-rate overload, the entire signal envelope observed at the output of the shaping amplifier appears to 'levitate' relative to the fixed base-line reference.
As if we are operating in DC current mode *

A stabilized base-line, in conjunction with a threshold discriminator, is essential for noise-free detection at low excitations, but it is not compatible with true DC current mode operation.

Recap: Pulse mode, including a threshold discriminator, is preferred at very low excitations due to 'cleaner' baseline and better detectability for weak signal peaks. DC current mode doesn't saturate and is therefore preferred for very high excitations.

A "stabilized base-line" and "DC current mode" are mutually exclusive....
CONCLUSION: We have demonstrated a scintillation detector operating in pulse-mode at low excitation, having a linear dynamic range from a few tens of pulses per second to more than 500K per second. We have also shown that our new scheme combines the best features of both modes of operation.

1. QC systems shall be validated
2. Ac systems shall be validated

USA Patent Pending
Development of a target system at the baby cyclotron BC1710 for irradiation of solids and gases and the adaptation of existing target systems to the external beamline at the injector of COSY

B. Scholten, S. Spellerberg, W. Bolten, H. H. Coenen

Institute of Neurosciences and Medicine, INM-5: Nuclear Chemistry, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany

In former years most of our radionuclide development studies were done at the compact cyclotron CV 28 of the Forschungszentrum Jülich. Several dedicated target systems were constructed to irradiate solid and gaseous targets, either for cross section measurements or for production of radionuclides [1-16].

Due to the decommissioning of the compact cyclotron CV 28 in 2006 new target systems had to be developed at our baby cyclotron BC1710. This cyclotron is used to produce the light PET isotopes (18F, 11C, 13N) in special gas chambers and in water targets. These specialized target systems are arranged in a target changing system with six positions. There was no target system at our BC1710 for the irradiation of solid targets and gas cells. So a beam line extension at the lowest position of the target changing system was constructed with a water cooled beam collimator and electrical insulation of the targets for beam current measurement. The front plate allows inserting different target holders close to the main end of the beam line. Target holders were constructed for the irradiation of foils and pellets in the stacked foil technique, which also allows irradiating powders in aluminum capsules. Furthermore, it is also possible to insert a slanting target for the production of radionuclides (i.e. 124I, $^{120g+m}$I, 48V) at higher currents. All target systems are water cooled. A special front plate was constructed for the external irradiation of gas cells. During the development of the target system several optimizations had to be done to collimate the beam and to increase the beam efficiency on the target.

Fig. 1: Drawing of the beamtube extension at the BC 1710 with inserted stack foil holder.
Fig. 2: Picture of the component parts of the BC1710 beamline extension before assembling.

At the injector of COSY an internal target system exists for the irradiation of targets in the stacked-foil mode using the just extracted beam of the cyclotron. At this position there is a geometrical limitation for the target system and special care has to be taken that no contamination of the internal part of the cyclotron can happen. Intense water cooling of the targets is not possible there. Therefore an adaptation system at the end of an external beamline of the injector of COSY was developed which allows using all former target holder systems and dedicated targets developed earlier for the CV 28. In the adapter four adjustable water cooled sector absorbers are built in to collimate the beam. The beam windows are cooled by a helium gas stream. Manual remote control of the system is possible from outside the cyclotron vault and a PC based remote system is projected.

References:

Development of a target system at the baby cyclotron BC1710 for irradiation of solids and gases and the adaptation of existing target systems to the external beamline at the injector of COSY

B. Scholten, S. Spellerberg, W. Bolten, H. H. Coenen

Institute of Neurosciences and Medicine, INM-5: Nuclear Chemistry, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany

Cooperations:
- Vrije Universiteit Brussel, CGR 560 Cyclotron: 42 MeV p, 22 MeV d, 50 MeV 3He, 43 MeV 4He
- iThemba LABS, Pinelle, SA 200 MeV p

Injectors of COSY: 45 MeV p, 75 MeV d (IKP)
- GE PET Trace: 16.5 MeV p, 8.4 MeV d
- BC1710: 17 MeV p, 10 MeV d

Accelerators at FZ Jülich

Dedicated to the production of short-lived PET radioisotopes:
- 14N(p, α)11C (gas target)
- 18O(p, n)18F (water target)
- 16O(p, α)13N (water target)
- 14N(p, α)11C (gas target)

no research targets existed for solid and gas samples so far

Vertical target changer unit with 6 target positions

Accelerators at FZ Jülich

Baby Cyclotron BC1710
Beam Line Extension at BC 1710

- A beamline extension was constructed for lowest target changer position.
- Water cooled collimator, insulators from peek or plexiglas
- Target vacuum separate from cyclotron vacuum
- Long target rod for solid target systems with water cooling
- Remote control from outside the cyclotron vault required
- Adapted to external beamline
- Existing sophisticated target systems for CV28 should be adapted to external beamline was used by other groups so far
- Internal radiation possible

1996 H⁻ (45 MeV) / 2000 D⁻ (75 MeV)
1999/1 converted as COSY injector (76 MeV H⁺)
1996 H⁻ and heavy ions up to 45 MeV/nucleon.
Isochronous cyclotron JULIC commissioned in 1968

Injector of COSY

Target Systems at BC 1710

- Remote beam current measurement
- Stacked foil, slanting target, etc.
- Vacuum separate from cyclotron vacuum
- Water cooled collimator, insulators from peek or plexiglas
- A beamline extension was constructed for lowest target changer position.
- Remote controlled by hand, by PC
- Electrical beam current measurement
- Target vacuum separate from cyclotron vacuum
- Water cooled collimator, insulators from peek or plexiglas
- A beamline extension was constructed for lowest target changer position.

Gas cell target

Stacked-foil target holder

Slanted targets
1. Production of 74As?
- Dependent on demand, although more production = more demand
- Production of 74As

New institute building (2014)
- New dual beam mode for protons and deuterons
- Two external beamlines in separate vault
- New building with cyclotron vault and GMP PET laboratory (2011)

Alpha particles: fixed 30 MeV, > 50 mA
Deuterons: 15 - 7 MeV, 50 mA
Protons: 30 - 15 MeV, 1 - 350 mA

Replacement for CV28 and BC 1710

IBA C30a
Search for the ideal cyclotron stripper foil

John O. Stoner, Jr.

ACF-Metals, The Arizona Carbon Foil Co., Inc.
2239 E. Kleindale Road
Tucson, Arizona 85719-2440 U.S.A.
<metalfoil@cox.net>

Although carbon stripper foils can now be obtained in any thickness desired by the cyclotron user, it is still necessary to replace foils occasionally because of their finite lifetimes. Limits on lifetime occur because of poor mounting, vacuum disasters, mechanical shock, nuclear collisions (causing violent atomic displacements), thickening, nuclear and electronic heating with resulting evaporation and diffusion, erosion by residual gas, and many other effects. Beam currents are increasing steadily; this trend is expected to continue. Most problems are accentuated at higher beam currents. ACF-Metals is searching through foil compositions, allotropes and mounting methods to identify promising routes to obtaining longer-lasting foils.
Carbon Foils:

- Feature:
 - Thickness: 1 nm to >20 µm
 - Amorphous, graphitic, or pyrolytic
 - Low Z, High strength, withstand high temperature

Research:

- Why ACF-Metals?
 - Operation in extreme conditions
 - Foil longevity
 - Materials & frames
 - Continuing research to improve:
 - Quantity production of standard foils
 - Flexible production of unusual types
 - High quality foils: experienced personnel

Acceptor:

- Example: Fiber-mounted foils for SNS and other accelerators.

Accelerator Cost: approx. $1B

One carbon stripper foil cost: approx. $300
Stricker foil ~1 cm x 5 cm

Stropper foil: 1 cm x 5 cm (1 G)

SNS

2239 E. Kleindale Road
Tucson, AZ 85719
ACF-Metals

Research:

- Fiber-mounted foils for SNS and other accelerators.
- Better mountings for longer lifetimes.

Example: Fiber-mounted foils for SNS and other accelerators.

Accelerator Cost: approx. $1B

One carbon stripper foil cost: approx. $300
Stricker foil ~1 cm x 5 cm

Stricker foil: 1 cm x 5 cm (1 G)

SNS

2239 E. Kleindale Road
Tucson, AZ 85719
ACF-Metals

Research:

- Operation in extreme conditions
- Foil longevity
- Materials & frames
- Continuing research to improve:
 - Quantity production of standard foils
 - Flexible production of unusual types
 - High quality foils: experienced personnel

Why ACF-Metals?

- Why ACF-Metals?
 - Operation in extreme conditions
 - Foil longevity
 - Materials & frames
 - Continuing research to improve:
 - Quantity production of standard foils
 - Flexible production of unusual types
 - High quality foils: experienced personnel

Accelerator Cost: approx. $1B

One carbon stripper foil cost: approx. $300
Stricker foil ~1 cm x 5 cm

Stricker foil: 1 cm x 5 cm (1 G)

SNS

2239 E. Kleindale Road
Tucson, AZ 85719
ACF-Metals

Research:

- Operation in extreme conditions
- Foil longevity
- Materials & frames
- Continuing research to improve:
 - Quantity production of standard foils
 - Flexible production of unusual types
 - High quality foils: experienced personnel

Why ACF-Metals?

- Why ACF-Metals?
 - Operation in extreme conditions
 - Foil longevity
 - Materials & frames
 - Continuing research to improve:
 - Quantity production of standard foils
 - Flexible production of unusual types
 - High quality foils: experienced personnel

Accelerator Cost: approx. $1B

One carbon stripper foil cost: approx. $300
Stricker foil ~1 cm x 5 cm

Stricker foil: 1 cm x 5 cm (1 G)

SNS

2239 E. Kleindale Road
Tucson, AZ 85719
ACF-Metals

Research:

- Operation in extreme conditions
- Foil longevity
- Materials & frames
- Continuing research to improve:
 - Quantity production of standard foils
 - Flexible production of unusual types
 - High quality foils: experienced personnel

Why ACF-Metals?

- Why ACF-Metals?
 - Operation in extreme conditions
 - Foil longevity
 - Materials & frames
 - Continuing research to improve:
 - Quantity production of standard foils
 - Flexible production of unusual types
 - High quality foils: experienced personnel

Accelerator Cost: approx. $1B

One carbon stripper foil cost: approx. $300
Stricker foil ~1 cm x 5 cm

Stricker foil: 1 cm x 5 cm (1 G)

SNS

2239 E. Kleindale Road
Tucson, AZ 85719
ACF-Metals

Research:

- Operation in extreme conditions
- Foil longevity
- Materials & frames
- Continuing research to improve:
 - Quantity production of standard foils
 - Flexible production of unusual types
 - High quality foils: experienced personnel

Why ACF-Metals?

- Why ACF-Metals?
 - Operation in extreme conditions
 - Foil longevity
 - Materials & frames
 - Continuing research to improve:
 - Quantity production of standard foils
 - Flexible production of unusual types
 - High quality foils: experienced personnel

Accelerator Cost: approx. $1B

One carbon stripper foil cost: approx. $300
Stricker foil ~1 cm x 5 cm

Stricker foil: 1 cm x 5 cm (1 G)

SNS

2239 E. Kleindale Road
Tucson, AZ 85719
ACF-Metals

Research:

- Operation in extreme conditions
- Foil longevity
- Materials & frames
- Continuing research to improve:
 - Quantity production of standard foils
 - Flexible production of unusual types
 - High quality foils: experienced personnel

Why ACF-Metals?
Research:
The frontier: Foils to withstand the highest temperatures, the largest beam currents, in corrosive environments, for the longest times.

One-piece aluminum foil, 10 µg/cm² (40 nm thick) on supporting mesh, ready for shipment.

Carbon foil, 1/2 micron thick, on cyclotron fork

3-micron C foils on tungsten frames
Carbon Foils:

- Thickness: <1 nm to >20 µm
- Amorphous, graphitic, or pyrolytic
- Low Z, high strength
- Withstand high temperature
- Ramp up beam slowly
- Storage: Desiccators/refrigerators not needed

ACF-Metals
2239 E. Kleindale Road
Tucson, AZ 85719
<metalfoil@cox.net>

WTTC XIII – Presentations Discussions
New Gaseous Xenon Target for 123I Production

Jožef J. Čomor1, Đuro Jovanović1, Jean-Michel Geets2, Bernard Lambert3

1ELEX Commerce, Hilandarska 28, 11000 Belgrade, Serbia
2IBA Molecular, Chemin du Cyclotron 3, 1348 Louvain-la-Neuve, Belgium
3IBA Molecular Europe, Le christ de Saclay B.P. 32, 91192 Gif-Sur-Yvette, France

123I is one of the best suited radionuclides for SPECT (Single Photon Emission Computed Tomography) due to its short half life (13.2 h) and low absorbed dose in patients for its low energy gamma emission (154 keV), which is ideal for detection by common scintillation detectors. It is most commonly produced in gaseous Xe targets irradiating highly enriched 124Xe by 30 MeV protons and exploiting the indirect production path via 123Xe. This technology is well established and performed in several cyclotron centers; however radiation safety aspects and the danger of losing the expensive target material are always a concern. Thus, every effort is needed to ensure that the target remains tight during irradiation, while the service and maintenance should be quick and reliable in order to reduce the dose received by the personnel.

The most critical part of every gaseous target is the double window system, there are two possible approaches in handling this issue: hard bolting the windows via flanges and metal seals to the target body, or using window packages, which can be remotely replaced prior failure of elastomer seals. The first approach allows for long periods between scheduled replacements of the target assembly (approx. once in 12 months); however the radiation dose received by the operator during this maintenance is substantial. Moreover, one needs at least two complete targets for uninterrupted production (one in operation while the other is cooling down for maintenance). The second approach requires more frequent replacement of the window package (approx. once in 3 months) without any radiation hazard for the operators.

It is obvious that this second approach is more favorable, thus the new target station has been developed following this concept, with the aim to provide more reliable operation than what the existing target stations can provide. To this end a new mechanism for window foil package replacement has been designed. Unlike the previous target stations, it has no robotic arm. Moreover, there are no sliding seal based connections for compressed air and helium, thus the reliability of the window package replacement mechanism is greatly increased and in the same time the possibility of losing the target material from the helium cooling loop in case of window burst is negligible.

In addition, the target locking mechanism has been also improved: previous designs relied on uninterrupted compressed air supply, thus in case of accidental burst of supply tubing during the irradiation the enriched target material would be lost and the vault would be heavily contaminated. The new locking mechanism keeps the target chamber normally locked. Compressed air is needed only for unlocking the target chamber for window package replacement, i.e. the safety of the target station does not depend on external factors.

The target is patent pending and detailed design will be presented later on (at time of conference).
State of the art

Irradiation of gaseous 124Xe is the most cost-effective way for large-scale 123I production.

There are two common approaches to the target design:

The good:

- Very high current acceptance and yield.
- Remote target maintenance – minimum dose to the operators during maintenance.
- Affordable replacement window packages.

The bad:

- Very high dose delivered to the operators during operation.
- Infrequent (annual) target maintenance.
- At least two target sets are needed for normal operation.
- Very high current acceptance and yield.

KIPROS approach

Nordion/Triumf/ACSI approach

The good:

- Very high current acceptance and yield.
- Remote target maintenance – minimum dose to the operators.
- Affordable replacement window packages.

The bad:

- At least two target sets are needed for normal operation.
- Very high current acceptance and yield.

The good:

- Very high current acceptance and yield.
- Remote target maintenance – minimum dose to the operators during maintenance.
- Affordable replacement window packages.

The bad:

- Very high dose delivered to the operators during operation.
- Infrequent (annual) target maintenance.
- At least two target sets are needed for normal operation.
- Very high current acceptance and yield.

Jožef Komor

Đuro Jovanović

Jean-Michel Geets

Bernard Lambert

New gaseous 123I production

123I Target for xenon target

The two common approaches to the target are:

- The effective way for large-scale 123I production.
- Irradiation of gaseous 124Xe is the most cost-effective method.
What if a new system is to be designed?

- The remote exchange of window packages is a great advantage (ALARA principle).
- Therefore follow this principle and in addition:
 - Simplify the window package replacement.
 - Design a fool-proof insertion principle (the orientation of the double window insert is crucial).
 - The Nirta Solid Compact target system for solid target irradiation can be pre-loaded with three target disks, which are then irradiated one by one.

The Nirta Solid Compact target...

...was in fact in the backyard.
1. Target experience

- Windows changed every 3rd month
- "Kyros" material to handle temperature
- Diagnostic system for window holes?
- Why not use 18F experience?
- Why not use 18F experience?
Mass Production of 64Cu with 64Ni(p,n)64Cu Nuclear Reaction

Kwon Soo Chun*, Hyun Park, Jaehong Kim

Korea Institute of Radiological and Medical Sciences, Seoul, Korea

* Corresponding author: kschun@kcch.re.kr

Introduction

64Cu ($T_{1/2} = 12.7\text{h}$, β^- decay: 40%, β^+ decay: 19%, E.C. decay: 41%) is one of the most useful radioisotope in nuclear medicine due to its multiple decay mode and the intermediate half-life. Several nuclear reactions, i.e., 64Ni(p,n)64Ni, 68Zn(p,αn)64Cu and 64Ni(d,2n)64Cu have been investigated for 64Cu production[1,2]. The highest production yield could be obtained with proton irradiation on the enriched 64Ni target. Therefore for mass and routine production, the 64Ni target fabrication by using electroplating[3], the reliable chemical separation of 64Cu from the irradiated 64Ni target and the effective recovery process for the recycling of very expensive enriched material (64Ni enrichment : 96%, $20,000/g$) and so on are absolutely necessary to be established. In this work, we report our mass production method of 64Cu with enriched 64Ni and Cyclone-30 accelerator.

Methods

64Cu was produced with high current cyclotron via 64Ni(p,n)64Cu nuclear reaction at $200\mu\text{A}$, 18MeV proton beam. Nickel target was prepared by electro-plating of enriched 64Ni (25% of enrichment) on Au coated Cu cooling plate. After proton beam irradiation, Ni target was dissolved with circulation of 50ml of 5N HCl on the dissolving device (home made) and 90°C heating. Water was added to 64Ni solution to dilute the normality of hydrochloric acid to 0.5N. Radiochemical separation of 64Cu from Ni target solution was performed with 0.01% dithizone in CCl$_4$ solvent extraction and back extraction with 7N HCl[4]. Purification of back extracted 64Cu solution was carried out with AG1-x8 (Bio-Rad) anion exchange resin. For 64Ni recycling, 64Ni from the aqueous phase of solvent extraction and the electrolyte of electroplating was recovered by using AG1-x8 anion and AG50w-x8 (Bio-Rad) cation resin[5].

Results

With the electroplating cell designed by ourselves and the electrolyte, consisting of 1.5g 64Ni(25% enrichment), 1.0g boric acid and 2.0g NaCl in 90ml distilled water, the smooth and uniformed Ni target (thickness : > 50mg/cm2, area: 1 x 10cm2) was obtained with applying 200mA of constant current on the cathode for 5hrs. The cathode current efficiency was about 50%. There was no damage on Ni surface during more than $200\mu\text{A}$ proton beam irradiation. The chemical separation yield of 64Cu with solvent extraction and anion exchange resin was more than 90% and the radionuclidic purity was more than 99% 1 day after bombardment. The 64Ni recovery yield was quantitative and measured with 57Ni activity produced with 58Ni(p,2p)57Ni nuclear reaction and AA spectroscopy.

Conclusion
64Cu production yield was about 9mCi/μAh corrected on 96% enrichment at EOB with 64Ni(p,n)64Cu nuclear reaction and Cyclone-30. The chemical separation yield and the radionuclidic purity of the final 64Cu solution was more than 90% and 99%, respectively. The 64Ni recovery yield performed with ion exchange resin was more than 98%.

References

64Cu physical properties

- **Half-life:** 12.701 h
- **β⁺ max. energy (keV):** 653.03 (17.6%)
- **β⁻ max. energy (keV):** 579.4 (38.5%)
- **γ-ray energy (keV):** 511.32, 1345 (0.5%)

Table. Possible production routes of 64Cu in NCA form.

<table>
<thead>
<tr>
<th>Target material</th>
<th>Production route</th>
<th>Expected Yield per batch (mCi)</th>
<th>Yield (mCi/µAh)</th>
<th>Energy (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>64Ni (p,n)64Cu</td>
<td>$20,000/g$</td>
<td>2-10</td>
<td>10</td>
<td>15.5</td>
</tr>
<tr>
<td>64Ni(d,2n)64Cu</td>
<td>$3,000/g$</td>
<td>80</td>
<td>19</td>
<td>0.2</td>
</tr>
<tr>
<td>Natural Ni</td>
<td>Cu Nat. Ni(p,n)64Cu</td>
<td>800-4,000</td>
<td>200 µA x 2h</td>
<td>19</td>
</tr>
<tr>
<td>Zn(>95%)</td>
<td>68Zn(p,α)n64Cu</td>
<td>800-1,700</td>
<td>300 µA x 2h</td>
<td>20</td>
</tr>
</tbody>
</table>

64Cu: Therapeutic RI with monoclonal antibody and PET radionuclide

Nuclear Reaction

Mass production of 64Cu with 64Ni(p,n)64Cu
Excitation functions of 64Cu production

100Ni$(p,n)^{64}$Cu and 100Ni$(d,2n)^{64}$Cu, Zweit (1991)
68Zn$(p,\alpha)^{64}$Cu, Qaim (2003)
66Zn$(d,\alpha)^{64}$Cu, Qaim (2003)

64Ni (p, n) 64Cu, Szelecsenyi (1993)

Schematic procedure for 64Cu mass production

64NiCl$_2$ recovery yield: >98%

1) Au preplating on Cu plate
2) 64Ni plating on Au coated Cu plate

Proton beam irradiation: 18 MeV, 200 μA

64Cu purification with chromatography

64CuCl$_2$ production yield: 8.9 mCi/200 A

Target angle: 6$^\circ$

64Ni isotope composition

100Ni, 63Ni, 600 mg, 18 MeV $
ightarrow$ 2 MeV

Power supply and rotor controller

Motor

Target area: 10 cm2 (=1 cm x 10 cm)

Target assembly cross-section view

64Ni target (Au, 64Ni) electroplating system

1) Au plating: 0.3 g KAu(CN)$_2$/3 g EDTA/2 g phosphate buffer in 500 mL H$_2$O

Target area: 12 cm2 (=1.2 cm x 10.2 cm)

- Stirrer: 650 rpm
- Constant current: 200 mA
- 64Ni cathode current efficiency: >30%
- Recovery: cation and anion resin

68Zn$(p,\alpha)^{64}$Cu, 60 mg/cm2 from 50 keV to 5 MeV (Zweit, Qaim)

Excitation functions of 64Ni$(p,n)^{64}$Cu and 64Ni$(d,2n)^{64}$Cu, Szelecsenyi (1993)

68Zn$(p,\alpha)^{64}$Cu, 60 mg/cm2 from 50 keV to 5 MeV (Zweit, Qaim)
Chemical separation system for 64Cu production

- Peristaltic pump
- Target dissolution system
- Heater & TC
- Pnuematic cylinder
- Cation column for Ni recovery
- Solvent washing
- Back Anion ring
- Ni dilution with 50 ml of 5N hydrochloric acid (flow rate: 1ml/min, temp.: 90 Ԩ)
- Way valve
- Ni-64 solution
- Chemical processing device

Conclusions

- Target material: 26% 64Ni
- 64Cu production yield: 8.9mCi/ȝAh (96% enrichment, at EOB)
- Proton energy and current: 18MeV, 200 ȝA
- Separation method:
 - solvent extraction: 0.01% dithizone in CCl4-HCl
 - ion chromatography: AG1-8
 - separation yield of 64Cu: >90%
 - radionuclidic purity: >99%

- 64Ni recovery method:
 - cation, anion resin
 - recovery yield: >98%
 - radionuclidic purity: >99%

- Quality control of 64Cu(γ-ray, metal impurity)

Fig. γ-ray spectrums of the proton beam irradiated 64Ni target and final 64Cu product.

Fig. Metallic impurities in the final 64Cu solution and 64Ni electrolyte measured by ICP-MS.
Activity Delivery System

D.B. Mackay¹, C. Lucatelli¹, R. van Ham², M. Willemsen², P. Thoonen², B. Kummeling², J.C. Clark¹

¹CRIC, University of Edinburgh, ²Von Gahlen, Nederland B.V

The CRIC radio-chemistry facility requires that radio-nuclides produced on a GE PETtrace 8 cyclotron are delivered to 4 hot cells in a GMP production lab and to 3 hot cells in a R&D lab. CRIC is working closely with Von Gahlen to develop a comprehensive radionuclide delivery system. The ADS is capable of supplying radioactive gases and liquids safely and reliably from the cyclotron to all of the points of use. The switching valves also have the possibility of directing the radio-nuclides to waste.

The route possibilities are shown in figure 1.

Figure 1: Delivery system routes.
The switching valves and isolation valves have all been selected for their proven reliability and adequate performance characteristics.
The system will be controlled by a plc. Software will be validated to GAMP 5.
The operator can control the delivery from one of three touch screen panels.
The system has been designed with a high level of safety both for the operators and the environment. The whole system is enclosed in a stainless steel box. The box has separate compartments for the valves and the control equipment. The valves and filters are housed in an airtight lead-shielded compartment (75mm) which is ventilated. The extract air is filtered with HEPA/charcoal filters.
Access inside the shielded compartment is not possible while delivery is in progress or when the radiation level is above a pre-set threshold. This is achieved by interlocking the door lock to an internally mounted radiation detector.
Delivery along the chosen route can only occur when safe pre-conditions have been met (e.g. hot cell doors closed).
The lines to the hot cells are run in floor trenches under the hot cells. The trenches are shielded with 75mm of lead and provided with hatches to facilitate replacement of lines.

Views of the box are shown below.

Figure 2: Activity delivery system shielded box
The GMP hot cell lab

- 4 Production hot cells (2x Von Gahlen SB2S)
- Cells equipped with GE syntheisers (2x Tracerlab MX, 1x FXC Pro, 1x FXFN)
- Aseptic dispensing facility (Von Gahlen DPE)
- GE Fastlab dispenser/sterilizer
- Integrated filter integrity test
- Products from all 4 hot cells can be transferred to either dispensing cell
- HPLC cabinet

The CRIC Facility, Edinburgh

Activity Delivery System

D.B. Mackay
Risoe, 27 July 2010

- GE PETtrace 8 cyclotron in a vault
- GMP lab with 4 hot cells
- Facilities for dispensing and sterilising either by autoclave or aseptic filtration.
- Separate R&D lab with 3 hot cells.
- PET/CT, CT and 3T MRI scanners.

The CRIC Facility, Edinburgh

- GMP hot cell lab
- GE PETtrace 8 cyclotron in a vault
- Facilities for dispensing and sterilising either by autoclave or aseptic filtration.
- Separate R&D lab with 3 hot cells
- PET/CT, CT and 3T MRI scanners.
The R&D hot cell lab

- 3 Von Gahlen hot cells (1x SB2S and 1x HC(R))
- All 3 hot cells are interconnected
- HPLC cabinet

The HPLC support cabinet

- GE FX control electronics 2X
- GE PETtrace control PC

The Activity Delivery System Schematic

Concept drawing
Safety

Valves

- Different valves for gases and liquids
- V1 Valve, VICI C5-2344EMT8-485-VGA [4-way] [1/16" Fittings] [8" standoff]
- V2 Valve, VICI C5H-2348EMT8-485-VGA [8-way] [1/16" Fittings] [8" standoff]
- V3 Valve, VICI EMT8SD6MWE-485-VGA [6-way] [1/8" Fittings] [8" standoff]
- V4 Valve, VICI EMT8SD6MWE-485-VGA [6-way] [1/8" Fittings] [8" standoff]
- V7 Multimedia valve, Parker 009-1513-900
- V8 Check valve, Swagelok SS-6C-1/3

Control

- Plc control Modicon M340 Type 2020
- Touch screen with user log in and access levels
- Delivery only possible if cyclotron status door interlocks and radiation levels ok.
- Software to GAMP 5

The Activity Delivery System Hardware

- FMEA analysis conducted
- All lines run in 75mm lead-shielded floor trenches
- Door lock
- Radiation monitor built-in
- Exhaust air HEPA/Charcoal filtered
- Box ventilated (negative pressure)
- Rotary valve position feedback
- Valves separate from actuators
- Sealed valve compartment
- 75mm lead shielding
- Log in with user levels and password control
- Software to GAMP 5
- Delivery only possible if cyclotron status, door interlocks and touch screen with user log in and access levels
- Touch screen with user log in and access levels
- Plc control Modicon M340 Type 2020

Vaccines

- Low dead volume for liquids
- Wetted path materials checked
- Helium specified for noble liquid
- Cleanliness for C-11 - Radon
- Safety valves default to closed
- and safety valves (on/off)
- Separate cooling valves (open)
- High pressure specs
- Different valves for gases and liquids
- 75mm lead shielding
Integrated GMP PET Radiotracer Production and Dispensing Facility

C. Lucatelli¹, D. B. Mackay¹, G. Mokosa², C. Arth², R.C. van Ham, M.A.B. Willemsen³, J. C. Clark¹

¹University of Edinburgh, CRIC, ²Millipore France, ³Von Gahlen Nederland B.V

Dispensing of PET radiopharmaceuticals can be done either by final thermal sterilization or by sterile filtration. If thermal sterilization is the recommended method, it is very often impractical (short half-life, tracer thermo-sensitive) and many PET radiotracers are therefore dispensed by sterile filtration.

Among all the Quality Control tests required, prior to batch release, by Good Manufacturing Practice and European Pharmacopeia standards, the integrity of the membrane filter used during the final dispensing is to be checked. This activity is relatively time consuming and is the main source of analyst finger radiation doses.

To overcome this problem, we decided that this test should be automated and “in line” to avoid manual handling of this highly active filter, and to allow other activities to be performed as the filter is being tested.

The University of Edinburgh is currently setting up a brand new PET radiotracer production facility, as part of its new Clinical Research Imaging Centre (CRIC) and wants to achieve a state of the art uncluttered integrated facility.

Figure 1: GMP production lab hot cells assembly. From left to right: ventilated HPLC cabinet; GE FASTLab dispenser and sterilizer; 2 VG SB2S hot cells; 2 VG SB2S hot cells; VG Grade A DPB-LF dispenser.

Figure 2: Millipore Integritest® 4

This facility will operate a GE PETtrace 8 cyclotron equipped with 5 targets: 2 Niobium for 18F production, 1 11C-CO$_2$, 1 11C-CH$_4$ and 1 15O-target. The 4 first targets will be connected to 2 independent labs, a GMP production housing 4 hot cells and a R&D lab housing 3 hot cells. The target will be routed to the right destination using a specially designed Activity Delivery System. A specially designed ventilated HPLC cabinet, integrated within the row of hot cells will house 2 GE
synthesiser module electronic racks, 2 semi-preparative HPLC pumps and a computer controlling the cyclotron.

In addition to the 4 production hot cells, the GMP production lab will be equipped with 2 dispenser hot cells, a GE FASTLab dispenser and autoclave for thermal sterilisation and a Grade A Von Gahlen DPB-LF hot cell for the aseptic dispensing of radiotracers sensitive to heat or with a short half-life. Each of the production hot cells will be connected via shielded ducts to both dispensers.

As part of the design of the lab, we investigated the possibility of integrating a filter integrity test facility into our aseptic dispensing hot cell.

We decided to use the “off the shelf” Millipore Integritest 4 (Networked version) as a basis for this system, due to its modular design. We worked jointly with Millipore and Von Gahlen to achieve a solution which would allow the filter to be directly and automatically tested as part of the dispensing process.

The challenge was to integrate this tabletop system into the hot cell without compromising the Grade A laminar flow and the radioprotection. To achieve this integration, the commercial system needed to be disassembled. The touch screen computer panel is located on the front face of the hot cell. The part connected to the filter (External Valve Array) is fitted into the shielded environment and the remaining parts are located in a shielded enclosure on the top of the hot cell. A solenoid valve protects the Millipore External Valve Array during the filtration of the product. The filter is connected to product transfer line and to the Millipore Integritest® 4 by a sterile single use Vygon tubing assembly equipped with a check valve.

Figure 3: Integration of the Millipore Integritest®4 into the Von Gahlen DPB-LF hot cell.
Introduction

Dispensing and terminal sterilisation of PET radiopharmaceuticals can be done either by terminal sterilisation or by aseptic sterile filtration. Although thermal sterilisation is the recommended method, it is very clean impractical (short half-life, thermo-sensitive tracer) and many PET tracers therefore are dispensed by aseptic sterile filtration.

As part of the design of our new lab, we investigated the possibility of integrating an aseptic integrity test facility into our aseptic dispensing hot cell. To overcome this problem, we decided that this test should be automated and “in line” to avoid manual handling of this highly active filter, and to save analyst finger radiation doses. Although thermal sterilisation is the recommended method, it is very clean impractical (short half-life, thermo-sensitive tracer) and the main source of manual handling of this highly active filter, and to save analyst finger radiation doses.

Among the Quality Control tests required, prior to batch release by Good Manufacturing Practice and European Pharmacopoeia standards, the integrity of the membrane filter used during the terminal sterilisation and dispensing must be checked. This activity can be cumbersome time consuming and is the main source of manual handling of this highly active filter, and to save manual handling of this highly active filter, and to save analyst finger radiation doses. Although thermal sterilisation is the recommended method, it is very clean impractical (short half-life, thermo-sensitive tracer) and many PET tracers therefore are dispensed by aseptic sterile filtration.
The University of Edinburgh is currently setting up a brand new PET radiotracer production facility, as part of its new Clinical Research Imaging Centre (CRIC) aiming to achieve a state of the art integrated uncluttered Licensed GMP facility.

As part of the design of the lab, we investigated the possibility of integrating a filter integrity test facility into our aseptic dispensing hot cell. We decided to use the Millipore Integritest® (Networked version) as a basis for this system due to its modular design, which would allow the filter to be directly and automatically tested as part of the dispensing process. We have worked jointly with Millipore and Von Gahlen to achieve a solution which would allow the filter to be directly and automatically tested as part of the dispensing process.

The challenge was to integrate this tabletop system into the hot cell without compromising the Grade A isolator. To achieve this integration, the commercial system needed to be disassembled. The touch screen panel is located on the front face of the hot cell. The filter is connected to product transfer line and to the Millipore Integritest® 4 by a sterile single use Vygon tubing assembly “Octopus” and to the Millipore Extrenal Valve Array during the filtration of the product. A solenoid valve protects the Millipore Extrenal Valve Array during the filtration of the product.

A solenoid valve is used to control the filtration process, and the remaining parts are located in a shielded environment. The filter is connected to the Millipore Integritest® 4 by a sterile single use Vygon tubing assembly “Octopus” and to the Millipore Extrenal Valve Array during the filtration of the product. A solenoid valve protects the Millipore Extrenal Valve Array during the filtration of the product.
A solenoid valve protects the Millipore External Valve.

The vessel remains to be validated but we are quite confident that all will be well.
Synthesis of 4-[^18F]Fluorobenzaldehyde in a CPCU for Peptide Labeling

V.M. Lara-Camacho, J.C. Manrique-Arias, E. Zamora-Romo, A. Zarate-Morales, A. Flores-Moreno, M.A. Avila-Rodriguez

Unidad PET/CT-Ciclotrón, Facultad de Medicina, Universidad Nacional Autónoma de México, México, D.F., México

Objectives: Implement the synthesis of 4-[18F]fluorobenzaldehyde ([^18F]FB-CHO) in a CTI/Siemens Chemistry Process Control Unit (CPCU) for peptide labeling.

Methods: No-carrier-added[^18F]FB-CHO was prepared by radiofluoridation of 4-formyl-N,N,N-trimethylanilinium triflate precursor in two reaction vessels. Reagents used in the synthesis are summarized in table below. After elution of[^18F] from QMA cartridge and azeotropic distillation at 110°C in reaction vessel #1, precursor was added, bubbled for a few seconds, and transferred to reaction vessel #2. Fluorination reaction was performed at 60°C for 10 min [Speranza et al., Appl. Radiat. Isot. 67 (2009) 1664] and the residue mixture was diluted with 3 mL of H2O. The product was trapped in a Sep-Pak C18 cartridge and washed with 10 mL of H2O.[^18F]FB-CHO was eluted with 0.5 mL of EtOH. For peptide labeling HYNIC-peptide conjugates were incubated with[^18F]FB-CHO at 50°C, 25 min, pH 4.5. Purification was performed by gradient-HPLC in a semi-prep C18 reverse phase column with EtOH/H2O 10-80% in 20 min [Lee et al., Nucl. Med. Biol. 33 (2006) 667].

Results:[^18F]FB-CHO was obtained in a decay corrected RCY of 30% within 50 min with a RCP>95%. The peptides Try^2-Octreotide (TOC) and c-RGDyK (RGD) were labeled with 60-90 efficiencies with RCP>99% after HPLC purification, independently of the peptide used. MicroPET studies were performed with[^18F]FB-CH=N-NYNIC-RGD using C6 glioma xenografts in nude mice.

Conclusions: After the CPCU was replaced with a modern FDG-maker in our institution, to this chemistry module was given a second chance for the synthesis of other tracers taking advantage of its simplicity and versatility. In this work,[^18F]FB-CHO was successfully prepared and used for peptide labeling with a RCY highly enough for clinical applications.
The aim of this work is:

Objective

To implement the synthesis of [18F]FB-CHO in a CPCU

Materials and Methods

Steps of [18F]FB-CHO

The 13th International Workshop on Target and Target Chemistry, December 2009

Unidad PET, Facultad de Medicina, UNAM, Mexico, D.F.

V.M Lara-Camacho, J.C. Manrique-Arias, E. Zamora-Romo, A. Zarate-Morales, V.M Lara-Camacho, J.C. Manrique-Arias,

for peptide labeling.

4-Formyl-N,N-trimethylammonium triflate precursor

Precursor

Nucleophilic reaction

[18F]-FB-CHO + CF3SO3

H

H

H

H

for peptide labeling.

CTI/Siemens Chemistry Process Control Unit (CPCU)
After elution from C18 with 0.5 ml of EtOH, the \([18F]FB-CHO\) was incubated with peptide conjugated. \[18F\]FB-CHO HYNIC R

Gradient - HPLC in a semi-prep C18 reverse phase column.

Results

MicroPET Focus 120

Peptide-Radiolabeling

Receptors Blocking Method

Targeting Tumor Expression of α₃β₃ Integrin with \([18F]FB-CH=N-HYNIC-RGD\)

Glioma xenograft in nude mice

Blocks 50µL 100µg in 1ml of 0.9% NaCl

Control

Blocked

\([18F]FB-CH=N-HYNIC-RGD\)

\([18F]FB-CH=N-HYNIC-RGD\)"
• The synthesis of 18FFB-CHO was successfully achieved in the CPCU.

• 18FFB-CHO was used for peptide labeling.

• The synthesis of 18FFB-CHO represents a second chance for the CPCU module in the preparation of other tracers.

• 18F[Fluorothymidine] is another tracer synthesized in the CPCU with a RCY > 30%, with 10 mg of BOC-precursor.
A comparison of Nb, Pt, Ta, Ti, Zr, and ZrO₂-sputtered Havar foils for the high-power cyclotron production of reactive [¹⁸F]F⁻

K. Gagnon, J.S. Wilson, and S.A. McQuarrie

Edmonton PET Centre, Cross Cancer Institute, University of Alberta, Edmonton, AB, CANADA

Introduction: Previous studies performed at the Edmonton PET Centre (EPC) have demonstrated that the use of Nb-sputtered Havar foils during [¹⁸F]F⁻ production via proton irradiation of [¹⁸O]H₂O decreases the radionuclidic and chemical impurities within the irradiated water¹. Given the improved [¹⁸F]F⁻ reactivity, increased [¹⁸F]FDG yield consistency, and decreased need for target rebuilding noted for Nb-sputtered Havar, these sputtered foils were adopted as the standard practice for [¹⁸F]F⁻ production at our facility in mid-2006. Following prolonged use of the Nb-sputtered foils however, degradation of the niobium film has been noted, with Havar impurities, FDG yield consistency and [¹⁸F]F⁻ reactivity returning over time to levels comparable with that of non-sputtered Havar.

Aim: The goal of this current work was to find a film that demonstrates increased longevity with regards to [¹⁸F]F⁻ reactivity when compared with niobium.

Methods: All film sputtering (Nb, Pt, Ta, Ti, Zr, and ZrO₂) was performed on 30 µm Havar at the University of Alberta’s NanoFab micro and nanofabrication research facility (Edmonton, AB). Film thicknesses were verified through profilometer measurements and SEM micrographs.

To test the Havar impurity reducing properties of the sputtered foils (thicknesses = 250–450 nm), test irradiations were performed using 2.8–3.0 mL Barnstead 18MΩ-cm natH₂O. Multiple (N = 9–15) test irradiations (of 1,000 µAmin and 5,000 µAmin) were performed on all foils at 17.5 MeV using the EPC’s TR 19/9 cyclotron to achieve total integrated currents of approximately 20,000–30,000 µAmin (weighted average currents of 69–81 µA). To ensure consistent irradiation conditions and complete sample transfer, both the ¹³N saturated yield and the recovered natH₂O mass were measured following all irradiations. Following ¹³N decay, all water samples were assayed for radionuclidic impurities using an HPGe detector (dead time < 5%). Chemical analysis for extractable metals was also performed for a subset of the water samples via inductively coupled plasma mass spectroscopy (ICP-MS) at the Exova Lab (Edmonton, AB).

As tantalum was the only film which demonstrated Havar impurity-reducing properties comparable to niobium, the foil above was further irradiated to a total integrated current of 80,000 µAmin. Given the excellent continued performance noted via radionuclidic contaminant analysis, our next step was to install a new Ta-sputtered foil on our main production target for the purpose of testing both the [¹⁸F]F⁻ reactivity and evaluating the tantalum film’s longevity performance. Prior to installation of the Ta-sputtered Havar on our production target, a series of five 1,000 µAmin (65 µA) natH₂O test irradiations were performed on the existing (previously irradiated to ~980,000 µAmin) 400 nm Nb-sputtered Havar foil to establish a baseline to which the tantalum results could be compared. A new 900 nm Ta-sputtered Havar foil was installed and the produced [¹⁸F]F⁻ used for routine production of [¹⁸F]FDG, [¹⁸F]FAZA, and [¹⁸F]FLT. Periodically (every 75,000–100,000 µAmin), a series of four test irradiations (1 @ 5,000 µAmin followed by 3 @ 1,000 µAmin) were carried out at 65 µA on natH₂O. All test irradiations were assayed for radionuclidic impurities.

Results: The following figure summarizes the Havar-associated radionuclidic impurities measured for the initial (approx. 20,000–30,000 µAmin) test irradiations, and the Ta-sputtered sputtered foil to 80,000 µAmin ("Ta (80k)"). With a clear dependence noted on the integrated current, the reported values are given as the average and standard deviation of the end-of-bombardment (EOB) radioactivity normalized to the integrated current for each irradiation. It is important to note that since the radionuclidic impurities showed a marked decrease for the first few irradiations on all new foils before reaching a relatively constant value, the first three 1,000 µAmin irradiations were omitted when producing the figure below. Evaluation of this figure reveals that tantalum is the only film which demonstrates radionuclidic impurity reducing characteristics similar to that of niobium. Based on strong correlations observed between the radionuclidic and ICP-MS measurements, we have concluded that trends noted in the radionuclidic impurities are reflective of trends in the ionic impurities.

Table 1 summarizes the radionuclidic impurities (in units of mBq/µAmin at EOB) measured for the previously employed Nb-sputtered foil and the Ta-sputtered foil used on the production target. All values are reported as the average and standard deviation of the normalized activities. The integrated current (C) is reported as the total current on target prior to the test irradiations.

Table 2 summarizes the [18F]FDG decay-corrected (DC) yields and end-of-synthesis (EOS) activities (A) obtained on the EPC’s GE TracerLab MX synthesis unit for all syntheses performed up to the reported integrated current. A comparison of the average [18F]FDG DC yield (for comparable total integrated currents) demonstrates a 6.4 percent improvement (one-tailed t-test, p = 0.0025) with the Ta-sputtered foil when compared with the previously employed Nb-sputtered foil.

Conclusions: Compared with our current Nb-sputtered Havar standard, the Ta-sputtered Havar demonstrates a significant reduction in the Havar-associated impurities following prolonged use up to ~1,000,000 µAmin. In addition to decreased Havar-associated impurities, we have also noted an improvement in the [18F]FDG yields and yield consistency. Studies are currently underway to further evaluate this Ta-sputtered foil to a total integrated current of ~1,500,000 µAmin.

Acknowledgements: This project was supported by the University of Alberta’s MicroSystems Technology Research Initiative (MSTRI). The authors would like to thank Dr. Chris Backhouse and Ms. Eva Sant for their helpful discussions in film selection, and for performing the film sputtering.
Ionic contaminants in irradiated $\text{[}^{18}\text{O}\text{]}\text{H}_2\text{O}$ have been attributed to decreases in the reactivity of $\text{[}^{18}\text{F}\text{]}\text{F}^–$.

Following prolonged irradiation, the Nb film oxidizes over time.

Perform ICP-MS (small sample subset)

Measure conductivity of irradiated water (non-Havar)

Assess radiochemical impurities (both Havar and $\text{[}^{18}\text{O}\text{]}\text{H}_2\text{O}$ irradiations)

Goal: Investigate alternative sputtering materials over time.

Yields and yield consistency

Chemical impurities and showed improved $\text{[}^{18}\text{F}\text{]}\text{FDG}$

Nb-sputtered Havar reduced the radiochemical and

Introduce at the Edmonton PET Centre

Early 2006, Nb-sputtered Havar foils were first

attributed to decreases in the reactivity of $\text{[}^{18}\text{F}\text{]}\text{F}^–$.

Anion contaminants in irradiated $\text{[}^{18}\text{O}\text{]}\text{H}_2\text{O}$ have been

Challenge

Irradiations performed

Assess $\text{[}^{18}\text{F}\text{]}\text{FDG}$ yield using Tracerlab MX $\text{[}^{18}\text{O}\text{]}\text{H}_2\text{O}$ irradiations To:

Perform ICP-MS (small sample subset)

Measure conductivity of irradiated water

Assess radiochemical impurities (both Havar and

$\text{[}^{18}\text{O}\text{]}\text{H}_2\text{O}$ irradiations To:

Assess $\text{[}^{18}\text{F}\text{]}\text{FDG}$ yield using Tracerlab MX $\text{[}^{18}\text{O}\text{]}\text{H}_2\text{O}$ irradiations To:
Results of initial irradiations

Periodically measure the radionuclide contaminants by
Use \([18F]\) for clinical \([18F]FDG, [18F]FAZA, and [18F]FLT
Setup Ta-sputtered Havar on main production target

But first...

Tantalum – a promising candidate?

<table>
<thead>
<tr>
<th>Film Thickness</th>
<th>N</th>
<th>Total Activity [MBq/μA]</th>
<th>Current Yield</th>
<th>Film Thickness</th>
<th>N</th>
<th>Total Activity [MBq/μA]</th>
<th>Current Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 (\text{nm})</td>
<td>7</td>
<td>1000</td>
<td>13</td>
<td>9</td>
<td>375</td>
<td>375</td>
<td>15</td>
</tr>
<tr>
<td>3 (\text{nm})</td>
<td>7</td>
<td>1000</td>
<td>13</td>
<td>9</td>
<td>305</td>
<td>305</td>
<td>13</td>
</tr>
<tr>
<td>4 (\text{nm})</td>
<td>9</td>
<td>209</td>
<td>6</td>
<td>0</td>
<td>240</td>
<td>240</td>
<td>11</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>2800</td>
<td>0</td>
<td>0</td>
<td>400</td>
<td>400</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>2800</td>
<td>0</td>
<td>0</td>
<td>400</td>
<td>400</td>
<td>12</td>
</tr>
</tbody>
</table>

Initial test irradiations on natH\(_2\)O

Care taken to ensure consistent sample handling:
Summary

- Improved [18F]FDC yield consistency
- Improved [18F]FDC yields
- Reduced impurities

Ta-sputtered Havar was shown to outperform Nb-

- Ti, Zr, ZrO and Pt, Ti, Zr and ZrO were not viable sputtering materials

Trends for Ta-Havar

When using Ta-as Nb [18F]FDC yield for comparable total integrated currents statistically significant (p = 0.0025) improvement in the

<table>
<thead>
<tr>
<th></th>
<th>Nb</th>
<th>Co-58</th>
<th>Co-56</th>
<th>Mn-52</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min EOS Activity [GBq]</td>
<td>69</td>
<td>111</td>
<td>171</td>
<td>143</td>
</tr>
<tr>
<td>Max EOS Activity [GBq]</td>
<td>184</td>
<td>123</td>
<td>139</td>
<td>143</td>
</tr>
<tr>
<td>Mean EOS Activity [GBq]</td>
<td>109</td>
<td>139</td>
<td>195</td>
<td>195</td>
</tr>
<tr>
<td>Min decay corrected yield [%]</td>
<td>60.9</td>
<td>61.7</td>
<td>67.3</td>
<td>61.1</td>
</tr>
<tr>
<td>Max decay corrected yield [%]</td>
<td>68.6</td>
<td>63.3</td>
<td>67.3</td>
<td>61.7</td>
</tr>
<tr>
<td>Mean decay corrected yield [%]</td>
<td>65.9</td>
<td>65.0</td>
<td>65.5</td>
<td>62.1</td>
</tr>
<tr>
<td>N</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
</tbody>
</table>

FDC yield comparison

- Nb vs. Ta impurities (mBq/μAmin)
A simple calibration-independent method for measuring the beam energy of a cyclotron

K. Gagnon¹, M. Jensen², H. Thisgaard²+, J. Publicover³++, S. Lapi³+++, S.A. McQuarrie¹ and T.J. Ruth³

¹Edmonton PET Centre, Cross Cancer Institute, University of Alberta, Edmonton, AB, CANADA
²Hevesy Laboratory, Risoe-DTU, Technical University of Denmark, Roskilde, DENMARK
³TRIUMF, Vancouver, BC, CANADA
+Presently at PET and Cyclotron Unit, Odense University Hospital, Odense, DENMARK
++Presently at University Health Network, Toronto, ON, CANADA
+++Presently at Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA

Introduction: When used for medical radionuclide production, both new and old cyclotrons need to have their beam energy checked periodically. This is not only part of good manufacturing practice and quality assurance but is also necessary for optimising target yields and minimising the radiation dose overhead of radionuclide production. As the production targets for most medical cyclotron configurations sit more or less straight on the vacuum tank with no room for beam diagnostics, an off-line approach for evaluating the beam energy of a medical cyclotron is required. Although beam monitor reactions have been extensively published, evaluated, and used for many years, the reliable use of these methods, at present, requires access to and knowledge of a well calibrated (typically HPGe) detector system.

Aim: Develop a simple method for evaluating the beam energy of a cyclotron to an accuracy of a few tenths of an MeV without using complex data analysis methods or sophisticated equipment.

Theory: To overcome the need for gamma spectroscopy and high quality efficiency calibrations, this study suggests the irradiation of two thin monitor foils of the same material interspaced by a thick energy degrader. By carefully selecting both the monitor foil material and degrader thickness, the differential activation of the two monitor foils may be used to determine the beam energy. The primary advantage to this technique is that by examining the ratio of two identical isotopes produced in the two monitor foils (e.g. 63Zn/63Zn) as opposed to, for example, the 62Zn/63Zn ratio resulting from proton irradiation of a single copper monitor foil, all detector efficiency calibration requirements are eliminated. The energy can thus be monitored by experimentally measuring the activity ratio and comparing this value with activity ratios predicted using published cross section data (σ) as given by:

$$\frac{A_{\text{Foil1}}}{A_{\text{Foil2}}} = \frac{\sigma_{\text{Foil1}}}{\sigma_{\text{Foil2}}}.$$

A sample plot of the predicted 63Zn activity ratio is given [right] for a 350 µm aluminum degrader, 25 µm copper monitor foils, and a 25 µm aluminum vacuum foil.

Methods: The proposed strategy was evaluated using 25 µm natCu monitor foils, a 25 µm aluminum window, and an aluminum energy degrader for protons in the 11–19 MeV range on the Edmonton PET Centre’s (EPC) TR 19/9 cyclotron and the tandem Van de Graaff at Brookhaven National Lab (BNL). As the sensitivity of this technique depends upon the degrader thickness employed, this technique assumes prior knowledge of the beam energy (within ~ 1 MeV). The
degrader thicknesses employed in this study are given in the table [top right]. For the blind BNL measurements, the energy range was specified so that an appropriate degrader thickness could be selected.

Prior to irradiation, the predicted activity ratios were determined using the IAEA recommended $^{nat}\text{Cu}(p,x)^{63}\text{Zn}$ cross sections (www-nds.ipen.br/medical/) and simulations performed in the TRIM module of SRIM (www.srim.org), v.2008.04. From these predicted ratios, we present in the above table the coefficients (A, B, and C) necessary for determining the proton energy incident on the aluminium vacuum window, $E(\text{MeV}) = Ar^2 + Br + C$, where r is the experimental ^{63}Zn activity ratio measured between the front and back copper foil. In obtaining these coefficients we have assumed the presence of a 25 µm Al vacuum window, the Al degrader, and two 25 µm Cu monitor foils.

Following irradiation, the ^{63}Zn activity ratios were measured using Capintec™ CRC-15PET (EPC) and CRC-15W (BNL) dose calibrators set to an arbitrary calibration setting of 100. As ^{62}Cu and ^{62}Zn production is also possible during irradiation of ^{nat}Cu, activity measurements were made at: (i) a single time-point roughly 1-hour post-EOB to ensure minimal ^{62}Cu contribution, and (ii) multiple time-points from 20 minutes to 3 hours post-EOB where the ^{63}Zn activity reading contribution was determined through exponential curve fitting to account for both the ^{62}Cu and ^{62}Zn contributions.

Results: The table [bottom right] summarizes the incident energies evaluated using the ^{63}Zn activity ratio measured using either the single 1-hour post-EOB time-point or exponential stripping of the ^{63}Zn activity contribution via curve-fitting. All energies are reported as the energy incident on the vacuum foil and were calculated using the coefficients provided above. The excellent agreement noted with the nominal energy for the 1-hr measurements up to 17 MeV suggests that half-life discrimination is not necessary below this energy.

Conclusions: The new, simple, calibration-independent method proposed for measuring the beam energy of a cyclotron was found to provide an accurate determination of proton energies in the 11–19 MeV range without the need for sophisticated equipment. To facilitate the adoption of this technique into routine evaluation of the cyclotron beam energy, we have included a look-up table of recommended aluminum degrader thicknesses as well as a list of the corresponding curve fit data for evaluation of the proton energy using the measured ^{63}Zn activity ratio.

Acknowledgements: The authors would like to thank Drs. Chuck Carlson, Michael Schueller, and David Schlyer for helpful discussions and organizing the experiments at BNL. This work was supported through a grant from NSERC.
Proposed Method:

1. Irradiate two monitor foils interspaced by an energy degrader (e.g., thin Cu films). Compare the activation of the same isotope for both foils.

2. Thin Cu foil

Proposed Method: A simple calibration-independent method for measuring the beam energy of a cyclotron.
Proposed Method:

Example given for 875 μm Al degrader and two 25 μm Cu foils

Predicting the ratio:

\[
\frac{\rho A}{\rho B} = \frac{\nu}{\nu} \\
\text{Calibration factors will cancel!}
\]

Efficiency calibration independent!

Implementation

Step 1 - Before experiment:

- Produce graph of energy vs. Zn activity ratio.
- Note: One degrader isn't optimal for all energies.

Example above:

- 875 μm Al = 350 μm Al
- 25 μm Cu = 25 μm Cu
- Window = 3.7 to 3.7
- Note: Due to calibrator plateau, energy is specified as a range.

Since we are examining the ratio of the same isotope,

Detector efficiency calibration factors will cancel!

Consequently:

\[
\frac{\rho A}{\rho B} = \frac{(\eta_\gamma - 1)(\rho A)}{(\eta_\gamma - 1)(\rho B)} = \frac{(\eta_\gamma - 1)(\rho A)}{(\eta_\gamma - 1)(\rho B)} = \frac{\nu}{\nu}
\]

Consequentl:y:

- Can use arbitrary calibration factor
- Simplifies use of a dose calibrator
- Can use arbitrary calibration factor

Efficiency calibration independent!

Since we are examining the ratio of the same isotope,

Detector efficiency calibration factors will cancel!

Consequently:

\[
\frac{\rho A}{\rho B} = \frac{(\eta_\gamma - 1)(\rho A)}{(\eta_\gamma - 1)(\rho B)} = \frac{(\eta_\gamma - 1)(\rho A)}{(\eta_\gamma - 1)(\rho B)} = \frac{\nu}{\nu}
\]

Consequentl:y:

- Can use arbitrary calibration factor
- Simplifies use of a dose calibrator
- Can use arbitrary calibration factor

Efficiency calibration independent!

Since we are examining the ratio of the same isotope,

Detector efficiency calibration factors will cancel!

Consequently:

\[
\frac{\rho A}{\rho B} = \frac{(\eta_\gamma - 1)(\rho A)}{(\eta_\gamma - 1)(\rho B)} = \frac{(\eta_\gamma - 1)(\rho A)}{(\eta_\gamma - 1)(\rho B)} = \frac{\nu}{\nu}
\]

Consequentl:y:

- Can use arbitrary calibration factor
- Simplifies use of a dose calibrator
- Can use arbitrary calibration factor

Efficiency calibration independent!

Since we are examining the ratio of the same isotope,

Detector efficiency calibration factors will cancel!

Consequently:

\[
\frac{\rho A}{\rho B} = \frac{(\eta_\gamma - 1)(\rho A)}{(\eta_\gamma - 1)(\rho B)} = \frac{(\eta_\gamma - 1)(\rho A)}{(\eta_\gamma - 1)(\rho B)} = \frac{\nu}{\nu}
\]

Consequentl:y:

- Can use arbitrary calibration factor
- Simplifies use of a dose calibrator
- Can use arbitrary calibration factor

Efficiency calibration independent!

Since we are examining the ratio of the same isotope,

Detector efficiency calibration factors will cancel!

Consequently:

\[
\frac{\rho A}{\rho B} = \frac{(\eta_\gamma - 1)(\rho A)}{(\eta_\gamma - 1)(\rho B)} = \frac{(\eta_\gamma - 1)(\rho A)}{(\eta_\gamma - 1)(\rho B)} = \frac{\nu}{\nu}
\]

Consequentl:y:

- Can use arbitrary calibration factor
- Simplifies use of a dose calibrator
- Can use arbitrary calibration factor

Efficiency calibration independent!

Since we are examining the ratio of the same isotope,

Detector efficiency calibration factors will cancel!

Consequently:

\[
\frac{\rho A}{\rho B} = \frac{(\eta_\gamma - 1)(\rho A)}{(\eta_\gamma - 1)(\rho B)} = \frac{(\eta_\gamma - 1)(\rho A)}{(\eta_\gamma - 1)(\rho B)} = \frac{\nu}{\nu}
\]

Consequentl:y:

- Can use arbitrary calibration factor
- Simplifies use of a dose calibrator
- Can use arbitrary calibration factor

Efficiency calibration independent!

Since we are examining the ratio of the same isotope,

Detector efficiency calibration factors will cancel!

Consequently:

\[
\frac{\rho A}{\rho B} = \frac{(\eta_\gamma - 1)(\rho A)}{(\eta_\gamma - 1)(\rho B)} = \frac{(\eta_\gamma - 1)(\rho A)}{(\eta_\gamma - 1)(\rho B)} = \frac{\nu}{\nu}
\]

Consequentl:y:

- Can use arbitrary calibration factor
- Simplifies use of a dose calibrator
- Can use arbitrary calibration factor

Efficiency calibration independent!

Since we are examining the ratio of the same isotope,

Detector efficiency calibration factors will cancel!

Consequently:

\[
\frac{\rho A}{\rho B} = \frac{(\eta_\gamma - 1)(\rho A)}{(\eta_\gamma - 1)(\rho B)} = \frac{(\eta_\gamma - 1)(\rho A)}{(\eta_\gamma - 1)(\rho B)} = \frac{\nu}{\nu}
\]

Consequentl:y:

- Can use arbitrary calibration factor
- Simplifies use of a dose calibrator
- Can use arbitrary calibration factor

Efficiency calibration independent!

Since we are examining the ratio of the same isotope,

Detector efficiency calibration factors will cancel!

Consequently:

\[
\frac{\rho A}{\rho B} = \frac{(\eta_\gamma - 1)(\rho A)}{(\eta_\gamma - 1)(\rho B)} = \frac{(\eta_\gamma - 1)(\rho A)}{(\eta_\gamma - 1)(\rho B)} = \frac{\nu}{\nu}
\]

Consequentl:y:

- Can use arbitrary calibration factor
- Simplifies use of a dose calibrator
- Can use arbitrary calibration factor

Efficiency calibration independent!

Since we are examining the ratio of the same isotope,

Detector efficiency calibration factors will cancel!

Consequently:

\[
\frac{\rho A}{\rho B} = \frac{(\eta_\gamma - 1)(\rho A)}{(\eta_\gamma - 1)(\rho B)} = \frac{(\eta_\gamma - 1)(\rho A)}{(\eta_\gamma - 1)(\rho B)} = \frac{\nu}{\nu}
\]

Consequentl:y:

- Can use arbitrary calibration factor
- Simplifies use of a dose calibrator
- Can use arbitrary calibration factor

Efficiency calibration independent!

Since we are examining the ratio of the same isotope,

Detector efficiency calibration factors will cancel!

Consequently:

\[
\frac{\rho A}{\rho B} = \frac{(\eta_\gamma - 1)(\rho A)}{(\eta_\gamma - 1)(\rho B)} = \frac{(\eta_\gamma - 1)(\rho A)}{(\eta_\gamma - 1)(\rho B)} = \frac{\nu}{\nu}
\]

Consequentl:y:

- Can use arbitrary calibration factor
- Simplifies use of a dose calibrator
- Can use arbitrary calibration factor

Efficiency calibration independent!
Tandem Van de Graaff at BNL:

<table>
<thead>
<tr>
<th>Incident Energy</th>
<th>Measured Energy</th>
<th>Maximum Thickness Difference from Nominal</th>
<th>Nominal Thickness</th>
<th>Measured Thickness</th>
<th>Maximum Δ Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.00</td>
<td>10.93</td>
<td>0.07</td>
<td>10.92</td>
<td>10.98</td>
<td>0.07</td>
</tr>
<tr>
<td>13.50</td>
<td>13.47</td>
<td>0.03</td>
<td>13.49</td>
<td>13.51</td>
<td>0.03</td>
</tr>
<tr>
<td>16.00</td>
<td>15.92</td>
<td>0.08</td>
<td>15.94</td>
<td>16.00</td>
<td>0.08</td>
</tr>
<tr>
<td>18.00</td>
<td>18.17*</td>
<td>0.18</td>
<td>18.18*</td>
<td>18.35</td>
<td>0.18</td>
</tr>
<tr>
<td>14.40</td>
<td>14.32</td>
<td>0.08</td>
<td>14.36</td>
<td>14.50</td>
<td>0.14</td>
</tr>
<tr>
<td>14.37</td>
<td>14.30</td>
<td>0.07</td>
<td>14.31</td>
<td>14.44</td>
<td>0.13</td>
</tr>
<tr>
<td>14.43</td>
<td>14.33</td>
<td>0.10</td>
<td>14.37</td>
<td>14.51</td>
<td>0.14</td>
</tr>
<tr>
<td>14.43</td>
<td>14.31</td>
<td>0.12</td>
<td>14.40</td>
<td>14.54</td>
<td>0.14</td>
</tr>
<tr>
<td>14.43</td>
<td>14.31</td>
<td>0.12</td>
<td>14.40</td>
<td>14.54</td>
<td>0.14</td>
</tr>
<tr>
<td>14.43</td>
<td>14.31</td>
<td>0.12</td>
<td>14.40</td>
<td>14.54</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Reproducibility at EPC:

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>14.6</td>
<td>14.43</td>
<td>0.5</td>
<td>14.43</td>
<td>0.5</td>
<td>14.43</td>
<td>0.5</td>
<td>14.43</td>
<td>0.5</td>
<td>14.43</td>
<td>0.5</td>
<td>14.43</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.6</td>
<td>14.43</td>
<td>0.5</td>
<td>14.43</td>
<td>0.5</td>
<td>14.43</td>
<td>0.5</td>
<td>14.43</td>
<td>0.5</td>
<td>14.43</td>
<td>0.5</td>
<td>14.43</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.6</td>
<td>14.43</td>
<td>0.5</td>
<td>14.43</td>
<td>0.5</td>
<td>14.43</td>
<td>0.5</td>
<td>14.43</td>
<td>0.5</td>
<td>14.43</td>
<td>0.5</td>
<td>14.43</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.6</td>
<td>14.43</td>
<td>0.5</td>
<td>14.43</td>
<td>0.5</td>
<td>14.43</td>
<td>0.5</td>
<td>14.43</td>
<td>0.5</td>
<td>14.43</td>
<td>0.5</td>
<td>14.43</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competing Reactions?

- Only true if Zn is the only contribution to the reading.
- Said that: $\frac{\text{Rd}}{\text{Rd}} = \frac{\text{V}}{\text{V}}$
- Said that:
Evaluated a new method for measuring E_p

- Method is independent of detector calibration.
- Method is insensitive to small variations in nominal foil thickness and shows good reproducibility and agreement with the nominal energies.

Future work: Other energy ranges? Deuterons?
Thermal modelling of a solid cyclotron target using finite element analysis: An experimental validation

K. Gagnon, J.S. Wilson, and S.A. McQuarrie

Edmonton PET Centre, Cross Cancer Institute, University of Alberta, Edmonton, AB, CANADA

Introduction: Although radioisotope production yields may be increased by elevating the irradiation current, the maximum allowable irradiation current is often dictated by the thermal performance of a target. This limitation is commonly observed for solid targets as these materials often demonstrate poor thermal conductivities and low melting points. As we are interested in improving the power rating of solid targets by optimizing the shape and location of the cooling channels, we have investigated the use of finite element analysis to model both heat transfer and turbulent flow. Before cooling optimization can be performed however, we needed to first validate our initial model. Such an experimental validation is the focus of this work.

Methods: For the purpose of validating the finite element model, we have designed a target plate with a simplistic geometry. In order to perform on-line real-time temperature measurements, this target plate is equipped with a thermocouple that extends to the centre of the plate [upper right]. Target plates of both copper and zirconium were constructed. These materials were selected for their markedly different thermal properties: copper is an excellent thermal conductor with a thermal conductivity, \(k \), of 401 Wm\(^{-1}\)K\(^{-1}\) (@ 300 K), while zirconium is a relatively poor thermal conductor with \(k \) equal to 22.6 Wm\(^{-1}\)K\(^{-1}\) (@ 300 K). The target plate and thermocouple were mounted into the water/helium cooled target assembly [lower right]. Irradiations were performed with proton currents up to 80 µA (17.5 MeV) for the copper plate and 50 µA (15.5 MeV) for zirconium. Both the beam tuning\(^1\) and target positioning were optimized to maximize the temperature readout. In calculating the power on the target plate, we have assumed a 10 percent beam loss to the target nosepiece/helium cooling chamber. Several low current measurements were also obtained without helium cooling as this source of cooling is not yet incorporated into the finite element model.

The 3D heat transfer and turbulent flow of the cooling water were modelled using the COMSOL Multiphysics\(^\circledR\) v. 3.5a. steady-state general heat transfer and k-\(\varepsilon \) turbulence models, respectively. Experimental input parameters to the model include the cooling water temperature, cooling water flow rate, target plate/cooling water channel geometry, and a sample proton beam profile obtained using radiochromic film\(^2\). The temperature dependent material properties (i.e. thermal conductivity, density, heat capacity, etc.) were defined using COMSOL’s built-in material library.

One of the primary challenges in developing the model was to accurately define the convective heat transfer at the water/plate boundary. Although COMSOL has built-in heat transfer coefficients for various geometrical configurations, at present these coefficients are limited exclusively to air cooling applications. To this end, three user-defined strategies were employed for evaluating the convective heat transfer coefficient at the water/plate interface.

\(^1\) See WTTC13 abstract: J.S. Wilson et al., A Simple Target Modification to Allow for 3-D Beam Tuning

The cooling geometry under consideration consists of a single central-inlet water-cooling channel and two water-outlets, all of which are perpendicular to the target plate [upper right]. Although the Dittus-Boelter and Sieder-Tate heat transfer formalisms are used to describe turbulent forced convection within long straight pipes (which is not representative of our geometric configuration), these two strategies were nevertheless investigated as both formalisms have been previously implemented and recommended for targetry applications\(^3,4,5\). The third model employed for evaluating the heat transfer coefficient (selected for its geometric similarity to our configuration) was a method characterized by Chang et al. for turbulent submerged liquid jets\(^6\). In all three strategies the Reynolds number was calculated from the temperature dependent water properties, the hydraulic diameter of the inlet water-cooling channel and the inlet water velocity, while the Prandtl number was calculated from the temperature dependent water properties. COMSOL’s non-linear, direct (UMFPACK) parametric segregated solver was employed to evaluate beam powers ranging from 50–1300 W.

Results: Three models were employed for characterizing the heat transfer at the water/plate boundary. Although all three strategies give rise to heat transfer coefficients whose magnitude increases as the cooling-water flow rate increases, when comparing the model predictions with experimental data [graphs, right], the results of this work suggest that the heat transfer in our geometric configuration is best described by the method proposed by Chang et al\(^6\). The poor performance of the Dittus-Boelter and Sieder-Tate correlations has been attributed to the underlying geometric assumptions of these models.

Conclusion: The experimental measurements performed in this study have allowed us to select a convective heat transfer model which is capable of accurately predicting the target plate temperature for materials with widely varying thermal properties. Future finite element investigations will include the introduction of helium cooling and the optimization of the cooling channel geometry for the purpose of improving the solid target power rating.

Acknowledgements: The authors would like to thank Dr. Avila-Rodriguez for early development of the 3D target model. This project has been made possible through a grant from the Alberta Health Services and the Alberta Cancer Foundation.

\(^3\) Pavan et al., J. Radioanal. Nucl. Chem., 2003, 257: 203
\(^5\) IAEA Technical Reports Series no. 465, Vienna, 2008
\(^6\) Chang et al., Int. J. Heat Mass Transfer, 1995, 38: 833
Although increased beam currents are desired, production is often limited by the thermal performance of the target. Finite element analyses can be employed to model heat transfer and turbulent flow within the target. Efficient heat transfer is needed to mitigate thermal performance limitations.

Motivation: How to define the convective heat transfer coefficient?

Difficulties:

- Need to define the convective heat transfer coefficient.
- Difficulty choosing the appropriate correlation for the heat transfer coefficient.
- Need to account for non-uniform distributions of heat flux, mass flow rate, and fluid properties.

Finite element analyses can be employed to model heat transfer and turbulent flow within the target. Efficient heat transfer is needed to mitigate thermal performance limitations.

Goal of this work: Experimentally validate a finite element model of the target and cooling flow using COMSOL Multiphysics (finite element analysis).

Scaling as a function of depth (to account for non-uniform distributions of heat flux, mass flow rate, and fluid properties).

- Proton current
- Convective heat transfer coefficient
- Cooling flow/temperature
- Target materials
- Geometry/plume/cooling

Input parameters to model include:

- Geometry/plume/cooling
- Proton current
- Convective heat transfer coefficient
- Cooling flow/temperature
- Target materials
- Experimental beam profile and scaling as a function of depth (to account for non-uniform distributions of heat flux, mass flow rate, and fluid properties).

Heat transfer coefficient

Desire to use models to improve target thermal performance.

Dedicated mass flow rate to model heat transfer and turbulent flow within the target.
Experimental validation

Compared experimental measurements with the three strategies for defining the heat transfer coefficient at the water/plate interface.

<table>
<thead>
<tr>
<th>Material</th>
<th>(\Delta T_{\text{W}}) (°C)</th>
<th>(\Delta T_{\text{P}}) (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper</td>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td>Zirconium</td>
<td>135</td>
<td>30</td>
</tr>
<tr>
<td>Nickel</td>
<td>120</td>
<td>40</td>
</tr>
<tr>
<td>Platinum</td>
<td>100</td>
<td>60</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Tantalum</td>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>Niobium</td>
<td>40</td>
<td>120</td>
</tr>
<tr>
<td>Mo on Cu</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>Mo on Ta</td>
<td>10</td>
<td>140</td>
</tr>
</tbody>
</table>

Examined the heat transfer coefficient at the water/plate interface.
Areas for optimization?

- Target plate material
- Water flow rate
- Input water temperature
- Cooling channel/fin geometry
- Helium cooling geometry
- Beam profile & scaling with depth

Summary

- Experimental temperature measurements (on Cu and Zr) were compared with model predictions.
- The experimental measurements have led to the selection of the heat transfer coefficient described by Chang et al.
- Simulation and finite element model can improve cooling.
- Will water get out symmetrically?
- Simulation starts on influx.
- Simulation starts on influx.
- Model allows us to explore methods for improving the thermal performance of the target.

WTTC XIII – Presentation Discussions
RDS-111 to Eclipse HP Upgrading with Improvement in 18F Production

A. Zarate-Morales, A. Flores-Moreno, J.C. Manrique-Arias, E. Zamora-Romo, M.A. Avila-Rodriguez

Unidad PET/CT-Ciclotrón, Facultad de Medicina, Universidad Nacional Autónoma de México, México, D.F., México

The first PET Center in Mexico was inaugurated in 2001 at the School of Medicine of the National Autonomous University of Mexico (UNAM). In that time a self-shielded CTI RDS-111 cyclotron with targetry for the production of the main sequence CNOF radionuclides was installed. Nowadays, there are 3 compact cyclotrons in the country and 11 PET/CT cameras in different hospitals. UNAM’s cyclotron produces FDG for 6 of the 8 PET scanners located in hospitals and clinics of Mexico City, and more hospitals are planning to install more PET/CTs. To satisfy this increased demand of FDG, one of the beam lines of our RDS-111 cyclotron was recently upgraded to an Eclipse HP configuration. In this way, now we have a hybrid cyclotron with BL1 as Eclipse HP and BL2 as RDS-111.

The main features of the upgrade include a new ion source that increased the beam current from 40 to 60 µA, a new four-position target carrousel capable to handle 60 µA, high power gridded-targets designed to be operated under high pressure conditions (>1000 psi), target body of refractory material (Ta) for the production of 18F, and installation of high vacuum butterfly valves to the diffusion pumps. In addition, the Eclipse HP beam line has no vacuum window, and therefore no helium recirculation cooling system. With this upgrade we practically double the yield of 18F with the same time of bombardment. Table 1 shows the yield of the different radionuclides in both versions while Table 2 summarizes our experience regarding 18F production.

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>RDS-111 (40 µA)</th>
<th>Eclipse HP (60 µA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18F</td>
<td>1187 mCi (1 h, 1200 µL H$_2^{18}$O)</td>
<td>2300 mCi (1 h, 2400 µL H$_2^{18}$O)</td>
</tr>
<tr>
<td>15N</td>
<td>146 mCi (10 min)</td>
<td>213 mCi (10 min)</td>
</tr>
<tr>
<td>11C</td>
<td>1547 mCi (40 min)</td>
<td>1902 mCi (40 min)</td>
</tr>
</tbody>
</table>

The benefits of the upgraded BL were immediate for the production of 18F. The high volume Ta target produces more activity of highly reactive n.c.a. [18F]fluoride compared with the traditional Ag target of the RDS-111 configuration. We are still producing 18F in both targets using the Ta target for the heavy morning-production run, and the Ag target for the second and less heavy production run at midday. Other benefits of the upgrade include a faster (0.5 h vs. 4 h) recovery of the vacuum in case of the rupture of a window, and lengthened the maintenance intervals of the 18F target decreasing the radiation exposition to the cyclotron staff. Our plans for this year are to upgrade the second BL to the Eclipse HP configuration with the option for the irradiation of solid targets.
The first PET Center in Mexico was inaugurated in 2001 at the School of Medicine of the National Autonomous University of Mexico (UNAM). In that time a self-shielded CTI RDS-111 cyclotron was installed. Nowadays there are 3 compact cyclotrons in the country and one TRACE (GE) and 11 PET/CT cameras in different hospitals. UNAM’s cyclotron produces FDG for 6 of the 8 PET scanners located in hospitals and clinics of Mexico City, and more hospitals are planning to install more PET/CTs.

To satisfy this increased demand of FDG, one of the beam lines of our RDS-111 cyclotron was recently upgraded. In 2005 our facility provided 10 unidoses daily, today produce 35 unidoses per day on average. In 2006 increased the unidoses and was necessary to make two or three runs per day. Some reasons for upgrade the RDS were:

- **Trouble with carousel system**: The target position was non-reproducible when the carousel moved to F-18 and F-15.

- **RF and magnet are not stable**.

- **When the window target was broken, the recovery of the accelerator consumed four hours**.

Improvement in 18F: RDS-111 to Eclipse HP Upgrading **with** A. Zarate-Morales, A. Flores-Moreno, J.C. Manrique-Arias, E. Zamora-Romo, M.A. Avila-Rodriguez Unidad PET/CT-Ciclotrón, Facultad de Medicina, Universidad Nacional Autónoma de México DF México
With this upgrade we practically double the yield of F-18 with the same time of bombardment.

Table 1 shows the yield of the different radionuclide in both versions.

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>RDS-111 (40 μA)</th>
<th>Eclipse HP (60 μA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-18</td>
<td>1187 Ci (1h)</td>
<td>2300 Ci (1h)</td>
</tr>
<tr>
<td></td>
<td>1200 μL</td>
<td>2400 μL</td>
</tr>
<tr>
<td>F-18O</td>
<td>1187 mCi (1h)</td>
<td>2300 mCi (1h)</td>
</tr>
<tr>
<td></td>
<td>1200 μL</td>
<td>2400 μL</td>
</tr>
<tr>
<td>C-114</td>
<td>13 NN</td>
<td>146 mCi (10 min)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>213 mCi (10 min)</td>
</tr>
<tr>
<td>C-114</td>
<td>1547 mCi (40 min)</td>
<td>1902 mCi (40 min)</td>
</tr>
</tbody>
</table>

RESULTS

F-18 Production and Time of Bombardment

<table>
<thead>
<tr>
<th>RDS-111</th>
<th>Eclipse HP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity (Ci)</td>
<td>Time of Bombardment (h)</td>
</tr>
<tr>
<td>500</td>
<td>0.53</td>
</tr>
</tbody>
</table>

The doses obtained before and after upgrade. In the data are not included the doses applied in our nuclear medicine laboratory.

FDG Production runs in RDS-111 vs. Eclipse HP targets. Bombardment time AEOB of F-18. AEOB of FDG

<table>
<thead>
<tr>
<th>HP/RDS</th>
<th>18F-18O</th>
<th>536.4 Ci</th>
<th>271 Ci</th>
<th>1.68</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.53</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Comparison of FDG production runs in RDS-111 vs. Eclipse HP targets. Bombardment time AEOB of F-18. AEOB of FDG.

F-18 Production and Time

<table>
<thead>
<tr>
<th>RDS-111</th>
<th>Eclipse HP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity (Ci)</td>
<td>Time of Bombardment (h)</td>
</tr>
<tr>
<td>500</td>
<td>0.53</td>
</tr>
</tbody>
</table>

The doses obtained before and after upgrade. In the data are not included the doses applied in our nuclear medicine laboratory.

FDG Production runs in RDS-111 vs. Eclipse HP targets. Bombardment time AEOB of F-18. AEOB of FDG

<table>
<thead>
<tr>
<th>HP/RDS</th>
<th>18F-18O</th>
<th>536.4 Ci</th>
<th>271 Ci</th>
<th>1.68</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.53</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Comparison of FDG production runs in RDS-111 vs. Eclipse HP targets.
Conclusion: Benefits of the RDS Eclipse

The benefits of the upgraded BL1 were immediate for the production of F18:

- The high volume Ta target produces more activity of highly reactive n.c.a. [F18]fluoride compared with the traditional Ag target of the RDS-111 configuration.
- We are still producing F18 in both targets using the Ta target for the heavy morning production run, and the Ag target for the second and less heavy production run at midday.
- Other benefits of the upgrade include a faster (0.5 h vs. 4 h) recovery of the vacuum in case of the rupture of a window, and lengthened the maintenance intervals of the F18 target decreasing the radiation exposure to the cyclotron staff.
- The RDS Eclipse upgrade allows the routine production of 40 unidoses of FDG with a high degree of success added of production of (N-13) Ammonia and (C-11) Acetate and (F-18)FLT.

Upgrade of 2nd Beam Line in 2011

With solid target irradiation option

Title: CYCLOTECH – A method for Direct Production of 99mTc using Low Energy Medical Cyclotrons

Authors: Johnson RR1, Wm. Gelbart2, Benedict M3, Cunha L4, Metello LF4

1 – Best Cyclotrons Systems Inc (BSCI - Team BEST), Ottawa, Canada and University of British Columbia, Vancouver, Canada;

2 – Advanced Systems Design (ASD), Garden Bay, Canada;

3 - Molecular Diagnostics and Therapeutics Inc. (MDTI), Longmont, Colorado, USA;

4 – Isótopos para Diagnóstico e Terapêutica SA (IsoPor SA), Porto, Portugal and Nuclear Medicine Department of the High Institute for Allied Health Technologies of Porto, Polytechnic Institute of Porto (ESTSP.IPP), Porto, Portugal.

Introduction:

This paper presents work in progress, to develop an efficient and economical way to directly produce Technetium 99mTc using low-energy – so-called “medical” – cyclotrons. Its importance is well established and directly relates to the increased global trouble in delivering 99mTc to Nuclear Medicine Departments relying on this radioisotope. Since the present delivery strategy has clearly demonstrated its intrinsic limits, our group decided to follow a distinct approach that uses the broad distribution of the low energy cyclotrons and the accessibility of Molybdenum 100 (100Mo) as the Target material. This is indeed an important issue to consider, since the system here presented it is not based on the use of HEU (or even LEU) 235 Uranium, so entirely complying with the actual international trends and directives concerning the use of this potentially critical material.

The production technique is based on the nuclear reaction 100Mo (p,2n) 99mTc whose production yields have already been documented.

The object of the system is to present 99mTc to Nuclear Medicine radiopharmacists in a routine, reliable and efficient manner that, remaining always flexible, entirely blends with established protocols.

Material and Methods:

We have developed a Target Station that can be installed on most of the existing PET cyclotrons and that will tolerate up to 400 μA of beam by allowing the beam to strike the Target material at an adequately oblique angle. The Target Station permits the remote and automatic loading and discharge of the Targets from a carriage of 10 Target bodies.
Fig1. The remotely controlled Target Changer ejects the irradiated Target (to a Transfer System that transports it to a Processing Unit –inserted in a dedicated Hot Cell) and loads a new one. Up to 10 Targets can be pre-loaded in the Target Changer.

Several methods of Target material deposition and Target substrates are presented. The object was to create a cost effective means of depositing and intermediate the target material thickness (25 - 100μm) with a minimum of loss on a substrate that is able to easily transport the heat associated with high beam currents.

The separation techniques presented are a combination of both physical and column chemistry. The object was to extract and deliver 99mTc in the identical form now in use in radiopharmacies worldwide. In addition, the Target material is recovered and can be recycled.
The 13th International Workshop on Targetry and Target Chemistry – DTU - Risoe (Denmark) - July 26 to 28th 2010

Cyclo Tech – a Method for Direct Production of 99mTc using Low Energy Cyclotrons

L.F. Metello, Wm Gelbart, M. Benedict, L. Cunha, F. Alves, V. Sossi, R. R. Johnson

99mTc Role in Nuclear Medicine

July 26 – 28th 2010

Nuclear Medicine…

... is a medical speciality in which low doses of radioactive materials are used for diagnostic and non-imaging techniques, as well as radioactive materials used for diagnosis, by imaging in many disease processes. (WHO, 1960)

US Demand for Nuclear Medicine Procedures and 99mTc Generators 2010

Minimal Annual Growth

Annual Growth Rate: 6% (average: 12.3%)

Reference: Committee on Medical Isotope Production Without Highly Enriched Uranium, National Research Council (2009).

99mTc Production Cascade

MDS NORDION

CIS-BIO

COVIDIEN LANTHEUS

GE HEALTHCARE

NRU OSIRIS

HFR BR2 SAFARI

Mo-99

99.5% of Radioactive Waste!

99Mo/99mTc Generator Waste!

Medical Cyclotrons

99mTc for Direct Production of medical cyclotrons...

Dr. Price (CIS-BIO)
THE PROBLEM

Definitely… Nuclear Medicine Community needs a reliable and regular source of 99mTc!!

THE SOLUTION

Value System of the 99mTc Production (following CYCLOTECH)

ADVANTAGES

For the Cyclotron Owners
- Cost Reduction:
 - Steady state: 12 months ofradioactive material on hand;
- Less storage ofradioactive material on site;
- Additional service:
 - Workflow optimization;
- Additional capacity:
 - Reliability and high delivery rate;
- Cyclotron value chain

For the NM Departments
- Small extra investment:
 - Increase in number of procedures;
- Additional service:
 - Workflow optimization;
- Additional capacity:
 - Reliability and daily-based delivery;
- Cyclotron value chain

For the Environment
- Unlike NR production, Cyclotron based 99mTc production process is safer, cleaner and easier to spread worldwide in a short term
Babcock & Wilcox Technical Services Group (B&W TSG) has been awarded $9 million from the National Nuclear Security Administration (NNSA) for further development of reactor technology for medical isotope production using low-enriched uranium. (Aunt Minnie, 29 Jan 2010)
The production cross section for the reaction 100Mo(p,2n)99mTc.

Note that 99Mo begins to appear as a contaminant in the target material at 18 or 19 MeV (must be removed in processing steps).

<table>
<thead>
<tr>
<th>Cyclotron Energy (MeV)</th>
<th>Yield (mCi)</th>
<th>Activity Ratio at EOB</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEST 14p 14</td>
<td>2000</td>
<td>0.010</td>
</tr>
<tr>
<td>GE PETtrace 16</td>
<td>2600</td>
<td>0.011</td>
</tr>
<tr>
<td>IBA Cyclone 18</td>
<td>3000</td>
<td>0.036</td>
</tr>
<tr>
<td>GE PETtrace 19</td>
<td>4000 (8000)</td>
<td>0.038</td>
</tr>
<tr>
<td>TR19 19</td>
<td>4000</td>
<td>0.270</td>
</tr>
<tr>
<td>ACSI TR24</td>
<td>3600</td>
<td></td>
</tr>
<tr>
<td>ACSI TR19</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>

The inner workings of a high current isotope production target.

Target material comparisons for distinct bombarding energies.

<table>
<thead>
<tr>
<th>Proton Beam Energy (MeV)</th>
<th>Coating Thickness (um)</th>
<th>Target Thickness (um)</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td>8</td>
<td>25</td>
</tr>
<tr>
<td>86</td>
<td>7</td>
<td>25</td>
</tr>
<tr>
<td>14</td>
<td>20</td>
<td>53</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>43</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>67</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>174</td>
</tr>
</tbody>
</table>

Production yields for various cyclotrons with 1 mA of proton beam and 30 kW of heat dissipation.

Production yields for various PET cyclotrons.
The preferred Target material would be 100Mo metal, though most processes now use 100MoO$_3$ (The Oxide is not preferred, because the extra Oxygen atoms reduce the yield of the Technetium and contribute with an additional radioactive contaminant background of 13N.)

The Target Material will be a metal sheet converted from a metal powder. Solid metal foils must be laid down on the Target Body. The thicknesses of 100 Mo foil differ according to accelerator energy. (Note that the Target is inclined at 15° so that the actual Target coating is thinner.) As the Target coating becomes thicker, the Molybdenum becomes brittle and has a tendency to flake. Thinner foils are much more malleable.

Molybdenum plating on Carbon substrate

Molybdenum Deposition

Molybdenum foil is bonded by a surface brazing technique that joins the metallic foil development is underway, after studying the various options to produce foils in the 25 to 100 um range.

The electro plating creates needle-like structures. (From: Kipourous et.al. J. Applied Electrochemistry 18 (1988))

A Molybdenum is first pressed (A). Then, it is melted using an ar or electron gun into a pellet (B). Molybdenum is first pressed (A). Finally, it is pressed or rolled into a foil (C).

D Molybdenum foil is bonded by a surface brazing technique that joins the copper base substrate to the target foil (D). The first step in the target processing leaves the bonding material with the base substrate. The presence of oxides results in the formation of particles, and layering of the foils.

The Target is inclined at 15° so that the actual Target coating is thinner. The Target coating becomes thicker, the Molybdenum becomes brittle as the foil becomes thicker. The Molybdenum becomes brittle as the foil becomes thicker.

1. The Target material would be 100Mo metal, though most

2. The Target material would be 100Mo metal, though most

3. The Target material would be 100Mo metal, though most

4. The Target material would be 100Mo metal, though most
One Key Feature: the distribution of the Proton Beam over the surface of the Target.

Target Irradiation View. The back of the Target (top picture) incorporates water cooling channels. The irradiated material is deposited on the front face. An O-ring acts as the vacuum seal.

TARGET IRRADIATION SYSTEM CROSS-SECTION

Finite element analysis of the temperature distribution of the Molybdenum Target body for a 4.3 kW beam striking the Target face. 20% of the total Beam is deposited on the collimator. The hot spot at the centre is about 250 degrees Celsius.

TARGET IRRADIATION SYSTEM

Model of High Current Target used on CYCLOTECH.
TARGET ASSEMBLY
July 26 – 28th 2010

Ready to Load:

Target tilted at 7 to 15 degrees to beam

Closed and Ready to Irradiate:

Loading

Closed

SEQUENCE OF LOADING

Closed and Ready to Irradiate:

Ejecting

Target tilted at 7 to 15 degrees to beam

Target tilted at 7 to 15 degrees to beam

Target tilted at 7 to 15 degrees to beam
First Processing Stage Development:

- Target:
 - Carrier gas
 - Heaters
 - Elution input
 - 99mTcO₄ elute

Processing Module Scheme:

- MoO₃ is oxidised in an O₂ environment and then transported until it is condensed at 780°C. All Target Substrate contaminants are left behind and one has pure MoO₃ for subsequent processing.
COLD TEST APPARATUS

July 26 – 28th

The MoO$_3$ is deposited in a band corresponding to about 400°C.

Since Condensation Temperatures of Molybdenum and Technetium Oxides are very different, a form of fractional distillation in such a column can be incorporated into the process. (Physical and Wet Chemistry under study)

Target Processing System

Fully automated system for the processing of irradiated targets.

The high processing temperature requires good thermal insulation and fully mechanized handling of the targets.

Status and Summary

1 - Technical Feasibility
 - Cross Section, Process
 - Target Assembly under construction
 - July 26 – 28th

2 - Economics
 - Process testing

3 - Development
 - Prototyping

Yet to come:

1. Transfer Tube
2. Chemicals
3. Hotcell
4. Lead glass window
5. Processing Unit
6. PLC Control

Pharmaceutical Validation and Regulatory Issues

Conclusion of Accelerator & Optimization Tests

Entire System Integration
1. MoO₃ to Mo reduction
 - In H₂ environment

2. Production of 99Mo
 - Production in positive ion machine
 - More energy and high currents needed
 - More energy and high currents needed

3. Target deposition techniques
 - Sputtering only good for too thin... 25µm needed!
 - Target deposition does not work

4. Financing
 - 99Tc from cyclotron: 3 or 4 x more expensive than today
 - Actual chemistry and imaging equipment can be used directly
 - 99Tc prize: not the ultimate factor
Effects of the Tantalum and Silver Targets on the Yield of FDG Production in the Explora and CPCU Chemistry Modules

J.C. Manrique-Arias, E. Zamora-Romo, A. Zarate-Morales, A. Flores-Moreno, M.A. Avila-Rodriguez

Unidad PET/CT-Ciclotrón, Facultad de Medicina, Universidad Nacional Autónoma de México, México, D.F., México

Ionic contaminants in water have generally been considered to influence the reactivity of n.c.a. $[^{18}\text{F}]$fluoride decreasing the yield in the synthesis of radiopharmaceuticals by nucleophilic fluorination. Until a few years ago the most widely used material for target chamber in ^{18}F-production was silver. However, more recently, the use of refractory materials such as tantalum and niobium has been shown to provide highly reactive fluoride.

The PET Center at the National Autonomous University of Mexico (UNAM) produces $[^{18}\text{F}]$fluoride ion for FDG synthesis in two different targets: a high volume (2.4 mL) gridded tantalum-target and a low volume (1.2 mL) double-foil silver-target capable to withstand 660 and 440W of beam power at 11 MeV, respectively. Chemistry modules for FDG production at this facility include an Explora recently acquired to replace a CPCU in use since 2001. The Explora module is used primarily for the routine production of FDG while the CPCU serves as a backup for the Explora and for the production of other non-FDG tracers. Figure below shows the yields of FDG in six-consecutive months using a tantalum and a silver target for fluoride production. The FDG yields when using the silver target range from 60 to 70% compared to 70 to 80% when using the tantalum target, clearly showing the superiority of tantalum vs. silver to produce highly reactive fluoride.

![Figure 1. Six-month FDG yields in the Explora module using ^{18}F from two different targets.](image)

Regarding the use of the Explora and CPCU modules, we found no significant difference in their FDG yields, independently of the target used for fluoride production, and their synthesis time is practically the same (~45 min). However, the Explora features a single closed reaction vessel with heating/cooling by forced convection including temperature, pressure and radiation sensing. Performs up to four sequential runs of FDG without intervention. On the other hand, the CPCU features two open reaction vessels heated by two independent oil baths that can be used for back-to-back synthesis, but it lacks of any kind of sensors to monitor the performance of the synthesis.
Effects of the Tantalum and Silver Targets on the Yield of FDG

Production in the Explota and CPCU Chemistry Modules

J.C. Manrique-Arias, E. Zamora-Romo, A. Zarate-Morales,
M.Il. Flores-Moreno, M. Alarq-Kondigez

Unidad PET Facultad de Medicina Universidad Nacional Autónoma de México MÉXICO

PET in Mexico (2001-2010)

Production of FDG at UNAM’s PET Center

Produces FDG from Monday to Saturday

Produce FDG for 9 of the 11 PET Centers in Mexico City

More than 8,000 unidoses/year

Two production runs per day

Other tracers:

- [18F]FLT
- [18F]NaF
- [11C]Acetate
- [13N]Ammonia

Cyclotrons in Mexico

PET CT Scanner de México (Mexico, D.F.)

3. Coincidence detection

4. Cyclotrons
Characteristics of the Modules

<table>
<thead>
<tr>
<th>Feature</th>
<th>HP Target</th>
<th>RD Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Tantalum</td>
<td>Silver</td>
</tr>
<tr>
<td>Volume</td>
<td>2 mL (60 µL)</td>
<td>2.4 mL (60 µL)</td>
</tr>
<tr>
<td>Target Body</td>
<td>Gridded</td>
<td>Double foil</td>
</tr>
<tr>
<td>Heating/Cooling</td>
<td>Convection</td>
<td>Conduction (oil)</td>
</tr>
<tr>
<td>Reaction Time</td>
<td>~45 min</td>
<td>~45 min</td>
</tr>
<tr>
<td>Production Runs/day</td>
<td>Up to four</td>
<td>Two</td>
</tr>
<tr>
<td>Reaction Vessels</td>
<td>One closed reaction vessel</td>
<td>Two-open reaction vessels</td>
</tr>
</tbody>
</table>

Chemistry Module Explora FDG

Water Targets
RESULTS

Modules noticed when using the CPCU or Explora no difference in the FDG yield was clearly showing the superiority of tantalum vs. silver to produce highly reactive fluoride. The FDG yields when using the silver.

No difference in the FDG yield was noticed when using the CPCU or Explora Modules underpinning the superiority of tantalum vs. silver to produce highly reactive fluoride. The FDG yields when using the silver.

Targets Module using 18F from two different six-month FDG yields in the Explora...
FULLY AUTOMATED SYSTEM FOR THE PRODUCTION OF 123I AND 124I-iodine Labeled Peptides and Antibodies.

P. Bedeschi, S. Bosi, M. Montroni, G. Brini, S. Caria, M. Fulvi, G. Calisesi

a Comecer, Castel Bolognese (RA), Italy

a Nuclear Specialists Associated, Ardea (Roma), Italy.

Radiolabeled amino acids, peptides and monoclonal antibodies are certainly a useful non-invasive diagnostic tools to detect malignant tumours, infectious and inflammatory lesions. In combination with the potential of Positron Emission Tomography (PET), the aim of the present study was to develop a fully automated system for the radiolabelling of these new tracers, that avoids any direct manipulation by operators from target production and recovery, to synthesis and purification of the final product.

Nowadays radionuclides used for PET-imaging are generally short-lived isotopes, such as 18F-fluorine ($t_{1/2} = 110$ min), but recently the growing need for alternative positron emitters focuses the attention on the long-lived radiohalogen 124I-iodine ($t_{1/2} = 4.17$ d). 124I-Iodine, is a suitable radionuclide for both diagnostic, such as Positron Emission Tomography and therapeutic applications, it decays by positron emission (23.3%) and electron capture (76.7%). Its long half-life permits this isotope to be imaged for more than 4 days, which makes it possible to study the labeled molecule over a longer time period. Furthermore the promising clinical aspect of 124I-iodine leads research institution and commercial company seeking to produce multi-millicurie quantities for distribution purposes, that means a wider geographical area.

A variety of radioiodination methods is supported by a large amount of literature, preferentially a radiiodine atom is incorporated in a vinylic or aromatic moiety, due to the high strength of the carbon-iodine bond. Therefore, the radioiodination is often implemented by nucleophilic or electrophilic substitution and is more or less predicted by the structural feature of the molecule. Obviously this kind of chemistry is applicable to any iodine isotopes, therefore in addition to 124I-iodine, our attention is focused on 123I-iodine too.

123I-Iodine has a half-life of 13.2 h, decays by electron capture and its medium energy ($E_{\gamma} = 159$ keV) is ideal for planar imaging and for Single Photo Emission Computed Tomography (SPECT), a lower cost diagnostic tool compared to PET.

The production of both 123I and 124I-iodine radionuclides is based on a low-energy (p, n) reaction at a small-sized (14 MeV) cyclotron, using TeO$_2$-target technology and dry distillation.
method of radioiodine separation7-10. The collected radioiodide is then delivered to a fully-automated module for the product labeling. The module is built with the concepts of the “disposable cassette”, so all the components that get in contact with the product are disposable; this structure avoids the module contamination. Finally the labeled compounds are allowed to pass through an HPLC purification system connected at the end of the synthesis module. The figure 1 below shows a schematic illustration of the fully automated process.

![Flowchart of the fully automated system]

\textbf{Figure 1} Schematic illustration of the fully automated system

In conclusion we develop a fully automated system for the high activity production of iodo-labelled peptides and monoclonal antibodies, high-lived pharmaceuticals for PET and SPECT imaging. Due to the automated process applied from the radio-isotopes production and separation to the synthesis and purification of the final products, the operators are completely shielded from radiation. The use of $^{\text{123}}$I and $^{\text{124}}$I-iodine, medium and high-lived radionuclides permits longer term studies and a wider geographically distribution.

7 Applied Radiation and Isotopes, 2003, 58, 69-78
8 Radiochim. Acta, 2000, 88, 169-173
9 Applied Radiation and Isotopes, 2007, 65, 407-412
10 Journal of Radioanalytical & Nuclear Chemistry, 1996, 213, 2, 135-142
The purposes of an automated system for radio-iodine production are:

• to increase radioprotection standards of the operator during the process
• to obtain high production yields for small cyclotrons and to assure the process reproducibility
• to establish a background for a future GMP production

The study has considered:

• development of a bi-directional pneumatic transfer system between the cyclotron and the dry distillation module
• application of an industrial HF heating system on the dry distillation device in order to improve traditional harvesting methods
• development of a labeling procedure on an automated multipurpose synthesis module

Fully Automated System for the Production of [123]I and [124]I-labeled peptides and antibodies
Solid Tar

Alumina and enriched TeO₂ powders loading a Hi-frequency heater 500 mg of green glassy TeO₂ quickly drives the melting… ready for irradiation.

Haynes body + Platinum crucible: Ø28x35mm, Platinum pit: Ø8x3mm

ALCEO – Target processing module

ALCEO – Irradiation unit

Iodine Harvesting

Connected to: ALCEO PTS module (irradiation unit) ALCEO PTS module (irradiation unit)

Target automatic transfer from/to the cyclotron

Dry distillation and plating of target with TeO₂

Radiofrequence heater ready for irradiation…

TADDEO synthesis module

Harvesting of radio-Iodine

Pneumatic transfer system

NO H

TeO₂ Solid Target
Sustainable Iodine Production

- Prepare enriched Te powders
 - 780°C for 15 min
 - (500 mg of TeO2 + 5% Alumina)
 - 14 MeV (p,n) reaction
 - 4 hours @ 12 uA

- Dry Distillation (iodine harvesting)
 - 780°C for 45 min
 - 2 ml 0.1 M NaOH bubbling system

Alceo Halogen / Production Data

- Target transfer speed: 2 m/s
- Target production yield: 2.5 mg/h
- Typical production yield with 250 mg of TeO2 (99.5% enriched): 40/50Ci @ 241 EOB
- Typical beam duration: 4 to 6 hours
- Beam energy: 12 MeV, Typical current: 12-20 µA

Certified Iodine

- Platelet
- CA T. N. I. I

Automated Radioiodination

TADDEO Labeling Module

- Multi-purpose research module equipped with...
- Open source in order to allow the user to...
 - 15 valves disposable cassette kit
 - 12 gas outlets
 - 10 membrane pump
 - 72 tubing options
 - 5 activity detector probes
 - 2 reactors with cooling system
 - 2 syringe precision dispensing stations

Production Data

- Target can be irradiated multiple times (5 to 10)
- Production yield: 0.5 mCi/h

Automated Radioiodination

- Tyrosine
- 124I

Sustainable Iodine Production
And of course…

Radiopharmaceutical is finally ready to be injected.

Conclusions

- We developed a fully automated system for iodine target handling.
- We applied this system to a biodistribution study with micro-PET.
- Future developments will involve iodine-123 and GMP production.
- Use Te123 to reduce I125 contaminant.

1. System characteristics and running experience
- The Te123 target material is highly efficient during transport and storage.
- Very low loss of iodine during transport, temperature not high.
- The system provides excellent performance.
- Special thanks to Giorgia Brini, Saverio Caria, Marcello Fulvi, Gianni Calisesi, Prof. Robert J. Nickles and his cyclotron gang at the University of Wisconsin, Madison (WI), and Prof. Jacek Koziorowski at Herlev University, Denmark.
Routine Automated Production of 18F-Labelled Radiopharmaceuticals on IBA Synthera® Multi-Purpose Platform

Bernard Lambert¹; Jean-Jacques Cavelier¹, Guillaume Gauron¹, Christophe Sauvage², Cécile Kech², Tim Neal³, M. Kiselev³, David Caron⁴, Anat Shirvan⁴, Ilan Ziv⁴

¹BP 32 91192 Gif sur Yvette Cedex France. ²IBA RI SA, rue de l’Esperance, 1 6220 Fleurus Belgium. ³IBA Molecular, 100 Executive Dr. Sterling VA USA; ⁴Aposense Ltd, 5-7 Odem St., P.O Box 7119, Petach-Tikva 49170, Israel e-mail: christophe.sauvage@iba-group.com.

Although FDG provides most of the clinical PET imaging today its low specificity limits its use. In molecular imaging technology, highly specific probes for clinical applications are crucial justifying the development of non-FDG radiopharmaceuticals such as: $^{[18]}$F-NaF, for bone metastasis detection; $^{[18]}$F-F-Choline ($^{[18]}$F-FCH=methylcholine) for diagnosis/staging of prostate cancer; $^{[18]}$F-FLT, for cell proliferation imaging, and $^{[18]}$F-ML-10 (α-methyl 18F-alkyl-dicarboxylic acid), for apoptosis imaging. This work will present automated and optimized processes developed on IBA Synthera® platform for the routine production of $^{[18]}$F-NaF, $^{[18]}$F-FCH, $^{[18]}$F-FLT, $^{[18]}$F-ML-10.

The synthesis of each radiotracer takes place on single-use IFP™ system (integrated fluidic processor) which comprises appropriate pre-defined synthesis hardware and plumbing. $^{[18]}$F-NaF manufacturing is straightforward and employs IFP™ Chromatography. For the $^{[18]}$F-FCH, two synthesizers as well as two interconnected IFP™ (IFP™ Distillation & IFP™ Alkylation) are necessary for the two-step synthesis (fig.1). In synthesis of $^{[18]}$F-FLT and $^{[18]}$F-ML-10 IFP™ Nucleophilic is used. The product obtained is purified in Synthera® HPLC unit. In none of the applications hardware changes are required compatible with a multipurpose platform.

The synthesis of $^{[18]}$F-NaF is obtained by washing trapped $^{[18]}$F with water followed by elution with saline solution. $^{[18]}$F-FCH is produced in two steps according to published method¹. The first step, performed in IFP™ Distillation, includes the fluorination of dibromomethane (DBM) and purification of fluorinated volatile by distillation through silica cartridges. Next, in the IFP™ Alkylation, fluoromethylation of N,N-dimethylaminoethanol takes place resulting in $^{[18]}$F-FCH which is purified through a cation exchange cartridge. $^{[18]}$F-FLT is produced according to adapted methodology².

Fig 1-Synthera® graphical user interface screen-shots for $^{[18]}$F-FCH highlighting main features.
The synthesis is realized within IFP™ Nucleophilic. [18F]-fluorination of 3-N-Boc-5'-O-dimethoxytrityl-3'-O-nosyl-thymidine (Boc-FLT-Precursor) as well as subsequent acid hydrolysis with diluted HCl are carried out at 100°C. These steps take 10 min. and 5 min., respectively. Crude product is buffered and loaded into reversed-phase HPLC column in Synthera® HPLC for final purification. Ethanol/water is used as mobile phase. Synthesis of [18F]-ML-10 also employs IFP™ Nucleophilic. Both fluorination of the tosylated precursor and consecutive hydrolysis with aqueous HCl were performed at 110°C for 10 min. Buffered reaction mixture was then purified in Synthera® HPLC by reversed-phase HPLC with phosphate buffer/ethanol as mobile phase.

[18F]-NaF is obtained in less than 10 minutes with RCY (radiochemical yield) > 90% EOS. Analytical data show it complies with European Pharmacopoeia. Average RCY for [18F]-FCH >20% EOS. The total synthesis time is < 50 minutes. Final product shows high radiochemical purity (99%) and chemical purity (>95 %). [18F]-FLT total synthesis time is 45 minutes (including HPLC purification) with average RCY>20%. Final product presents high radiochemical purity (>95%) and high chemical purity (>95 %). [18F]-ML-10 RCY > 40 % after 60 min of total synthesis time including HPLC purification. Final product presents high radiochemical and chemical purity (> 99%) (fig 2).

Fig. 2- Typical chromatogram of [18F]-ML10 after HPLC purification

The automated platform has proven to be robust and reliable when it comes to routine production of promising radiopharmaceuticals such as [18F]-NaF, [18F]-FCH, [18F]-FLT and [18F]-ML-10 for clinical applications. The radiochemical yields obtained are reproducible and final products show high radiochemical and chemical purity. All of the radiopharmaceutical syntheses are carried out within dedicated IFP™ systems (Chromatography, Distillation, Alkylation and Nucleophilic) in one single platform set up with open software for customized applications. The IFP™ is a disposable, preventing cross-contamination, which is line with GMP. The modules are fully interchangeable underpinning the platform multipurpose capability (do-all-in-one platform) and flexibility.

References:
Production of 18F-Labelled Radiopharmaceuticals on IBA Synthera® Multi-Purpose Platform

- **IFP™ Nucleophilic**: FLT, ML10, FDG, FMISO
- **IFP™ Distillation**
- **IFP™ Akylation**
- **IFP™ Chromatography**
- **IFP™ Reflux Synthesis**

A palette of commercial IFP™ gives access to most synthesis steps:

- NH2 Trapping/Dilution/Neutralization
- F-18 Trapping and Activation
- Precursor Buffering/Precursor Addition
- Hydrolysis

We protect, enhance and save lives.
Example of proprietary compound

Parallel with FDG

18F-ML10 Quality Control

- Fully validated process
- Analytical methods validated according to ICH
- RCP and chemical purity > 99%
- Residual solvents below ICH limits
- Residual solvents: USP & Eur. Ph. Compliant

Specifications

- 18F-ML10
- Radiochemical yield: (40 ± 5) % EOS
- Radiochemical purity: (20 ± 5) % EOS
- Chemical purity:
 - Ts-OH < 0.25 ppm
 - ML-10-OH < 5 ppm
 - Stavudine < 0.1 ppm
 - [19F]-FLT < 0.2 ppm
 - K222 & Residual solvents: USP & Eur. Ph. Compliant

- 18F-FLT
- Radiochemical yield: (40 ± 5) % EOS
- Radiochemical purity: > 95%
- Chemical purity:
 - Ts-OH < 0.25 ppm
 - ML-10-OH < 5 ppm
 - Stavudine < 0.1 ppm
 - [19F]-FLT < 0.2 ppm
 - K222 & Residual solvents: USP & Eur. Ph. Compliant

UV 206 nm radiodetection

HPLC
Specifications

- Radiochemical yield: (20 ± 2)%
- Radiochemical purity: >95%
- Chemical purity:
 - DBM < 0.1 ppm
 - [19F]-FCH < 4 ppm
 - DMAE < 1500 ppm
 - Choline < 20 ppm
 - Bromocholine < 0.1 ppm
 - K222 & Residual solvents: USP & Eur. Ph. Compliant

Synthera® Multi-tracers Platform

IFP™ Reformulation

- Reformulation of complex tracers, AV-45

IFP™ Distillation

- FBM, click-chemistry precursor

IFP™ Alkylation

- FBM, FCH, NaF

IFP™ Nucleophilic

- FG, FLT, FMISO, FES, ML10...

Extend your capabilities

IFP™ Reformulation

- IFP™ Reformulation of complex tracers, AV-45

Chromatography

- IFP™ IFP™ IFP™ IFP™

Distillation

- IFP™ IFP™ IFP™ IFP™

Alkylation

- IFP™ IFP™ IFP™ IFP™

Nucleophilic

- IFP™ IFP™ IFP™ IFP™

More complex tracers, AV-45

FMISO, FES, ML10...

IFP™ IFP™ IFP™ IFP™
Routine Production of Cu-61 and Cu-64 at the University of Wisconsin

Jonathan W Engle, Todd E Barnhart, and Robert J Nickles

University of Wisconsin, Madison, USA

The application of copper isotopes in PET research has undergone a dramatic rise, driven by their versatile chelation chemistry, favourable decay characteristics, and national distribution potential. The (p,n) reaction has long been used to produce ^{61}Cu and ^{64}Cu from ^{61}Ni and ^{64}Ni with reported yields of $21.4 \pm 2.2 \text{ mCi/uA/hr}$ and $8.7 \pm 0.4 \text{ mCi/uA/hr}$ at 11 MeV, respectively.1 The $^{64}\text{Ni}(p,n)^{64}\text{Cu}$ reaction in particular necessitates careful consideration of incident particle energy. Electrodeposition of enriched ^{61}Ni and ^{64}Ni target material onto high purity gold or silver blanks has been described previously and appears to be limited to approximately 80-120 mg/cm2 by time and cost concerns.

Using the pooled cross section data $\sigma(E)$ for the $^{64}\text{Ni}(p,n)^{64}\text{Cu}$ reaction,2 the end of saturated (EoSB) yield of ^{64}Cu can be predicted as a function of ^{64}Ni thickness and incident beam energy, shown below. This family of yield curves strongly suggests that very thick targets ($\approx \frac{1}{2} \text{ gram/cm}^2$; \approx $10,000$ in ^{64}Ni inventory) are needed to take advantage of proton energies above 11 MeV, being prohibitive both in cost and plating time. We have degraded the 16 MeV incident proton energy of the PETtrace to approximately 12 MeV with a 0.23 mm tantalum foil to improve the efficiency of our production runs. However, it is apparent that our legacy CTI RDS 112 is still far better suited for the weekly production of ^{64}Cu at the 0.5 Ci level for our own needs, as well as national distribution of the excess.

Copper-61 offers several advantages over ^{64}Cu for PET imaging, namely 61\% vs 20\% β^+ branching and a 3.4 hr vs 12.7 hr half-life, which combine to result in a three-fold greater useful β^+ flux to absorbed radiation dose ratio for trapped agents. Three reactions present themselves for cyclotron facilities without alpha beams: $^{61}\text{Ni}(p,n)^{61}\text{Cu}$, $^{60}\text{Ni}(d,n)^{61}\text{Cu}$, and $^{64}\text{Zn}(p,\alpha)^{61}\text{Cu}$. With the
recent three-fold price increase of enriched 61Ni, we have reverted to the 60Ni(d,n)61Cu reaction for protocols needing Cu-ATSM for hypoxia imaging in human and veterinary patients.\(^3\) Human studies use enriched 60Ni plated on gold discs. Animal studies, with more relaxed specific activity requirements (>300 mCi/µmole), can utilize the deuteron irradiation of natNi targets, obviating the need for recycling of enriched target stock. The HPGe spectrum below testifies to the radionuclidic purity of the 61Cu. Electroplated and foil targets are dissolved in HCl at 100°C, accelerated with H$_2$O$_2$. Alternatively, biasing the Ni foil (10 volts, 1 amp) in unheated concentrated HCl removes approximately 40 mg of the foil and >90% of the activity in 3 minutes.\(^4\) The dissolution apparatus is identical to the electroplating setup. These platers have been recently improved, adding flow, temperature control, pulsed voltage and current regulation under LabView control.

As more subtle targeting strategies develop, the chelation of copper radionuclides to molecular imaging candidates will permit PET to determine the best lead compound, significantly shortening the time to achieve diagnostic utility. Any improvements in the supply of 61Cu and 64Cu will greatly serve that end.

1 Avila-Rodriguez M A (2007). Low energy cyclotron production of multivalent transition metals for PET imaging and therapy. Ph.D. Dissertation University of Wisconsin Press, Madison, WI.

Routine production of ^{61}Cu and ^{64}Cu at Wisconsin

Jon W Engle, Todd E Barnhart, Miguel A Avila-Rodriguez and Jerry Nickles

A cottage industry

A sweatshop

$\text{Range} = \left\{ \frac{t_{1/2}}{\text{velocity}} \times \text{in (A)} \times \text{in (A)} \right\}$

^{64}Cu DECAY

^{64}Cu ^{64}Zn

^{64}Ni

^{64}Ni ^{64}Cu

^{64}Ni ^{64}Zn

^{64}Ni

^{64}Cu DECAY

^{64}Cu ^{64}Zn

^{64}Ni ^{64}Cu

^{64}Ni ^{64}Zn

^{64}Ni

^{64}Cu DECAY

^{64}Cu ^{64}Zn

^{64}Ni ^{64}Cu

^{64}Ni ^{64}Zn

^{64}Ni

^{64}Cu DECAY

^{64}Cu ^{64}Zn

^{64}Ni ^{64}Cu

^{64}Ni ^{64}Zn

^{64}Ni

^{64}Cu DECAY

^{64}Cu ^{64}Zn

^{64}Ni ^{64}Cu

^{64}Ni ^{64}Zn

^{64}Ni

^{64}Cu DECAY

^{64}Cu ^{64}Zn

^{64}Ni ^{64}Cu

^{64}Ni ^{64}Zn

^{64}Ni

^{64}Cu DECAY

^{64}Cu ^{64}Zn

^{64}Ni ^{64}Cu

^{64}Ni ^{64}Zn

^{64}Ni

^{64}Cu DECAY

^{64}Cu ^{64}Zn

^{64}Ni ^{64}Cu

^{64}Ni ^{64}Zn

^{64}Ni

^{64}Cu DECAY

^{64}Cu ^{64}Zn

^{64}Ni ^{64}Cu

^{64}Ni ^{64}Zn

^{64}Ni

^{64}Cu DECAY

^{64}Cu ^{64}Zn

^{64}Ni ^{64}Cu

^{64}Ni ^{64}Zn

^{64}Ni

^{64}Cu DECAY

^{64}Cu ^{64}Zn

^{64}Ni ^{64}Cu

^{64}Ni ^{64}Zn

^{64}Ni

^{64}Cu DECAY

^{64}Cu ^{64}Zn

^{64}Ni ^{64}Cu

^{64}Ni ^{64}Zn

^{64}Ni

^{64}Cu DECAY

^{64}Cu ^{64}Zn

^{64}Ni ^{64}Cu

^{64}Ni ^{64}Zn

^{64}Ni

^{64}Cu DECAY

^{64}Cu ^{64}Zn

^{64}Ni ^{64}Cu

^{64}Ni ^{64}Zn

^{64}Ni

^{64}Cu DECAY

^{64}Cu ^{64}Zn

^{64}Ni ^{64}Cu

^{64}Ni ^{64}Zn

^{64}Ni

^{64}Cu DECAY

^{64}Cu ^{64}Zn

^{64}Ni ^{64}Cu

^{64}Ni ^{64}Zn

^{64}Ni

^{64}Cu DECAY

^{64}Cu ^{64}Zn

^{64}Ni ^{64}Cu

^{64}Ni ^{64}Zn

^{64}Ni

^{64}Cu DECAY

^{64}Cu ^{64}Zn

^{64}Ni ^{64}Cu

^{64}Ni ^{64}Zn

^{64}Ni

^{64}Cu DECAY

^{64}Cu ^{64}Zn

^{64}Ni ^{64}Cu

^{64}Ni ^{64}Zn

^{64}Ni

^{64}Cu DECAY

^{64}Cu ^{64}Zn

^{64}Ni ^{64}Cu

^{64}Ni ^{64}Zn

^{64}Ni

^{64}Cu DECAY

^{64}Cu ^{64}Zn

^{64}Ni ^{64}Cu

^{64}Ni ^{64}Zn

^{64}Ni

^{64}Cu DECAY

^{64}Cu ^{64}Zn

^{64}Ni ^{64}Cu

^{64}Ni ^{64}Zn

^{64}Ni

^{64}Cu DECAY

^{64}Cu ^{64}Zn

^{64}Ni ^{64}Cu

^{64}Ni ^{64}Zn

^{64}Ni
The production of high specific activity ^{64}Cu for clinical applications requires at least 15 K$ of startup investment.

- Ultra high-purity solvents (ppt Cu)
- High-purity Au disks (99.999%)
- Natural abundance of $^{64}\text{Ni} = 0.9\%$
- Enriched (>95%) ^{64}Ni ($20/mg$)

Materials Needed for the Production of ^{64}Cu

- Enriched ($>95\%$) ^{64}Ni ($20/mg$)
- High-purity Au disks (99.999%)
- Ultra high-purity solvents (ppt Cu)

Cost/shipment

<table>
<thead>
<tr>
<th>Cost/shipment</th>
<th>Optimum scaling</th>
<th>Number of shipments/irradiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial</td>
<td>industry</td>
<td>Add helper</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amount</td>
</tr>
<tr>
<td></td>
<td></td>
<td>irradiation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Still run 1/2 gram ^{64}Ni</td>
</tr>
</tbody>
</table>

The production of ^{64}Cu requires at least 15 K$ of startup investment.
Nickel Target Preparation and Recovery

The Challenge

Recovery Efficiency = 96.9 ± 1.8%

Radiochemical Separation of Ni and Cu

Key reactions (6 MeV)

\[
\begin{align*}
\text{60Ni}^{(d,n)} \text{61Cu} & \quad \text{natNi(d,n) reaction} \\
\text{64Ni}^{(d,p)} \text{65Ni} & \quad \text{Cu-61 activation} \\
\end{align*}
\]

Half-lives:

- Cu-61: 3.4 h
- Ni-65: 2.5 h
- Ni-64: 3.4 h

Radiochemical Apparatus:

- Target: Windowless water cooled mounting
- Imaging Apparatus: Asahi Pentax K-1000, 1:2:8 macro lens (Sigma X), Micro-meter stage mount
- Target Holder: Quartz NE102 3/4" PMT as light meter
- Film: Chromic

Beam profile FWHM ~ 8 mm

Radiochemical Separation of Ni and Cu

Radioactivity (\(\mu\)Ci):

- Ni-64: 300-400 \(\mu\)Ci
- Cu-61: 100-200 \(\mu\)Ci

Ni-65 and Cu-61 activity (\(\mu\)Ci) per fraction:

- Ni-65: 1.1 - 1.2
- Cu-61: 0.1 - 0.2

Anion Exchange

AG5-X8 resin

500 mg of \text{Ni}^{64}

More than 130 production runs using and recycling Ni and Cu

Anode: graphite rod
Cathode: Au disk
I = 15-25 mA, (2.4-2.6 V)

Radiochemical Beam Profile

Autoradiograph with X-ray co-registration
FWHM ~ 8 mm

Production Pathways

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Used in</th>
<th>Mass Spectroscopy</th>
<th>Mass Spec - mc/L/hr</th>
<th>Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>61Ni(p,n)61Cu</td>
<td>$1/2$ T2.2 MCl/H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60Ni(d,n)61Cu</td>
<td>$1/2$ T2.2 MCl/H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64Zn(p,d)61Cu</td>
<td>$1/3$ T2.2 MCl/H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66Zn(p,d)61Cu</td>
<td>$1/3$ T2.2 MCl/H</td>
<td>Y</td>
<td>$10/9$ mg</td>
<td></td>
</tr>
<tr>
<td>65Zn(p,d)61Cu</td>
<td>$1/3$ T2.2 MCl/H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67Zn(p,d)61Cu</td>
<td>$1/3$ T2.2 MCl/H</td>
<td>Y</td>
<td>$10/9$ mg</td>
<td></td>
</tr>
<tr>
<td>CuCl2</td>
<td>2.4 ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>60 61 62 64 67</td>
<td>Cu</td>
<td>Cu does NOT fit all</td>
<td></td>
</tr>
</tbody>
</table>
PET Imaging Performance of Copper Radionuclides

In vivo Quantification of Hypoxia (Cu-ATSM)

Because its low redox potential Cu-ATSM is retained only in oxygen-depleted tissues

Now routinely used at UW-Madison Hospital and Clinics
(0 1 2 3 4 5 6 7 8 9 10)

Adapted from Fujibayashi et al. (1997)

PET Molecular Imaging of Hypoxia (18F/Cu-ATSM)

Slow, but free
from recycling

PET Imaging at Keck Lab, P4 Concorde microPET

Now with deuterons

radiochemical purity > 98%
1. Cu production setup implementation
 • Avoid premature automation
 • Specific ion electrode to measure specific activity

2. Production/distribution in the USA
 • Saturation not achieved yet
 • Industry not yet interested in distribution

3. Cobalt contamination
 • Ni purity is important!
 • Co trapped in ion exchanger

WTTC XIII - Presentation Discussions

Mizzou - Smith

Univ California - San Francisco

UW - Sarah Mud

UW - Weibo Cal

UW North Carolina

Mizzou - Deutscher

USC Johns Hopkins

Mizzou - Lewis

Univ Texas - San Antonio

MD Anderson

Stanford

Univ Texas SW

MIZZOU - SMITH

Long Island Jewish Hospital

UW Medical Physics PETtrace Beamline extension

High power beam collimator

Quadripole doubler

Beam port 2

PETtrace Physics

UW Medical

Mizzou - Lewis
Sustainable PET tracer production at Wisconsin

Todd E Barnhart¹, Jonathan W Engle¹, Peter Larsen², Bradley T Christian³, Dhanabalan Murali¹, Dustin Wooten¹, Onofre T DeJesus¹, Ansel Hillmer¹, and Robert J Nickles¹

¹University of Wisconsin, Madison, USA
²Scansys, Copenhagen, Denmark
³Waisman Institute for Brain Imaging and Research, Madison, USA

Introduction

The University of Wisconsin PET tracer production facility has evolved over four decades, progressing from an EN tandem (1971), the first CTI RDS 112 (1985), an NEC pelletron (1998) and now, a GE PETtrace, bunkered in a new facility. Balancing a mixed assignment of graduate training, basic and clinical research, our emphasis has centered on achieving a sustainable campus-wide resource, free from unrealistic expectations or crippling service contracts. The foundation of this self-support is inherent in the state-audited charge-back account within the autonomy of the Medical Physics Department, where users cover the fair share for the development and production of the tracers that they request.

Targetry

We have continued the Wisconsin tradition of making our own cyclotron targets on the new GE PETtrace. Helium cooling has been cast aside in favour of single, gridded entrance windows. The [¹⁸F]-fluoride target’s niobium body houses a 1.1 mL target volume behind a havar window with a water-cooled grid support described previously.¹ The [¹³N]NH₃ target is a 304 stainless steel volume of 2.5 mL also behind a havar foil and grid. A 3 mL/min flow of 5 mM EtOH provides a steady state production of [¹³N]NH₃ trapped on an Alltech IC-Na Plus cartridge. [¹¹C]CO₂ and [¹¹C]CH₄ targets are electropolished 304 stainless steel tubes (25 cm x 1.6 cm dia.), TIG welded inside the water-jacket. These targets are also sealed to the vacuum by the same havar foil/grid system. All grids are approximately 2.5 cm deep with hexagonal holes (2.5 mm across the flats, 0.3 mm septa) electric discharge-machined into aluminum.

Automated chemistry

[¹⁸F]-fluoride, [¹³N]-NH₃, [¹¹C]-CO₂, and [¹¹C]-CH₄ are transported to shielded radiochemistry equipment in the lab adjacent to the vault through narrow bore lines. Aqueous fluoride and C-11 carbon dioxide or methane are remotely unloaded via FEP and stainless steel lines, respectively, and sent to two Capintec (New Jersey) hot cells, each containing a Labview-controlled Scansys (Copenhagen) automated radiochemistry module. [¹¹C] activity can also be piped to the Waisman Institute for Brain Imaging and Research via a “tuned”² 300 meter underground PTFE pipeline. Each Scansys module contains a syringe pump-fed 2-dimensional robot with access to reagent vials, two thermally heated, air-cooled reactors, and a microwave module. Customized inserts permit reaction vessels to range in size from 500 µL to 7 mL. Robotic access is provided to additional reagents through 4 banks of 3-way valves, a needle cleaning station, and HPLC injection loop. Three Rheodyne TitanEX 7-port selector valves direct flow through cartridges for in-line separations and filtration, all monitored by miniature Centronix ZP1300 GM tubes. The HPLC
system supports up to 5 separate columns via additional switching valves and includes a column heater as well as a linear scanner gamma viewing any column with one of 8 included ZP1300 (Centronic) GM tubes. Following HPLC purification, the Scansys module also includes a custom evaporator which is capable of removing 10 mL water in ~ 1 min. for reconstitution in appropriate solvents. Drydown, as well as fluid movement throughout the module, can be accomplished with 4 MFC-regulated gas channels, currently plumbed and calibrated for argon, nitrogen, and helium flow. Each module also contains two vacuum pumps capable of pulling approximately 50 mL/min through 1 m of 1/16” ID tube.

To date, we have successfully automated syntheses of $[^{18}\text{F}]$FLT, $[^{18}\text{F}]$FES, $[^{11}\text{C}]$MHED and $[^{11}\text{C}]$DTBZ for animal studies on these systems. Yields are comparable to those obtained with our prior manual chemistries. For $[^{18}\text{F}]$FLT, yields average 10.1 ± 5.1% (decay corrected to QMA trapping, using 10 mg 3-N-Boc ABX precursor) with specific activities of 3.7 ± 1.8 Ci/umol (n=30). $[^{18}\text{F}]$FES yields average 16.9 ± 4.2% (decay corrected to QMA trapping, using 2 mg ABX precursor) with 3.8 ± 1.5 Ci/umol (n=4). Syntheses of $[^{18}\text{F}]$FMISO are planned to follow.

Conversion efficiency from $[^{11}\text{C}]$CH$_4$, produced in-target, to $[^{11}\text{C}]$MeI by recirculating loop in the new module is 70.0 ± 0.4% (n=28). Automated syntheses of $[^{11}\text{C}]$MHED and $[^{11}\text{C}]$DTBZ on the Scansys module average yields of 16.0 ± 5.8% (n=11) and 36.3 ± 11.6% (n=3) respectively (decay corrected to methylation). Specific activities for both syntheses, decay corrected to EoB, are 8.4 ± 0.3 Ci/umol. $[^{11}\text{C}]$WAY, produced manually from the $[^{11}\text{C}]$CO$_2$ target, averages 1.4 ± 0.6 Ci/umol at end of synthesis (n=8); decay correction puts EoB specific activity from this target at 9.8 ± 3.3 Ci/umol.

Conclusion

The natural evolution of production capacity at Wisconsin has been driven by the increased demand for PET tracers for molecular imaging, both in basic research and in the clinic. The new PETtrace, bunkered in new facilities, easily handles the call for conventional radionuclides, freeing up the legacy prototype CTI RDS 112 for a new life concentrating on the production of 64Cu for distribution, 18F$_2$ for electrophilic fluorination (F-DOPA, FMT), and target development for the production of orphan isotopes.

1 Roberts A D, Armstrong I S, Kay B P, Barnhart T E (2004). Improved strategies for increased $[^{18}\text{F}]$F yield via the 18O(p,n)19F reaction with thin target windows and bodies. Presentation at the 10th Semi-Annual Workshop on Targetry and Target Chemistry, Madison, WI.

Targets mounted on the UW PETtrace

Scansys Radiochemistry Box

Scansys box and interface

Capintec Hot Cells
1. Manufactured targets
 - Cheaper
 - Same yields
 - Stainless steel target experience
Production of Cl-34m via the (d,α) reaction on Ar-36 gas at 8.4 MeV.
Jonathan W. Engle, Todd E. Barnhart, Onofre DeJesus, and Robert J. Nickles
University of Wisconsin, Madison, USA

Introduction
The radioisotope 34mCl (β+, t1/2=32.2 m) is of interest to the medical community, especially in drug development. However, 34mCl production is currently limited to facilities capable of accelerating alpha particles.1 Proton-only accelerators can make use of reasonable yields for enriched 34S targets, but must contend with the poor thermal and electrical properties of sulphur and its compounds, which reach the molten state at even limited beam currents. The utility of the 20Ne(d,α)18F reaction2 suggests an alternative route to 34mCl via the corresponding noble gas, argon. The excitation function and yield measurements for 36Ar(d,α)34mCl near 8.4 MeV, the nominal deuteron energy on a PETtrace cyclotron, elude a careful search of the literature.

Test Irradiations of natArgon
A gas target (21 cm x 1.4 cm ID) was built with removable endplates for rapid removal of a quartz tube with trapped 38,34mCl- from 40,36Ar(d,α). Exploratory deuteron irradiations were conducted on a thick target of natAr 130 psig. Following irradiation, the target was "cooled" briefly to allow the overwhelming 511 keV gammas from 16O(d,n)17F in the quartz tube to decay and then flushed twice into a 1 L syringe to remove 41Ar prior to target disassembly and analysis. The quartz tube was removed and assayed with an HPGe detector (spectra shown below). Gamma spectroscopy revealed the production of 0.9 ± 0.1 mCi/uA of 38Cl (t1/2=37.2 m) and 5.1 ± 0.4 mCi/uA of 41Ar (t1/2=109 m) at end of saturated bombardment (EoSB). More importantly, the production of 34mCl in approximately 1:300 ratio with 38Cl mirrors the abundance ratios of their target isotopes.

Yield Measurements with 36Argon
Enriched 36Ar (99.993%, 1 L at STP) was obtained from Isolflex (San Francisco). The high cost (~$5000/L) of the target material necessitated cryotraping 36Ar post-irradiation in a 50 mL stainless steel vessel.3 Vacsorb greatly improved the cryorecovery of argon at -196°C (<1 mm Hg) compared to vapor pressures achievable in its absence (0.3 atm), in agreement with the Clausius-Clapeyron relation’s prediction. A second target (21 cm x 1.9 cm ID) better accomodated the width of our deuteron beam, albeit at some cost in target pressure. The 36Ar-filled target was irradiated at an initial pressure of 68 ± 1 psig by beam currents between 5 and 20 uA for 30 minutes. After the run, 10 minutes of cryotrapping recovered >99.5% of target material at -196°C. The target was vented and the quartz insert removed for analysis. To date, 12 irradiations have been completed, revealing radionuclidically clean production of desired 34mCl trapped in the quartz tube. EoSB yields and decay over more than 3 decades are shown below, averaging 1.8 ± 0.2 mCi/uA for thick-target runs, reflecting the larger ID target’s accomodation of the PETtrace deuteron beam. The target appears to thin beyond 10 uA, reducing effective yield. Phosphor plate imaging of the quartz tubes’ adsorbed activity confirms this hypothesis, as the activity peak progresses steadily towards the back of the target with increased beam currents.
Conclusion

These results suggest the possibility of subsequent labeling with 34mCl; nucleophilic test reactions to confirm the reactivity of the product will follow.

\begin{itemize}
 \item HPGe gamma spectra of 36Ar(d,alpha)
 \item HPGe gamma spectra of 36Ar(d,alpha)34mCl
 \item Decay of 34mCl vs Time (sec)
 \item 36Ar(d,a)34mCl EoSB Activity (mCi/uA) vs Beam Current (uA)
\end{itemize}

34mCl

Production of 34mCl via (d, α) on 36Ar gas at 8.4 MeV.

Expected products from a deuteron irradiation at 8.4 MeV:

- 38Cl
- 34Cl
- 36Cl

Yields for both reactions of interest are presently absent from the literature.

Experimental irradiations at 100 pSi, 8 MeV:

- 34mCl (p+p) at E_p=15 MeV
- 34mCl (37.2 m) at E_oSB = 300:1 with 2.7 mCi/µA/hr at E_oSB = 130 MeV, FWHM @ 1333 keV = 2.5 keV.

Expected reaction yields:

- 34mCl from (d, α) reaction at E_d=10 MeV, 32S(α,n)34mCl -14.66 18 mCi/µA at E_α=50 MeV
- 34mCl from (p,n) reaction at E_p=11 MeV, 34S(p,n)34mCl -6.42 12 mCi/µA
- 34mCl from (d,2n) reaction at E_d=10 MeV, 34S(d,2n)34mCl -8.64 0.3 mCi/uA/hr at E_d=10 MeV
- 35Cl from (n,2n) reaction, 34mCl -12.79 n/a
- 35Cl from (p,pn) reaction at E_p=15 MeV, 34mCl -12.79 2.7 mCi/uA/hr at E_p=15 MeV
- 34mCl from (α,n) reaction at E_α=20 MeV, 33P(α,n)34mCl -5.79 8.5 mCi/uA/hr at E_α=20 MeV
- 34mCl from (d,α) reaction, 34mCl -8.38 2127 keV
- 34mCl from (p,n) reaction, 34mCl -12.79 2.7 mCi/uA/hr at E_p=15 MeV
- 34mCl from (d,α) reaction, 34mCl -8.38 2127 keV

End reaction, a test reaction.

The University of Wisconsin, Madison

Production of 34mCl via (d,α) on 36Ar gas.
18 irradiations from 5 to 20 μA at 68 °C show activity on the top of Havar foils. Recovery >99% in 10 min after EoB.

Figure 3: Yields from 1 to 40 uA from 15 to 120 psig of Ar and beam currents from 1 to 40 uA.

Stainless and aluminum foils show activity on the top of Havar foils.

Bourdon Convectron

- Pressure: 360 psig
- Gas: Ar
- Transducer: Gridded 0.001" (Bourdon Convectron)
- Target cryotrapped following irradiation, and 30 μ (not shown)
- Beam (uA)

Target cryotrapped following irradiation.
- Pressure from 10 to 170 psig
- Target cryotrapped following irradiation.

Figure 2

- Yields from 1 to 40 uA from 15 to 120 psig of Ar and beam currents from 1 to 40 uA.
- Stainless and aluminum foils show activity on the top of Havar foils.

Figure 1

- Yields from 1 to 40 uA from 15 to 120 psig of Ar and beam currents from 1 to 40 uA.
- Stainless and aluminum foils show activity on the top of Havar foils.
Electrophilic or In-target chemistry to increase the utility of the cyclotron product immediately?

To our knowledge, this work is the first demonstration of the \(^{36}\text{Ar}(d,\alpha)^{34}\text{Cl} \) with useful yields. Using these methods, more than 50 mCi \(^{34}\text{Cl} \) has been produced in radionuclidically clean form suitable for further chemistry.

Using these methods, more than 50 mCi \(^{34}\text{Cl} \) has been produced in radionuclidically clean form suitable for further chemistry.

To our knowledge, this work is the first demonstration of the \(^{36}\text{Ar}(d,\alpha)^{34}\text{Cl} \) with useful yields. Using these methods, more than 50 mCi \(^{34}\text{Cl} \) has been produced in radionuclidically clean form suitable for further chemistry.

We gratefully acknowledge the support of NIH Grant N015433 (OTD) and NIH Radiobiological Sciences Training Grant NS054933 (OTD). We gratefully acknowledge the support of NIH Grant N015433 (OTD) and NIH Radiobiological Sciences Training Grant NS054933 (OTD).

Conclusions and Acknowledgements

WTTC XIII - Presentation Discussions

1. Pros and Cons
 - No \(^{34}\text{Cl} \) signs observed

2. Challenge: cross sections measurement
 - High reaction energy
 - \(^{34}\text{Cl} \) chemistry easier than \(^{34}\text{F} \)
 - High \(^{34}\text{Cl} \) positron energy

Future Directions

Small animal imaging to probe the strength of the C–Cl bond.

Electrophilic or In-target chemistry to increase the utility of the cyclotron product immediately.
OPTIMISATION OF AN ELECTROPLATING PROCESS TO PREPARE A SOLID TARGET FOR (p,n) BASED PRODUCTION OF COPPER-64

C. Jeffery1,2, S. Chan1, D. Cryer1, A. Asad1, RAPID Group1; R.I. Price1,3

1Medical Technology and Physics, Sir Charles Gairdner Hospital; 2Chemistry & 3Surgery, University of WA, Perth, Western Australia

Introduction
Research into the production of copper-64 from a nickel-64 solid target utilising a semi-automated solid target assembly coupled to an IBA 18/9 MeV proton cyclotron is ongoing. The target is prepared using an electroplating method adapted from McCarthy et al (1997), which uses a solution of nickel ammonium sulfate (adjusted to pH 9 with ammonium hydroxide) to plate nickel onto a gold substrate. While this method of production is sometimes very successful, it has also proved unreliable, producing poorly plated disks in approximately 50% of experiments. The irregularities observed in the nickel surface include - flaking, crazing, formation of spheres or pits, loose/powdery Ni, poorly adhered Ni, a lack of ‘lustre’ and a black deposit forming on the anode. An article from Kim et al (2009) described the black anode deposit, and suggested that ammonium hydroxide and/or ammonium sulfate added to counter residual acidity in the nickel ammonium sulphate solution was the cause. Kim et al suggested an electroplating method to resolve this issue. Further work was carried out to optimise our electroplating procedure, based on their method.

Aim
To develop a method that reliably and reproducibly generates a solid target for copper-64 production by electroplating nickel-64 onto gold; and to optimise the electroplating conditions to enable maximum nickel deposition for minimal time and use of nickel-64.

Method
Preparation of purified NiSO₄ [adapted from Kim et al (2009)]
Nickel metal is dissolved in nitric acid and evaporated to dryness. The solid is treated with sulfuric acid and dried to a yellow solid. The residue is dissolved in milliQ water and recrystallised by adding acetone. The solid is collected by vacuum filtration, and dried over vacuum for two hours, followed by drying in an oven at 120°C for a minimum of two hours. The resulting yellow-green solid is NiSO₄.

Preparation of electroplating solution
Purified NiSO₄ (0.13770g to 0.30079g) was dissolved in milliQ water (5mL, 10mL, or 15mL). Ammonium sulfate (~0.06g) was also dissolved into the solution.

Electroplating experimental conditions
Anode: initially carbon rod (rotating), then platinum rod (non-rotating)
Cathode: initially 2mm x 20mm gold disk, then 125µm x 15mm gold foil
Solution: initially nickel ammonium sulfate, pH 9, with ammonium sulfate buffer, Ni concentration ~3mg/mL (McCarthy et al, 1997); then nickel sulfate, pH 4.5, with ammonium sulfate buffer, Ni concentration ~5mg/mL (Kim et al, 2009)
Plating area: 10mm diameter, 78mm²
Current: Constant 6mA
Time: 12 hours (10 experiments, varying masses of NiSO₄), plus 6 experiments with time varied from 12-96 hours (constant mass of NiSO₄)
Results
16 experiments were conducted with nickel sulfate - 14 considered were successful.

![Graph showing amount of nickel plated versus electroplating time](image1)

Figure 1: Mass of nickel plated versus electroplating time (constant concentration of nickel in solution, 150mg NiSO$_4$ in 10mL)

![Graph showing amount of nickel plated versus concentration of nickel in electroplating solution](image2)

Figure 2: Mass of nickel plated versus concentration of nickel in electroplating solution (for constant electroplating time, 12 hours)

Discussion and Conclusion
Fourteen of the 16 NiSO$_4$ experiments resulted in a lustrous, well-adhered layer of nickel, with no black residue on the platinum anode. The two failures were the result of variation in the constant current applied to the cell, and a change in the volume of water (increased to 15mL). Some divots have been observed in the nickel surface, indicating that bubbles have adhered to the surface during plating, but they are small and not considered a defect. The electroplating solution is stable over time (ie. no precipitate formed), and it is easy to prepare. The average yield of nickel plated using NiSO$_4$ is much lower than that achieved with Ni(NH$_4$)$_2$SO$_4$ (37-63%, versus ~70-95%), which is a disadvantage.

Effect of time (constant NiSO$_4$ concentration): Figure 1 shows the amount of nickel plated plateaus rapidly. Doubling the time (12 to 24 hours) results in a 1.1x increase in Ni plated, while quadrupling the time (12 to 96 hours) only results in 1.7x more nickel plated. Run times less than 24 hours are therefore most efficient.

Effect of varying NiSO$_4$ concentration (constant time): Figure 2 shows a low yield was achieved using a volume of 5mL. One experiment using 15mL of water resulted in a poor nickel surface despite a reasonable amount of nickel plated. The best yield with minimal amount of nickel in solution was achieved with a 10mL solution of 8.5mg/mL of nickel.

Overall, we are satisfied with the reliability and reproducibility of our method.

References

Abstract

A simple method for the direct measurement of in-target produced $[^{11}\text{C}]$methane specific radioactivity is described. The method is also suitable for the production of $[^{11}\text{C}]$cyanide for radiosynthesis. Specific activities up to 13 000 GBq/μmol are reported.

Introduction

For monitoring and optimization of the specific radioactivity of in-target produced $[^{11}\text{C}]$methane it is desirable to have a simple method for measurement of the mass of carbon without having to performed a complete radiosynthesis. Quantification of $[^{11}\text{C}]$methane using gas chromatography (GC) is rather cumbersome and if using a flame ionisation detector (FID) it is necessary to wait until the activity has decayed before performing the measurement. Such a delay gives rise to the possibility of losses of methane, thus leading to an over-estimation of the specific activity. Furthermore, a reliable measurement of such small masses of methane is challenging.

$[^{11}\text{C}]$hydrogen cyanide can be easily produced on-line from $[^{11}\text{C}]$cyanide by passing over platinum at 1000 °C in the presence of ammonia. Since ammonia is produced in situ during irradiation of the $[^{11}\text{C}]$methane target by the radiolysis of nitrogen in the presence of hydrogen, this further simplifies the procedure. Cyanide can be quantified down to ppb levels by HPLC using an electrochemical detector (1) or by the use of colorimetric methods.

Experimental

Target
The target consists of a water cooled, quartz lined aluminium body (length 250 mm, i.d. 19.8 mm) (2). The target volume is 75 mL.

Irradiations
Irradiations were performed using the Scanditronix MC-32 cyclotron at Copenhagen University Hospital, Rigshospitalet. H- ions were accelerated to 17.2 MeV, giving an target entrance energy of ca. 16 MeV. The target gas consisted of ultra pure gases of 10% hydrogen in nitrogen (AGA, Sweden, grade 6.0 [>99.99995%]) . The target fill pressure was 26 bar giving a gas volume of 2L at NTP.
Analysis
Following irradiations, the gases were released from the target by simply opening a valve and transferred to a hotcell. A mass-flow controller was set at 100mL/min and the gasses were passed over 3.37g of platinum wire (20m L x 0.1mm Ø) in a 6mm ID quartz tube at 1000°C. The produced [11C]cyanide was trapped in a 20mL vial containing 20mL of pure water. After the vial an Ascarite trap (for measuring cyanide trapping efficiency) and a gas collection bag (to prevent the escape of radioactive gasses) was attached. After decay the amount of cyanide was measured using the pyridine-barbituric acid colorimetric test (Koenig reaction, EPA method 335.4-1) (3,4).

Results
Not optimized conversion from [11C]methane to [11C]cyanide were 50%. Trapping was quantitative (no radioactivity was found in the Ascarite trap) and 20GBq (n=4) of activity was trapped and the concentration of cyanide in the solution was below the detection limit (2μg/L = 77nM/L). This corresponds to a specific activity of >13 000 GBq/mol (EOB). For radiosynthesis the residual ammonia is easily removed by a trap filled with Dowex 50W (200-400 mesh) followed by Sicapent (to dry / remove water), for multi-runs, or a smoke tube (Draeger air current tube; silica impregnated with fuming sulfuric acid) for a single run.

Outlook
Experiments to increase the conversion and minimize the trapping volume are planned.

References

4) Method 335.4, Determination of total cyanide by semi-automated colorimetry, Rev.1.0, James W. O'Dell (Ed.) Inorganic Chemistry Branch, Chemistry Research Division, August 1993
Steamlined Measurement of Specific Radioactivity of in Target Produced [\(^{11}\)C]Methane by On-line Conversion to [\(^{14}\)C]Hydrogen Cyanide

Nic Gillings & Jacek Koziorowski

Why Measure Specific Activity?

- High affinity neuroreceptor ligands labelled with carbon-11 require high SA in order to avoid occupancy of binding sites with the cold ligand.
- Less than 5% occupancy is normally used as a cut-off for tracer studies.

Specific Activity of [\(^{14}\)C]Methane

- Maximum we have measured: 9 TBq/\(\mu\)mol (EOB)
- Theoretical maximum: 341 TBq/\(\mu\)mol
- \(^{12}\)C/\(^{14}\)C ratio: 38:1
- Mass of methane: 0.143 \(\mu\)g (based on 50 GBq)

Neuroreceptor Ligand Binding

Non-radioactive compound will compete for active binding sites.
Specific Activity

Measurement of Specific Activity

Experimental Setup

1. **Mass Pt Oven**
2. **10% H₂ in N₂ Flow Controller**
3. **980 ºC**
4. **100 ml/min**
5. **20 ml**
6. **Colorimetric test (König reaction)**

Figure from: Koziorowski J, Larsen P, Gillings N. A quartz-lined carbon-11 target: striving for increased yield and specific activity, Nucl Med Biol 2010, accepted manuscript

Aim: A simple method to determine SA of target gas without the need to perform a full radiosynthesis.

Solution: Online conversion to [11C]C-labelled compound and quantification with HPLC.

Quantification of Cyanide: Colorimetric methods or HPLC with fluorometric or electrochemical detection.

Sensitivity:
- **2 µg/L**
- **LOD: 0.27 µg/L**

Measurements:
- **Specific Activity** (y-axis)
- **Time (x-axis)**

Diagram:
- **Graph showing specific activity over time**

Figure:
- **Diagram illustrating experimental setup**
Results

- Irradiation for 20 min (n=4)
-\[^{11}C\]N yield: 20 GBq (EOB) in 20 ml water (ca. 50% conversion, quantitative trapping)
- Cyanide concentration: <2 µg/L (total <0.04 µg/L)
- Specific activity: >13000 GBq/µmol

Conclusions

- Online conversion to cyanide is a simple and convenient method for determination of specific activity.
- Specific activity of target gas appears to be very high (>13000 GBq/µmol)

Perspectives

- More sensitive methods for analysis of cyanide are required to truly quantify SA of target gas
- Repeat experiments to test the effect of different parameters (e.g. beam current) on specific activity may be possible with this method
- A more quantitative estimation of specific activity may be achieved by trapping first in a cryotrap then transferring to a small vial with a low helium flow
Recent advances and developments in IBA cyclotrons

Jean-Michel Geets, Benoît Nactergal, Michel Abs, Claudy Fostier, Eric Kral

IBA Molecular, IBA Technology group, www.iba-group.com

Various development and enhancement to the existing IBA cyclotron range were accomplished last year including the launch of new cyclotrons and the revival of the oxygen machine.

To reply to the strong demand of F-18 radiopharmaceuticals in PET nuclear medicine, IBA has achieved a development program on the Cyclone® 18/9 PET cyclotron with the aim of increasing beam current and reliability. The strippers were replaced by a ‘drop-in-place’ designed to ease the maintenance. The uncritical internal ion source system was doubled so as to provide redundancy and lower maintenance schedule in the Cyclone® 18 TWIN with two proton sources. Since almost all of the PET tracers are today produced by protons, the same concepts were reused to develop the Cyclone 11 TWIN compact self-shielded machine for hospital-scale production of PET tracers.

The well-know Oxygen generator, a positive deuteron machine known as Cyclone® 3d, is under redesign for installation in Japan in early 2011. The aim is to provide a continuous flow of $^{15}\text{O}_2$ without disrupting the PET production schedule of the main hospital cyclotron. The production is carried out on natural nitrogen as target with 3.6 MeV deuteron.

In the high energy range, following the Cyclone® 70 XP multiparticle machine installation in Nantes (France), a small brother was designed in the 30 MeV proton-alpha range, the Cyclone® 30 XP for Jülich (Germany). While proton (15-30 MeV) and deuteron (8-15 MeV) are produced and extracted in the well-known negative ion mode with stripping extraction in the Cyclone® 30, the positive alpha beam (nucleus of helium atom He^+) is accelerated and extracted in positive ion mode using an electrostatic deflector. The He^{2+} acceleration needs specific external source and adjustments to the cyclotron magnetic field and acceleration frequency (RF). The energy of the alpha beam will be fixed in the 29-30 MeV range to maximize At-211 production. Redesign of the magnet system was needed in order to leave free space for the alpha deflector and to reuse magnetic ‘flaps’ for field correction as it is done on the IBA-Cyclone® 18/9. Some technical challenges were solved to fit the two RF acceleration modes in the same machine with external ion sources platform for the different ions species. The innovative new RF design was patented by IBA.

The well-know Cyclone® 30 used by most of the SPECT producers worldwide was upgraded to higher current mainly to deal with the Tl-201 needs. A new external powerful H^+ ion source was used, a redesigned injection line and central region was installed onto a standard 30 MeV cyclotron. The acceleration power (RF) was upgraded to 100 kW using the IBA in-house expertise giving the power extra supply for acceleration of 2mA of proton beam. Auxiliaries systems were upgraded (extraction, collimators...) to handle the new beam power. Consequently, the high power solid target system is proposed with an optimized full process (plating, separation and recovery of isotope).
Recent advances and development in IBA cyclotrons

Redesign of the main systems

- Machine with vertical plane, self-resonating RF on top, no valleys
- Improvements from the old design (ref. Turku)
- 4 machines sold -> discontinued in 90's
- Improvements from the old design (ref. Turku)

15O generator: Main specifications

- 6 tons
- 25 kW
- Beam current: 30 µA
- Power consumption: 3.6 MeV
- lon extractions
- 14N(d,n)15O

The Oxygen generator

- Revival of the Cyclone® 3D
- One gas target
- 3.6 MeV D+ beam, ESD extraction
- 14N(d,n)15O

© 2006

Geets Jean-Michel
![Image 92x251 to 241x391](image1.png)

Cyclone® 18 – model 2010

- Redundancy
 - 8 targets with 8 extractors (x 2 foils)
- TWIN proton sources system

![Image 160x63 to 265x204](image2.png)

Introduction of the Cyclone® 11

- The self-shielded « little brother »
- 11.5 MeV proton TWIN source

![Image 252x347 to 293x404](image3.png)

Zephiro® control system for PET cyclotrons

- More automation
- More feedback and datalogging
- Full automatic production mode
- Self-tests: before batch & after maintenance
- Extended Remote diagnostics

![Image 50x457 to 244x767](image4.png)

Central region redesign, TWIN sources

- Drop-in-place strippers
- L.S. Extended lifetime
- TWIN proton sources system
- Extended Remote diagnostics
- Redundancy
- Using Cyclone 18 components & parts
 - 8 targets, 8 extractors (x 2 foils)
Cyclone® 70 in Arronax, Nantes

- Operating at specs
- We learned a lot of interesting things above the 30 MeV
What's inside the vaults

Multiparticule machine for research & 211At production

Design of Cyclone 30 XP

- Use standard magnet
- New main coils
- New internal switching with modifications
- Opening in median plane
- Flaps for field
- bi-frequency RF system w/o moving contacts

Deep Valley with flaps and pole extensions

30 MeV alpha beam on the Cyclone® 30 XP
The high current Cyclone® 30

Finally the 1.5 mA proton beam - 30 MeV machine

- Higher RF power for 2 mA beam
- Optimisation of central region inflector
- Powerful external ion source

External source + injection line
Production of therapeutic quantities of 64Cu and 119Sb for radionuclide therapy using a small PET cyclotron

H. Thisgaarda, M. Jensenb, D. R. Elemab

a Odense PET Centre, Dept. of Nuclear Medicine, Odense University Hospital, Sdr. Boulevard 29, DK-5000 Odense C, Denmark.

b The Hevesy Laboratory, Radiation Research Department, Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, P.O. 49, DK-4000 Roskilde, Denmark.

Introduction

In the recent years the use of radionuclides in targeted cancer therapy has increased. In this study we have developed a high-current solid target system and demonstrated that by the use of a typical low-energy medical cyclotron, it is possible to produce tens of GBq’s of many unconventional radionuclides relevant for cancer therapy such as 64Cu and 119Sb locally at the hospitals.

Materials and methods

The irradiations were performed using a slightly modified GE PETtrace cyclotron equipped with a beam line. The PETtrace is originally specified to deliver > 75 µA 16.5 MeV protons or > 60 µA 8.4 MeV deuterons on target but has been shown to be capable of accelerating > 200 µA protons by careful adjustment of the central region and with much attention to vacuum conditions.

The target consists of a 2 mm thick silver plate with 8 cooling fins (height 2 mm, width 1 mm) which is mounted on top of an aluminium base with a stainless steel mounting ring (see figures). The back side of the silver plate is cooled by water flow through the rectangular channels between the cooling fins (1 mm × 2 mm) with a water flow rate of 14 l/min and a water inlet temperature of ~3°C.

Two different target materials were used for the irradiations. Either enriched 64Ni for the direct production of 64Cu via the

Schematic drawing of the 6° grazing incidence target design with irradiation chamber and Ø5 mm circular collimator (right). For illustration purposes the Ø5 mm collimated proton beam is shown.
\[^{64}\text{Ni}(p,n)^{64}\text{Cu} \] reaction or \[^\text{n}\text{a}\text{t}\text{e} \text{Sn} \] to demonstrate the capability of producing high amounts of the Auger-electron-emitter \[^{119}\text{Sb} \] via the \[^{119}\text{Sn}(p,n)^{119}\text{Sb} \] reaction. The electroplating of the \[^{64}\text{Ni} \] targets were done using a \[^{64}\text{Ni} \] ammonium sulphate plating solution and the \[^\text{n}\text{a}\text{t}\text{e} \text{Sn} \] targets were made according to our newly developed method (Thisgaard and Jensen, Appl. Rad. Isot. 67, 2009) with a hot \[^{119}\text{Sn} \] potassium hydroxide solution.

The targets were irradiated several times with the 16 MeV proton beam collimated to Ø5 mm. Both target materials were initially irradiated with a net target current of 180 \(\mu \text{A} \) with a collimator spill between 10–15%, i.e. with approximately 200–210 \(\mu \text{A} \) beam current before the Ø5 mm collimator to test the thermal performance of the targets. After the irradiations the targets were stored for a few days to let the produced activity decay and then inspected with a microscope and weighted. For production yield measurements, the targets were irradiated several times with peak target currents of 150 \(\mu \text{A} \), again with a collimator spill between 10–15%, with irradiation times up to 76 minutes.

The temperature profile and the thermal induced stress (data not shown) in the silver plate were modelled using Comsol Multiphysics 3.3. The code uses a finite-element analysis (FEA) of the silver plate with 24096 mesh elements.

Results

The target was capable of withstanding the 180 \(\mu \text{A} \) Ø5 mm proton beam with both target materials tested. No sign of melting was seen on the target surfaces and no losses of target material were found from weighing the targets after EOB. This means that the surface temperature had not been above 231.93 °C during the Sn irradiations (the melting point of Sn) and probably not during the Ni irradiations either due to the higher thermal conductivity of Ni – in good agreement with the modelled results (see figure below).

From the 150 \(\mu \text{A} \) peak current irradiations the produced \[^{64}\text{Cu} \] activity was measured to be 8.2 ± 0.7 GBq at EOB for the 76 min. irradiation (mean current of 121 \(\mu \text{A} \)), corresponding to 54 ± 5 MBq/\(\mu \text{Ah} \) using 98% enriched \[^{64}\text{Ni} \] with a plated target thickness of 8.5 mg/cm\(^2\). This corresponds to the proton energy interval of 16.0 → 14.3 MeV, i.e. well above the maximum cross section of the excitation function for the \[^{64}\text{Ni}(p,n)^{64}\text{Cu} \] reaction at approximately 11 MeV.

By increasing the plated target thickness to e.g. 30 mg/cm\(^2\) of enriched \[^{119}\text{Sn} \] or \[^{64}\text{Ni} \] (resulting in a surface temperature increase of less than ~25 °C), it will be possible to produce ~46 GBq of \[^{119}\text{Sb} \] or ~174 GBq of \[^{64}\text{Cu} \], respectively, in 3 hours using 150 \(\mu \text{A} \) target current as above. In both examples, the total amount of enriched target material required to obtain the 30 mg/cm\(^2\) thickness will be less than 60 mg due to the extremely focused proton beam (Ø5 mm), thus keeping the specific activity high and the metal impurities low.

Conclusion

In the current study we have developed a high current solid target system and shown that by the use of a typical low-energy, medical cyclotron, it is possible to produce tens of GBq’s of unconventional therapeutic radionuclides locally at the hospitals.
Production of therapeutic quantities of ^{64}Cu and ^{119}Sb for radionuclide therapy using a small PET cyclotron

Presentation for WTTC 13

Helge Thisgaard, Mikael Jensen and Dennis Ringkjøbing Elema

Hevesy Laboratory, Risø National Laboratory and Odense Universitetshospital

July 2010

1. Matching the beam to the target:

- Targets for isotope production
- Matching the beam to the target

With compound nuclear reactions (dominated by one exit channel)

2. Solid targets with HIGH CURRENTS and:

- Highest power efficiency (Ci/kWh)
- Smallest target (High SA, low volume chemistry)

3. Neutron production (for p,n) and cyclotron (n,gamma) reactions

When $\frac{T}{\gamma} \approx T_{irradiation}$:

- With compound nuclear reactions (dominated by one exit channel)

Why & Isootope production?

"A beamline for the PETtrace cyclotron"

The nuclear "battery" in our vials

16 MeV 5 MeV delivers 800 Watts of kinetic energy to the target

The rest goes into heat.

Overall energy efficiency: 0.00006%

Energy efficiency of target: (200 GBq*1.5 MeV)/800W = 0.06%

Energy efficiency of a cyclotron: 800W/80kW = 1%

Only a small fraction is stored as nuclear energy

The rest goes into heat.

Presentation for WTTC 13

Using a small PET cyclotron for Radionuclide therapy

Production of Therapeutic Quantities of ^{64}Cu and ^{119}Sb and ^{119}Sb for Radionuclide therapy
6 degrees grazing incidence of a Ø 10 or Ø 5 mm beam
Target with electroplated Tin - survives 200 uA
At present we are hitting the target with 16.5 MeV. That is too high! We could use thick Ni-64 targets. Degrade or strip at lower radius?

174 GBq of 64Cu in 3 hours using 150 μA. What do we want that for? Therapy?

WTTC XIII – Presentation Discussions

1. Ag target: materials
 • May force all materials (even) screws to be Ag
 • Anodized Al as isolator: no scratches = no problems
 • Ge window + infrared thermocouple
2. Collimator?
 • 10mm, 30% loss, good cooling necessary
3. Purification
 • Identification of residuals is important
 • Be careful with benzenes, etc.
 • Be careful with benzenes, etc.

Degrading or strip at lower radius?
That is too high! We could use thick Ni-64 targets.

The calculated temperature profile on the target face for a 250 μA beam corresponding to 174 μA on the target.
The chemistry of high temperature gas phase production of methyl iodide

L. van der Vliet, G. Westera*

Veenstra Instruments, Joure, The Netherlands, *University Hospital, Center for Radiopharmaceutical Science, Zurich, Switzerland,

A methyl iodide system was set up to react iodine and methane at high temperature in the gas phase (Larsen).

$$\text{CH}_4 \uparrow + \text{I}_2 \uparrow \rightarrow \text{CH}_3\text{I} \uparrow$$

The apparatus consists of an iodine vaporizer, a high temperature (about 700º C) reactor and a Porapak-N methyl iodide trap. The length of the tube which is heated to the high temperature can be varied.

A known quantity of methane is added from an injection loop or from a methaniser which is fed with carbon dioxide from the injection loop. The methane is transported by a controlled flow of helium through a carbosphere column, which is needed to remove hydrogen from the methane (which is present when starting with methane from a cyclotron and after methanisation). Behind the iodine oven a UV spectrometer is positioned to measure the absorbance in the glass tube and the iodine absorbance is used as feedback to regulate the temperature of the vaporizer and thus control the iodine concentration (Link, Clark).

Scheme:

This way all relevant parameters are under control and known quantitatively. The initial amount of methane was chosen as 9 µl, which is the amount of carbon delivered from a cyclotron when producing carbon-11 of moderate specific activity.
The relation between the iodine concentration and the absorbance was calibrated, by collecting the iodine at a stable absorbance during a defined time and weighing the absorbed iodine.

The MeI is collected in methanol (> 90 % is known to be trapped in the first bottle) and analysed by HPLC over an ACE 5 C18 column (15 x 4.6 mm, particle size 5 µm) eluting with methanol / water 60/40 (v.v.) and UV detection (240 nm). A standard solution containing Methyliodide (MeI) and diiodomethane (MeI2) was used for calibration.

Results

The results given here are preliminary and have to be more precisely calibrated

Transport flow (He)-flow) dependence:

The MeI yield decreases at high and low transport flow. Over a broad flow range, the variation in yield was not significant.

<table>
<thead>
<tr>
<th>Various flows with a I2 abs of 0.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow [ml/min]</td>
</tr>
<tr>
<td>Peak area</td>
</tr>
<tr>
<td>MeI [µM]</td>
</tr>
<tr>
<td>Yield [%]</td>
</tr>
</tbody>
</table>

Iodine concentration dependence:

The MeI yield increases with increasing iodine gas concentration, the maximum concentration still has to be determined:

<table>
<thead>
<tr>
<th>Various flows with and I2 concentrations resulted in the following yields</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 ml/min</td>
</tr>
<tr>
<td>30 ml/min</td>
</tr>
<tr>
<td>38 ml/min</td>
</tr>
</tbody>
</table>

References

Better Understanding Chemistry

- Robust in usage
- Small footprint
- Dimensions of the reaction oven
- Low heat dissipation
- Longer usage of the iodine
- Multi pass
- Single pass
- Specific activity
- Concentration methane
- Parameters: I₂, T, Flow, H₂
- Critical points

Aim

Robust in usage
Small footprint
Dimensions of the reaction oven
Low heat dissipation
Longer usage of the iodine
Reactions

\[\text{Methaniser} \]

\[\text{Cold trap} \]

\[\text{Reaction oven} \]

\[2 \text{CH}_4 + \text{I}_2 \leftrightarrow 2 \text{CH}_3\text{I} + 2 \text{HI} \]

\[2 \text{CH}_3\text{I} + \text{I}_2 \leftrightarrow 2 \text{CH}_2\text{I}_2 + 2 \text{HI} \]

\[\text{Eluens: MeOH:H}_2\text{O}/60\%:40\% \]

Methods

- Test set up
- Two flow controllers
- Methane Injector
- Spectrophotometer
- HPLC
- Trap product in pure MeOH
- C18 column

Methods

- HPLC
- Trap product in pure MeOH
- Methane Injector
- Spectrophotometer
- Two flow controllers
- Test set up

Methods

- HPLC
- Trap product in pure MeOH
- Methane Injector
- Spectrophotometer
- Two flow controllers
- Test set up
Parameters compared: I₂, Flow and Me concentration

Results

Temperature dependence:

Acknowledgement

from Veenstra Instruments

• Calle Sjoberg
• Teake Bijkerk
• Jaring Huitema
from COSAB engineering

Acknowledgement

• Jaring Huitema
• Teake Bijkerk
• And others colleagues
from Veenstra Instruments
1. Challenge: Why not make a nano-reactor?
Target Performance – [11C]CO\textsubscript{2} and [11C]CH\textsubscript{4} Production

Semi Helin1, Eveliina Arponen1, Johan Rajander2, Jussi Aromaa2, Olof Solin1,2

Turku PET Centre, University of Turku1 and Åbo Akademi University2, Turku, Finland

Introduction

A systematic investigation on N2 (0.1 \% O2) and N2 (5 \% H2) target performances is presented in terms of saturation yields as function of target body temperature and irradiation current.

Materials and methods

Identical aluminium target bodies were used for both [11C]CO\textsubscript{2} and [11C]CH\textsubscript{4} productions. The conical chambers measured 11.2 x 90.0 x 19.4 mm (front I.D. x length x back I.D.) and 16.9 cm3. The inlet foil was supported by a metallic grid having a transparency of ~ 70 \%. In all irradiations the chambers were loaded at 20 \degreeC to 35 bar pressure and irradiated for 20 minutes. Variable parameters were the target body temperature (10, 40, 70 \degreeC), regulated with a cooling fluid circuit and a heat exchanger, and the irradiation current (10, 20, 30, 40 \textmuA). For the data points n = 2. The proton beam was generated with a fixed energy (17 MeV) negative ion cyclotron (CC 18/9, D.V. Efremov Scientific Research Institute of Electrophysical Apparatus, St. Petersburg, Russia).

The irradiation product was directed to a hot cell via a capillary and valve arrangement and a mass flow controller. The main 11C-species was first separated from the target gas using a selective trap: Porapak N column in Ar(Liq) for the [11C]CH\textsubscript{4} and an Ascarite column at room temperature for the [11C]CO\textsubscript{2}. The traps were placed in a dose calibrator and the irradiated gas that passed a trap was collected as gas. The collected volume was readable from the gas trap and an aliquot could be taken for radioactivity measurement.

The 11C main product yield was thus measured on-line with the dose calibrator containing the first trap. The content of 11C and 13N in the second trap was determined by iterating the decay curve fitting to the radioactivity values at early and late time points. Yields for the 11C main product and 11C and 13N by-products were calculated as saturation activities (A\textsubscript{sat} [GBq/microA]).

![Figure 1. Pressure versus irradiation current at different target body temperatures](image-url)
Results
The pressure increase as function of beam current was similar for both targets (figure 1). A slight difference was observed at higher currents.

The main component yield is practically constant for the $^{[11]C}CO_2$ (figure 2, pane A) across the range of varied target body temperature and irradiation current. The $^{[11]C}CH_4$ yield (figure 2, pane B) is directly proportional to the temperature and inversely proportional to the current.

$^{[11]C}CO$ generation in the N_2 (0.1 % O$_2$) target is low and inversely proportional to temperature and constant across the investigated current range. $^{[11]C}$by-product generation is negligible in the N_2 (5 % H$_2$) target.

^{13}N generation is constant across the range of current and temperature using either N_2 (0.1 % O$_2$) or N_2 (5 % H$_2$) target gases. However, ^{13}N production is slightly lower for the N_2 (5 % H$_2$) target.

Figure 2. Yield of the main component as a function of irradiation current at 10 – 70 °C.

Conclusions
Production of $^{[11]C}CO_2$ is practically independent of the irradiation current and the target body temperature, whereas $^{[11]C}CH_4$ production was found to be strongly dependent on the current and target body temperature.

Acknowledgement
The study was conducted within the "Finnish Centre of Excellence in Molecular Imaging in Cardiovascular and Metabolic Research" supported by the Academy of Finland, University of Turku, Turku University Hospital and Åbo Akademi University.

References
Introduction

Target chamber temperature control

Experimental setup,

- Fixed: target composition, p, etc.
- Varied: I, t, T, etc.

Systematic investigation of selected parameters

Aim

- Better yields with higher body temperature
- Theoretical 11C yields

Experimental setup, p.p., target chamber temperature control

<table>
<thead>
<tr>
<th>Cyclotron</th>
<th>E(H+)</th>
<th>I(H+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESTEROY CC18/9</td>
<td>17.0 ± 0.1 MeV</td>
<td>up to 40 µA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chambers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conical aluminium target</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid</td>
<td>16.9 cm</td>
</tr>
<tr>
<td>Foil SS 321</td>
<td>25 µm</td>
</tr>
<tr>
<td>Target chamber</td>
<td>11.2 x 19.4 x 90.0 mm</td>
</tr>
</tbody>
</table>

Turku PET Centre, Finland
Jussi Aromaa, Olof Solin, Eveliina Arponen, Johan Rajander, Jussi Aromaa, Olof Solin, Eveliina Arponen, Johan Rajander, Turku PET Centre, Finland

WTTX XIll, Risø, 28.7.2010, #25
Investigated parameters

Category	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
Time (min)	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0	2.1	2.2	2.3	2.4	2.5	2.6
Activity (GBq)	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	21.0	22.0	23.0	24.0	25.0	26.0
Results, set A	19.6	21.4	10.0	18.0	22.6																					
Results, set B	19.6	21.4	10.0	18.0	22.6																					
Average	19.6	21.4	10.0	18.0	22.6																					
SD	0.3	0.4	0.03	0.8	0.3																					
RSD (%)	1.4	2.0	0.3	4.3	1.1																					

Results, set B

Investigated parameters

System Repeatability

Samples available

Irradiated target gas

- 2nd trap for the unretained
 inside a dose calibrator
- 1st trap for the main \(^{11}\text{C}\)-product

Produced radioactivity

- Exact actual values for various parameters

Irradiation log file

Measurements & data collection

Experimental setup
Conclusions

Knowledge for optimization and design
• balance of consuming reactions
 hydrogen reserve
 current dependence
 wall effect
 temperature dependence

For 11C4 production:
• varied range of parameters
 $[^{11}$C$]$CO$_2$ production quite constant within

Predicted yield of $[^{11}$C$]$CH$_4$ as function of

Temperature and Irradiation current

N2 ~ I
11C4 ~ I

11C + 2H$_2$ \leftrightarrow 2NH$_3$

Reactions complementary for H2 Current dependent factor

Semitheoretical model of the A predicted $[^{11}$C$]$CH$_4$
This study was conducted within the “Centre of Excellence in Molecular Imaging in Cardiovascular and Metabolic Research” supported by the Academy of Finland, University of Turku, Turku University Hospital and Åbo Akademi University.

1. Low yield
 • Can 11CH be produced but stay in target walls?
 • Can CH be produced but stay in target walls?
 • Can gas quality/quantity or temperature help?
A Solid 114mIn Target Prototype with Online Thermal Diffusion Activity Extraction- Work in Progress
Jonathan Siikanena,b and Anders Sandellb

aLund University, Medical Radiation Physics, Barngatan 2:1, 221 85 Lund, Sweden
bUniversity Hospital in Lund, Radiation Physics, Klinikgatan 7, 221 85 Lund, Sweden

Introduction
A solid target system is under development for indium isotope production. Pure 114mIn ($T_{1/2}=45$ d, $E_γ=190$ keV, 15.6%) can be produced from proton irradiation on natural cadmium foils if the simultaneously produced 110In-111In activity is allowed to decay several days. 114mIn decays to 114In ($T_{1/2}=71.9$ s, $β^-=99.5$%). This work focuses on 114mIn production/extraction.

Material and methods
A target holder was constructed to match a MC 17 Scanditronix cyclotron with a wide beam. The beam fits into a collimator of 40x10 mm2. The foil holder is a 30° slanted cooling/heating block with a three side frame mounted to the beam strike side (fig 4). On this frame a 25 µm niobium foil is placed to create a water tight cavity, of some ml volume, between the niobium foil and cooling/heating block. In this cavity the cadmium foils are placed. The slanting gives a beam strike area of 40x20 mm2. This area is cooled with a 1.5 mm thick, 3 l/min water film.

The system was loaded with natural cadmium foils and bombarded with 45 µA protons, under helium flush. After irradiation, the foils were heated to 280-310°C for 1 to 2 hours under argon flush in the cavity. The heating was performed with two heating elements (L=40 mm, $ø=6.5$ mm, $P=160$ W each) mounted symmetrically on the long sides to the beam strike area (fig 3). The temperature was measured, with two PT100 sensors (9.5x1.9x1.0 mm, -70…+500°C) mounted on the sides (fig 4), and displayed/controlled with two Shimaden RS32 controllers. The side temperatures were calibrated to the actual temperature under the cadmium foil with another PT 100 sensor.

The activity extraction was made with a thermal diffusion technique [1]. This technique is based on heating close to the melting point of cadmium (320°C). At this temperature, the produced indium isotopes (melting point 150°C) are diffusing in the cadmium matrix. Gradually over time, the indium atoms concentrate on the foil’s surface and can then be etched off with a weak acid (0.05 M HCl). The acid was pumped in and out with a peristaltic pump.
Fig 4. The foil is squeezed and stabilized into place under the flush tubes. This view is covered with a 25 µm Nb foil. HCl is pumped in/out from below, in the cavity between the back plate and the Nb-foil. The Cd-foils are mounted on an Al-fork with a silicone adhesive.

E_p on cadmium foils is ~12.3 MeV. 100 and 50 µm cadmium foils slanted 30° degrades 12.3 → 9.2 and 12.3 → 10.9 MeV. This correspond to theoretical \(^{114m}\text{In}\) activity yields of 0.2 MBq/µAh and 0.08 MBq/µAh for natural\(^1\) cadmium foils [2].

Preliminary Results

Low activity yields indicated that a great portion of the beam had missed the actual target, i.e. the cadmium foil. Activity yields will be presented at the conference when new irradiation has been performed. Separation yields on the other hand are valid and are given in table 1.

Table 1: Extraction yields were either measured with a Capintec CRC 120 dose calibrator or a HPGe detector. Etching time was 1-2 min.

<table>
<thead>
<tr>
<th>Foil #</th>
<th>Thickness (µm)</th>
<th>Irradiation Time (min)</th>
<th>Heating time (min)</th>
<th>Extraction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T116</td>
<td>100</td>
<td>~6.3</td>
<td>128</td>
<td>41</td>
</tr>
<tr>
<td>T117</td>
<td>100</td>
<td>~6.8</td>
<td>120</td>
<td>54</td>
</tr>
<tr>
<td>T118</td>
<td>100</td>
<td>~6.8</td>
<td>60</td>
<td>44</td>
</tr>
<tr>
<td>T119</td>
<td>50</td>
<td>~6.7</td>
<td>120</td>
<td>41</td>
</tr>
<tr>
<td>T122</td>
<td>100</td>
<td>~7.0</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>T123</td>
<td>100</td>
<td>~6.8</td>
<td>120</td>
<td>49</td>
</tr>
<tr>
<td>T124</td>
<td>50</td>
<td>~6.7</td>
<td>120</td>
<td>56</td>
</tr>
</tbody>
</table>

Discussion

It was found that thermal diffusion extraction of indium from cadmium foils, which only requires temperatures around 300°C, is practically doable direct in the target without any dismounting of foils after irradiation. About 40-50% of produced activity could be extracted with heating times of 1-2 hours. Natural cadmium material for one target cost about 10 Euros.

Acknowledgements:

Thanks to Jan Hultqvist, University Hospital Lund, for machining the target pieces.
Thanks to Professor Hans Lundqvist, Professor Vladimir Tolmachev and Dr Lars Einarsson Uppsala University for the separation technique and discussions.

References:

[2] IAEA Recommended cross sections for \(^{114}\text{Cd}(p,n)\(^{114m}\text{In}\) reaction (http://www-nds.iaea.org/radionuclides/cd4p4in0.html)

\(^1\) The yields are calculated to correspond to the abundance of \(^{114}\text{Cd}\) in natural Cd foil i.e. 28.73 %
Background

- Long-lived isotope for therapy. 114mIn is listed by IAEA as an emerging therapeutic isotope.

- Remote activity handling to decrease dose burden to personnel.

- A solid target system for 114mIn long-lived isotope for therapy. 114mIn is listed by IAEA.

Target

- Target mass ~ 1 g.

- Temperature-resistant silicon adhesive (316 °C).

- Mounted to an aluminum fork with a high-temperature-resistant silicon adhesive (316 °C) 100 µm cadmium foils 29% 114Cd. $^{114}(p',\gamma)_{114m}$In.

- Recommended cross-sections for $^{114}(p',\gamma)_{114m}$In reaction.

Data

- Intensity: %

<table>
<thead>
<tr>
<th>Energy (keV)</th>
<th>Intensity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>190</td>
<td>15.6</td>
</tr>
<tr>
<td>558</td>
<td>3.2</td>
</tr>
<tr>
<td>725</td>
<td>3.2</td>
</tr>
</tbody>
</table>

- 114In ($T_{1/2} = 72$ s) β^- = 99.5%
 $EC = 0.5\%$

- 114Cd ($T_{1/2} = 29\%$ 114mIn) β^- = 99.5%
 $EC = 0.5\%$

- Data is from: Nuclear Data, "Nuclear Science and Applications" (http://www.nndc.bnl.gov/mird/).

Work in Progress

- Thermal diffusion activity extraction online with 114mIn target prototype.
Activity extraction

- Remote handling to avoid personnel doses
- Over time the indium atoms concentrate on the foil and can then be etched off with a weak acid (0.05 M HCl)

Material

- Pure indium (melting point: 157°C)
- Pure cadmium (melting point: 320°C)
- Coating activity extraction with thermal diffusion

Target Site

- Target holder
- Cooling/heating block
- Water flow: 3 l/min
- Heating block with a 1.5 mm thick

Method

1. Introduction with 30-40 μA (2-8 μAh) protons
2. After EOB: Water cooling and He-flush switched to Ar-flush
3. Heating close to 300°C for 1-2 h and then cool down to about 30°C
4. Foil is etched with 5-6 ml of 0.05 M HCl for about 2 min

Controllers

- Displayed/controlled with two Shimaden RS32
- PT100 sensors (9.5x1.9x1.0 mm, -70...+500°C)
- Two heating elements
- 3 l/min water flow
- Cooling block with a 1.5 mm thick

Schematic figure

- Process in a roll
- Target site
- Material
- Controllers
- Activity extraction
Results

• First set of experiments gave 40–50% extraction yield (\(Y = \frac{1}{2} T_1 \text{ Key} (90.6 \%) \) and \(V = \frac{1}{2} 45 \text{ Key} (94.1 \%) \))

- B = 62% (110In (T1/2=69 min))

In the future

Discussion

• It was found that thermal diffusion extraction of indium from cadmium foils, which only requires temperatures around 300°C, is practically doable direct in the target without any dismounting of foils after irradiation.

• Natural cadmium material for one target cost about 10 Euros

• Low activity yields (about 20% of theoretical) needs further investigation.

• Dead times > 4%

<table>
<thead>
<tr>
<th>TBP</th>
<th>21</th>
<th>35</th>
<th>49</th>
<th>52</th>
<th>65</th>
<th>79</th>
<th>92</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>(%)</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Time (min)</td>
<td>22</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
</tbody>
</table>

Table 2: \(110In \) activities and separation yields were quantified with HPGe detector.

In this set all foils were heated for 2 h at 300°C, holder etc.

Heating 280–310°C (some problems with Pt100)
1. Why not a Niobium target?
 - Not tried

2. Diffusion/Extraction
 - Process known in Russian literature
 - Stack could be used, but difficult to get the acid in there
Upgrade of a Control System for a Scanditronix MC 17 Cyclotron

Jonathan Siikanena,b, Kaj Ljunggrenb and Anders Sandellb
aLund University, Medical Radiation Physics, Barngatan 2:1, 221 85 Lund, Sweden
bUniversity Hospital in Lund, Radiation Physics, Klinikgatan 7, 221 85 Lund, Sweden

In order to extend the life time of the relatively old Scanditronix MC17 cyclotron (built 1980) an upgrade to the control system was commissioned. The existing system is a PM 550 Texas Instruments. It consist of a Central Control Unit (CCU, 4 KB), a programmer, 6 MT input(170)/output(120) modules (fig 1), 7MT analog input(16)/output(12), a 7MT parallel input(4)/output(4) module and a control consol interface (fig 3). The programming is ordinary ladder logic. The system works well but the lack of spare CCU:s forced an upgrade to the system.

The choice was the CTI 2500 system due the existing special interface card 505-5190 B. This card makes it possible to keep, and avoid rewiring of, all the 6 MT modules. CTI-2558/2562 N analog input/output modules replaced the old ones. The ADC:s were connected in parallel to the old ones. The old DAC:s and the new DAC:s were connected to a toggle switch. This simple rewiring was done in less than five hour. The 7MT parallel input/output were only used for display function and could be omitted in the new system. The installation makes it possible to change between the systems within less than 5 minutes. The CTI system runs under CTI P-SM505-CW N software (505 Workshop Single License). A new interface was written in Visual Basic instead of using a commercial SCADA program. The interface was used on a PC lap top. The upgrade was performed in collaboration with a Danish company Green Matic. Green Matic made the ladder programming. The total cost of the upgrade was less than 20 000 Euros. Testing and debugging of the new system took one day.

Fig 1: The 6MT modules
Fig 2: The new CTI system (In order from left: Power Supply, CPU, Interface card, 4 Analog 8 Channels IN/OUT cards)
Fig 3: The PM550 control consol
Fig 4: New interface written in visual basic
New software for the TracerLab Mx

D. Fontaine², D. Le Bars³, D. Martinot¹, V. Tadino⁴, F. Tedesco¹, G. Villeret⁴

1. 49h, 23 Rue du Vieux Mayeur, 4000 Liège, Belgium
2. Eosis, 33 Rue Lefebvre, 7000 Mons, Belgium
3. Cermep, 59 Bvd Pinel, 69003 Lyon, France
4. ORA, 337 Rue de Tilleur, 4420 St Nicolas, Belgium

Introduction: With almost 800 systems installed all over the world, the Coïncidence/TracerLab Mx (General Electric, USA) is still the best seller among synthesizers for [¹⁸F]FDG production. This device is approved by relevant Authorities for most of the Marketing Authorizations and used in a GMP environment to produce pharmaceutical grade fluorodeoxyglucose. When FDG started to be commercialized, private laboratories were approved by the Authorities as “mono-product” producers allowed to prepare, sell and deliver only FDG. Further, following the increasing market demand for other radiopharmaceuticals, they were solicited to produce already published tracers under special license and under specific orders for approved clinical protocols. Today, more and more producers are very far in the development of new tracers and on their way to submit Marketing Authorizations.

Objective: On one hand, most of the production laboratories must adapt their license and organization to become “multi-product” and one major step of the file update is the demonstration that in one room, several different synthesis are managed at no risk for the final product (schedule, cross contamination, ...). On the other hand, most of technician teams are trained on the TracerLab Mx and the switch to any other system may easily take up to several months to recover the same reliability. Today, by using the TracerLab Mx in its original configuration, the above mentioned two points are not under control, mostly due to the inadequacy of the original software.

Features:

The purposes of a new software development were:

1) Availability of specific folders for each different produced radiopharmaceuticals
2) Use of kits commercially available from ABX (Dresden, Germany) for NaF, FLT, F-Miso, FET, F-acetate and F-choline
3) Avoidance of sequence problems, with reset of the PLC memory between each run
4) Specific kit test dedicated to the molecule
5) Display a specific flow path layout for each molecule
6) Creation of a specific report corresponding to the name of the molecule
7) Building of data base in order to manage and optimize the preventive maintenance
8) Implementation of different level of users that can log into the system (administrator, operator,...)
9) Safe and secure control of the TracerLab Mx from any computer through secured LAN (cabled and/or wifi) or secured internet connection
10) Open updatable list of compounds

Other useful features added to the software:

11) Addition of a 5th radioactivity detector
12) Possibility to connect a UV detector
13) Control of the 8 outputs still available on the back of the Mx
14) For the user willing to run synthesis including HPLC purification, dedicated screen displaying HPLC UV and radio detection, “Collect” and “Stop collect” button and the possibility to control an “Add On Reform”

Upgrade Procedure:

The upgrade of an existing TracerLab Mx is quite simple:
- Replacement of the RS232 cable by an RJ45 cable
- Replacement of the PLC control board
- Installation of a control server and a WIFI router

From that configuration, any computer loaded with standard browser (Firefox for example), can control the TracerLab Mx.

User Procedure:

Step 1:

Start WebBrowser → Connect machine http://10.100.10.1 → Login → Select Molecule in the list

Step 2

Enter batch Data → PLC Reset → Automatic Upload of the correct sequence

Step 3

HW Test → Kit Test → Synthesis → Report → DB Recording

Results:

<table>
<thead>
<tr>
<th>Kit Only</th>
<th>Duration</th>
<th>Uncorrected Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaF</td>
<td><10 min</td>
<td>Quantitative</td>
</tr>
<tr>
<td>FLT</td>
<td>54 min</td>
<td>21%</td>
</tr>
<tr>
<td>F-Miso</td>
<td>54 min</td>
<td>22%</td>
</tr>
<tr>
<td>F-choline</td>
<td>32 min</td>
<td>17%</td>
</tr>
<tr>
<td>FET</td>
<td>54</td>
<td>17%</td>
</tr>
<tr>
<td>F acetate</td>
<td>42</td>
<td>39%</td>
</tr>
<tr>
<td>FDG</td>
<td>26</td>
<td>61%</td>
</tr>
</tbody>
</table>

HPLC

<table>
<thead>
<tr>
<th></th>
<th>Duration</th>
<th>Uncorrected Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPPF</td>
<td>68 min</td>
<td>21%</td>
</tr>
<tr>
<td>FLT</td>
<td>40 min</td>
<td>39%</td>
</tr>
<tr>
<td>Fallypride</td>
<td>Under Progress</td>
<td></td>
</tr>
<tr>
<td>Licensed 1</td>
<td>Under Progress</td>
<td></td>
</tr>
</tbody>
</table>

Conclusion:

By using the new software the Tracer Mx has now become a flexible platform dedicated not only to FDG production, but also to most of the fluorinated tracers with clinical demand.
WHY?

FDG only!

Other kits available but...

5. Monitoring
4. Launch synthesizer
3. Visualize
2. Select
1. Web connect

HOW?

in less than 1 hr?

New software for the Tracerlab MX

AND NOW?

1. Web connect
2. Select
3. Visualize
4. Launch synthesizer
5. Monitoring

1. Change/Replay
2. Black box
3. CPU
4. Replace 16/32 I/O
5. Black box (server)

TIPS

© copyright ORA 2010

13th International Workshop on Targetry and Target Chemistry
Risø National Laboratory, Roskilde, Denmark – 26 July 2010
1. web connect
2. select
3. launch synthesis
4. visualize
5. monitoring

AND NOW?
Performance = high yield synthesis
Flexibility = multi-tracers, collaborative
Efficience = innovative software (expert system)
Compliance = radiopharmaceutical cGMP
Collaboration = worldwide network
Radiopharmaceutical experience
Development
Research
New Products
Production
Feedback
PRODUCTION OF NO CARRIER ADDED 64Cu & 55Co FROM A NATURAL NICKEL SOLID TARGET USING AN 18MeV CYCLOTRON PROTON BEAM

A. H. Asad12, C. Jeffery1, S.V. Smith3, S. Chan1, D. Cryer1 & R. I. Price14

1Radiopharmaceutical Production & Development (RAPID) Laboratory, Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, Australia
2Imaging and Applied Physics, Curtin University of Technology, Perth, Australia
3Australian Nuclear Science and Technology Organisation (ANSTO), Sydney, Australia
4School of Physics, University of Western Australia, Perth, Australia

INTRODUCTION: There is growing interest in the Australian research community for new PET radioisotopes with relatively long half lives. 64Cu is a candidate, since; (i) it can be produced in cyclotrons found in a medical setting; (ii) the translational energy of its emitted positron is moderate (0.65MeV), and; (iii) its half life is sufficiently long (12.7h) to be used to radiolabel a range of molecular targeting agents (including monoclonal antibodies) and for the isotope to be transported across continents.

The RAPID Lab produces $[^{18}$F]FDG on a daily basis (~4500 doses per year), plus other clinical radiopharmaceuticals based on biogenic PET isotopes. The radioisotopes for these products are produced using standard targetry of an 18/9 MeV IBA cyclotron. As the productions of 64Cu and 89Zr both require an external beam, the RAPID team has devised a purpose built solid targetry system to suit this setting. The new targetry system consists of a 30cm long external beam line fitted with a 50μm Havar vacuum window plus an independent vacuum and cooling system (chilled water plus helium) for the target and beam degrader. Proton energies and currents can be controlled between 4–17.3MeV (using beam degraders) and 10-30μA, respectively.

The preferred approach for the production of 64Cu using a medium-energy cyclotron uses enriched 64Ni as the target in the reaction 64Ni(p,n)64Cu. A yield of 248MBq/μA.h has been reported [2]. However, for a natural nickel (natNi) target the yield is considerably less, since the abundance of 64Ni in natNi is only 0.91%. This study investigated the production and purification of the radionuclides 64Cu, 55Co and 57Co, (the latter two arising from 58,60Ni[p,α]55,57Co) using a natNi thin-foil target, as a preliminary ‘proof-of-principle’ study prior to the bombardment of more expensive isotopically enriched targets formed by electroplating 64Ni onto a gold substrate.

METHODS: A high purity natNi foil (99.99%) of nominal thickness 50μm and 15mm diameter was weighed on a 5-decimal-place balance to determine true average thickness prior to proton bombardment. Three separate runs were performed. The target foil was cooled by both chilled water and helium. The accessible proton beam energy of 17.3 MeV was moderated to 11.7MeV at the target surface by using a 1020μm graphite degrader placed in the collimator of the solid targetry beam line.

Bombardment elapsed times were 8, 19, and 20 minutes with beam currents of 10.4, 19.1 and 14 μA, respectively. Beam currents were uncorrected for secondary electron emission. At end of bombardment (EOB) the irradiated nickel target was left to decay for 3-4 hours to remove the short half-life radioisotopes 60Cu & 61Cu.

The target was then dissolved in concentrated acids at 100°C and then loaded on to either a cation or an anion exchange column (1x 20cm). Nickel from the target plus Cu and Co radioisotopes were separately eluted using a range of solvents mixed with
hydrochloric acid. The fractions containing the radioisotopes of Cu and Co were characterized for radionuclidic purity and activity by calibrated gamma spectrometry (cryo-HPGe gamma spectrometer; Genie2000 software).

RESULTS: The table summarises the activities for ^{64}Cu, ^{57}Co and ^{55}Co for each nat Ni target for 3 consecutive runs. It compares the activity for each radioisotope (corrected to EOB) with values calculated using reaction cross sections reported in the literature [1, 2 and 3].

Table: Activities for ^{64}Cu, ^{55}Co and ^{57}Co, as a percentage of their respective predicted values calculated using published reaction cross sections plus targetry and beam parameters.

<table>
<thead>
<tr>
<th>Nickel Foil Thickness</th>
<th>Proton Energy; Current</th>
<th>Irradiation Time</th>
<th>^{64}Cu</th>
<th>^{55}Co</th>
<th>^{57}Co</th>
</tr>
</thead>
<tbody>
<tr>
<td>(µm)</td>
<td>(MeV; µA)</td>
<td>(min)</td>
<td>(% of Predicted Activity) [using ref. 2]</td>
<td>(% of Predicted Activity) [using ref. 1]</td>
<td>(% of Predicted Activity) [using ref. 3]</td>
</tr>
<tr>
<td>46</td>
<td>11.7 ; 10.4</td>
<td>8</td>
<td>80.2</td>
<td>94.8</td>
<td>86.4</td>
</tr>
<tr>
<td>47</td>
<td>11.7 ; 14.0</td>
<td>20</td>
<td>84.4</td>
<td>84.8</td>
<td>88.7</td>
</tr>
<tr>
<td>47</td>
<td>11.7 ; 19.1</td>
<td>19</td>
<td>64.7</td>
<td>78.6</td>
<td>97.2</td>
</tr>
</tbody>
</table>

CONCLUSION: We have performed preliminary ‘proof-of-principle’ experiments (prior to the use of an enriched target) on the production of Cu and Co isotopes using a nat Ni target and a medium-energy cyclotron in a medical setting. The activities produced are in reasonable agreement with predicted activities. For the three runs, activities of ^{64}Cu ranged from 64.7 to 84.4% of the predicted values calculated from [2]. Activities of ^{55}Co and ^{57}Co varied from 78.6% to 94.8% and 86.4% to 97.2%, respectively, of those values calculated from [1,3]. Work is proceeding to understand the variability in results between runs, particularly in the ratio of ^{55}Co to ^{57}Co, since these isotopes are eluted under identical chemical conditions.

REFERENCES

Production of No Carrier Added 64Cu & 55Co

From a Natural Nickel Solid Target Using an 18MeV Cyclotron Proton Beam

A. H. Asad1,2, C. Jeffery1, S.V. Smith 3, S. Chan1, D. Cryer1 & R. I. Price1,4

1Radiopharmaceutical Production & Development (RAPID) Laboratory, Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, Australia
2Ida Ing Applied Physics, Curtin University of Technology, Perth, Australia
3Australian Nuclear Science and Technology Organisation (ANSTO), Sydney, Australia
4School of Physics, University of Western Australia, Perth, Australia

Introduction

Rapid advances in radioimmunodiagnosis & therapy have focused interest on different production strategies for the longer lived PET isotopes such as 64Cu. Over the past two decades, cyclotron-based production of 64Cu has been optimized, and 64Cu is now being produced at several medical and research facilities (Szelecsenyi et al., 1993, McCarthy et al., 1997 & Avila et al., 2007).

The three decay paths of 64Cu are:
- 64Ni (stable) with emission of β- (17.86%) & EC (42.63%)
- 64Zn (stable) with emission of β- (39.03%)
- 64Ni(p,n)64Cu

The most common path for the production of 64Cu is:
- 64Ni(p,n)64Cu

It requires a medium energy cyclotron; often available in a major hospital. Use of natNi targets yields more complex mixture of radioisotopes.

The 64Ni is of low abundance (1%) and must be enriched prior to use.

It requires a medium energy cyclotron; often available in a major hospital.

64Ni(p,n)64Cu

The production strategies for the production of 64Cu is:

• 64Ni(d,2n)64Cu

(42.63%) and (39.03%) and
• 64Ni(p,n)64Cu

EC

64Cu decays via two paths:

64Cu

89Zr

1000

Excitation Functions (cs) for Selected 64Cu Production Strategies

Proton or Deuteron Energy (MeV)

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

1000

Excitation functions for production 64Cu
Aims

- To re-evaluate cyclotron based production of 64Cu
- To test feasibility of the co-production & purification of 64Cu & 55Co from proton bombardment of natNi, partly aiming at reducing cost of targetry

Isotopic Abundances of Ni Targets

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Abundance</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>60Ni</td>
<td>26.10</td>
<td>Tanaka, 72</td>
</tr>
<tr>
<td>61Ni</td>
<td>3.59</td>
<td>Goodfellow, UK</td>
</tr>
<tr>
<td>62Ni</td>
<td>7.02</td>
<td>Szelecsenyi, 93</td>
</tr>
<tr>
<td>63Ni</td>
<td>1.36</td>
<td>Ewart, 64</td>
</tr>
<tr>
<td>64Ni</td>
<td>94.8</td>
<td>Kaufman, 60</td>
</tr>
<tr>
<td>65Ni</td>
<td>0.27</td>
<td>Szelecsenyi, 93</td>
</tr>
</tbody>
</table>

Energy (MeV) vs. Cross Sections (mb)

Cross sections (σ) for natNi(p,x) reactions

<table>
<thead>
<tr>
<th>Energy (MeV)</th>
<th>0.75</th>
<th>1.00</th>
<th>1.25</th>
<th>1.50</th>
<th>1.75</th>
<th>2.00</th>
<th>2.25</th>
<th>2.50</th>
<th>2.75</th>
<th>3.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>60Ni(p,x)60Cu</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61Ni(p,x)61Cu</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62Ni(p,x)62Cu</td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63Ni(p,x)63Cu</td>
<td>1.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64Ni(p,x)64Cu</td>
<td>1.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65Ni(p,x)65Cu</td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66Ni(p,x)66Cu</td>
<td>2.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67Ni(p,x)67Cu</td>
<td>2.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68Ni(p,x)68Cu</td>
<td>2.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69Ni(p,x)69Cu</td>
<td>3.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of Products from Reactions

- natNi(p,x)60Cu/55Co/64Cu

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Isotope</th>
<th>Energy (MeV)</th>
<th>Cross Section (mb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60Ni(p,n)60Cu</td>
<td>60Ni</td>
<td>7.02</td>
<td>1791.60</td>
</tr>
<tr>
<td>61Ni(p,n)61Cu</td>
<td>61Ni</td>
<td>3.10</td>
<td>656</td>
</tr>
<tr>
<td>55Co(p,α)55Co</td>
<td>55Co</td>
<td>1.36</td>
<td>931.30</td>
</tr>
<tr>
<td>57Co(p,α)57Co</td>
<td>57Co</td>
<td>0.27</td>
<td>1408.40</td>
</tr>
<tr>
<td>64Cu(p,α)64Cu</td>
<td>64Cu</td>
<td>64Ni</td>
<td>94.8</td>
</tr>
</tbody>
</table>

Cross sections (σ) for natNi(p,x) reactions

- natNi(p,x)60Cu/55Co/64Cu

<table>
<thead>
<tr>
<th>Energy (MeV)</th>
<th>0.67</th>
<th>0.77</th>
<th>0.87</th>
<th>0.97</th>
<th>1.07</th>
<th>1.17</th>
<th>1.27</th>
<th>1.37</th>
<th>1.47</th>
<th>1.57</th>
</tr>
</thead>
<tbody>
<tr>
<td>60Ni(p,x)60Cu</td>
<td>0.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61Ni(p,x)61Cu</td>
<td>0.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62Ni(p,x)62Cu</td>
<td>0.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63Ni(p,x)63Cu</td>
<td>0.97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64Ni(p,x)64Cu</td>
<td>1.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65Ni(p,x)65Cu</td>
<td>1.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66Ni(p,x)66Cu</td>
<td>1.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67Ni(p,x)67Cu</td>
<td>1.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68Ni(p,x)68Cu</td>
<td>1.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69Ni(p,x)69Cu</td>
<td>1.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of Products from Reactions

- natNi(p,x)60Cu/55Co/64Cu

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Isotope</th>
<th>Energy (MeV)</th>
<th>Cross Section (mb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60Ni(p,n)60Cu</td>
<td>60Ni</td>
<td>7.02</td>
<td>1791.60</td>
</tr>
<tr>
<td>61Ni(p,n)61Cu</td>
<td>61Ni</td>
<td>3.10</td>
<td>656</td>
</tr>
<tr>
<td>55Co(p,α)55Co</td>
<td>55Co</td>
<td>1.36</td>
<td>931.30</td>
</tr>
<tr>
<td>57Co(p,α)57Co</td>
<td>57Co</td>
<td>0.27</td>
<td>1408.40</td>
</tr>
<tr>
<td>64Cu(p,α)64Cu</td>
<td>64Cu</td>
<td>64Ni</td>
<td>94.8</td>
</tr>
</tbody>
</table>

Cross sections (σ) for natNi(p,x) reactions

- natNi(p,x)60Cu/55Co/64Cu

<table>
<thead>
<tr>
<th>Energy (MeV)</th>
<th>0.67</th>
<th>0.77</th>
<th>0.87</th>
<th>0.97</th>
<th>1.07</th>
<th>1.17</th>
<th>1.27</th>
<th>1.37</th>
<th>1.47</th>
<th>1.57</th>
</tr>
</thead>
<tbody>
<tr>
<td>60Ni(p,x)60Cu</td>
<td>0.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61Ni(p,x)61Cu</td>
<td>0.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62Ni(p,x)62Cu</td>
<td>0.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63Ni(p,x)63Cu</td>
<td>0.97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64Ni(p,x)64Cu</td>
<td>1.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65Ni(p,x)65Cu</td>
<td>1.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66Ni(p,x)66Cu</td>
<td>1.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67Ni(p,x)67Cu</td>
<td>1.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68Ni(p,x)68Cu</td>
<td>1.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69Ni(p,x)69Cu</td>
<td>1.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Methods: Radionuclides Production

- **IBA 18/9 cyclotron** provides the primary beam
- In-house built solid targetry system for up to 30 μA at 18MeV
- Cooled by chilled water & helium, independent vacuum
- Achievable proton bombardment energy = 17.3 MeV
- Graphite beam-energy collimator & degrader (to 11.7 MeV for 64Cu)
- In these experiments, natNi & enriched 64Ni used as target
- A IB/9/3 cyclotron provides the primary beam

Methods: Schematic Solid Targetry of natNi(p,x)

- Target diameter = 15mm, beam diameter = 10mm
- Graphite disc of thickness 1020 μm, inserted in front of 50mm Havar window
- Box shows proton energies within 50 μm thick Ni target, where normally incident (degraded) beam energy = 11.7 MeV

Methods: Experimental Precision of Beam Energies

- For proton energies within 50 μm thick Ni target, where normally incident (degraded) beam energy = 11.7 MeV

Methods: Schematic Solid Targetry of 99Ni(p,x)
Methods: Production

Cu from Ni foil (I)

- Production
- Cu from Ni foil (I)

- Principal
- Activation of target; chemical separations & identification of produced isotopes

- Insert the target in target holder
- Target stayed in a cyclotron bunker for 2-3 hours to let short half-life isotopes (Cu and Co) decay
- Target stayed in a cyclotron bunker for 2-3 hours to let short half-life isotopes Ga and Ge decay
- 11.7 MeV protons with various current and time
- TT 7.5 MeV protons with various current and time
- a target holder
- Target stayed in a cyclotron bunker for 2-3 hours to let short half-life isotopes (Cu and Co) decay
- Target stayed in a cyclotron bunker for 2-3 hours to let short half-life isotopes Ga and Ge decay
- 11.7 MeV protons with various current and time
- TT 7.5 MeV protons with various current and time
- a target holder

Methods: Production

Cu from nat Ni foil (II)

- Production
- Cu from nat Ni foil (II)

- Irradiate nat Ni foil (Diam = 15 mm, thickness = 50 mm)
- nat Ni 100 times lower abundance of 64 Ni than enriched 64 Ni target
- nat Ni 100 times lower abundance of 64 Ni than enriched 64 Ni target
- Place in Al target cradle (thickness = 2 mm) before inserting into target holder
- Irradiate nat Ni foil (Diam = 15 mm, thickness = 50 mm)
- nat Ni 100 times lower abundance of 64 Ni than enriched 64 Ni target

Methods: Production

Cu from nat Ni foil (III)

- Production
- Cu from nat Ni foil (III)

- Elution of Ni ions in 0.3 M HCl & Ethanol
- Wash column with 0.3 M HCl & Ethanol to extract Co fraction
- Evaporate the 3 fractions (Ni, Co and Cu) adjusted to 1 ml
- Measure the activities of produced 64 Cu, 55 Co & 57 Co using gamma-spectroscopy
- Evaporate the 3 fractions Ni, Co and Cu, adjusted to trim
- Extract Cu using 0.3 M HCl & Ethanol
- Wash column with 0.3 M HCl & Ethanol
- Elution of Ni ions in 0.3 M HCl & Ethanol (no need to recycled nat Ni)

Results: Calculated Comparative Yields

<table>
<thead>
<tr>
<th>Target</th>
<th>Produced isotope</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>nat Ni</td>
<td>64 Cu</td>
<td>Szelecseny, 1993</td>
</tr>
<tr>
<td>nat Ni</td>
<td>61 Cu</td>
<td>3.1 ± 0.3</td>
</tr>
<tr>
<td>nat Ni</td>
<td>60 Cu</td>
<td>Tanaka, 1972</td>
</tr>
<tr>
<td>nat Ni</td>
<td>55 Co</td>
<td>Ewart, 1964</td>
</tr>
<tr>
<td>nat Ni</td>
<td>57 Co</td>
<td>Kaufman, 1960</td>
</tr>
<tr>
<td>nat Ni</td>
<td>64 Cu</td>
<td>Szelecseny, 1993</td>
</tr>
<tr>
<td>nat Ni</td>
<td>55 Co</td>
<td>Tanaka, 1972</td>
</tr>
<tr>
<td>nat Ni</td>
<td>57 Co</td>
<td>Kaufman, 1960</td>
</tr>
</tbody>
</table>

Methods: Production

Cu from nat Ni foil (II)
Results: Experimental – 64Ni Target

- Production of 64Cu from electroplated 64Ni target in good agreement with calculations.
- Future work aimed at combining the capacity to separate purified Cu & Co isotopes from bombarded (inexpensive) natNi foil, together with progress of partly enriching 64Ni content of this produced Cu & Co isotopes from bombarded (inexpensive) natNi foil.
- Production & purified separation of 64Cu, 55Co & 57Co from bombardment of natNi in reasonable agreement with calculations, together with prospect of partly enriching the 64Ni content of this produced Cu & Co isotopes from bombarded (inexpensive) natNi foil.
- Aluminium ‘cradle’ an easy and cheap material to encapsulate the electroplated 64Ni on Au-foil has been successful in constructing an enriched target.
- Production of 64Cu from electroplated 64Ni target in good agreement with calculations.

Future work aimed at combining the capacity to separate purified Cu & Co isotopes from bombarded (inexpensive) natNi foil, together with progress of partly enriching 64Ni content of this produced Cu & Co isotopes from bombarded (inexpensive) natNi foil.

Acknowledgments

RAPID Team, Perth, Australia

Organisers of WTTC13, Rosekilde, Denmark

Australian Nuclear Science & Technology Organisation (Dr Suzanne Smith & Co-workers)

Acknowledgement

- Production & purified separation of 64Cu, 55Co & 57Co from bombardment of natNi in reasonable agreement with calculations.
- Production of 64Cu from electroplated 64Ni target in good agreement with calculations.
- Aluminium ‘cradle’ an easy and cheap material to encapsulate the electroplated 64Ni on Au-foil has been successful in constructing an enriched target.
- Production of 64Cu from electroplated 64Ni target in good agreement with calculations.
1. (p,n) reaction
 - 11 MeV to reduce isotopic impurities
 - 7 MeV to reduce isotopic impurities
 - Energy degradation by graphite (1020 um)
 - 64Ni electroplated on gold

2. Separation: ethanol method
 - Separates Ni, Co, Cu (checked by gamma spectroscopy)
 - Column as big as 20 x 1

3. Why not (the cheaper) nat Ni?
 - Less production more problems
 - OK only for testing

4. Graphite degradator? What kind of graphite?
 - Less beam divergence (Monte Carlo)
 - Pyro? Better heat transfer, more expensive
 - Pyro degradator? When kind of graphite?
 - OK only for testing
 - Less production, more problems

5. Why keep using He flow?
 - Keep oxidation (met) away
 - Madira oxidation on the irradiation

6. Target material direct to cyclotron vacuum?
 - Dangerous. Ni is magnetic
 - Target material direct to oxidation vacuum?
Reportback from iThemba LABS: Some tales of broken targets, split beams and particle tracking

C. Vermeulen, G.F. Steyn, N. Stodart, J.L Conradie, A Buffler, I Govender

iThemba Laboratory for Accelerator Based Sciences, Cape Town, South Africa

Introduction

iThemba LABS started 2006 with one bombardment station handling batch targets with 66MeV protons up to a maximum 100μA. In 2010 we have four bombardment stations and the ability to split beam to two stations increasing the total intensity on target to 350μA. We have reported in previous meetings on the vertical bombardment station for large batch targets at high currents as well as the degrading system to produce F-18 on a commercial water target. This report will look at some successes and failures of these systems and highlight the new developments at the lab.

Broken targets etc.

The vertical bombardment station (VBTS) at iThemba LABS has now been in operation for 4 years and has seen just over 1 million micro-amp hours of beam. We have experienced a number of target (Fig 2) and infrastructure (Fig 1) failures, especially of gallium metal targets. We have implemented a number of measures (Fig 3) to reduce the frequency of breakage of these.
Beam Splitter

We have implemented an electrostatic channel and a septum magnet (Fig 5), to obtain separated but simultaneous beams for the vertical and horizontal bombardment stations. This is based on the system for splitting employed at the Paul Scherrer Institut. (Conradie et al. 2007)

Fig 5: Split Beamline

PEPT

Positron emission particle tracking (PEPT) was developed at the University of Birmingham (Hawkesworth et al., 1991; Parker et al., 1994). Since the arrival of the ECAT ‘EXACT3D’ (Model: CTI/Siemens 966) PET camera (Fig. 6), from Hammersmith Hospital Cape Town now boasts the second dedicated PEPT lab in the world.

Initial runs (Fig 7) with tumbling mills, flotation cells and even an angle grinder have proven very successful and development of tracer manufacture using both ion-exchange labelled particles and directly activated particles is continuing well.

Fig 6: EXACT3D in its new home Fig 7: First PEPT run

References

This Beam Bites!!

More Holes
Technical pitfalls in the production of 64Cu with high specific activity

J. Rajander1, J. Schlesinger1, M. Avila-Rodriguez1,2 and O. Solin1

1Turku PET Centre, Turku University and Åbo Akademi University, Finland

2Unidad PET/CT-Ciclotrón, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico-City, Mexico

Introduction

In 2008, we initiated production of 64Cu aiming at high specific activities and high quantities. Routine production of 64Cu as well as the reproducible and economical preparation of the 64Ni target material with ultra-low metal contamination was established. Some technical pitfalls had then to be overcome. We faced a) aggressive corrosion by concentrated acid solutions, b) flaking of the target material during the irradiation, c) contamination of the target material with cooling water, d) formation of insoluble $[^{64}\text{Ni}]\text{NiO}$ during the irradiation and e) incomplete dissolution of the irradiated target material.

Methods

Using the $^{64}\text{Ni}(p,\text{n})^{64}\text{Cu}$ reaction with an optimized beam profile and proton energy (13.0±0.2 MeV), we routinely produce high quantities of 64Cu (10-38 GBq) on our CC 18/9 cyclotron (Efremov Scientific Research Institute of Electrophysical Apparatus, St. Petersburg, Russia) as previously described (Avila-Rodriguez et al., 2008). A semiautomatic processing of the irradiated 64Ni target material and a remote controlled separation of 64Ni and 64Cu has been developed, which yields 64Cu with a high specific activity of 3 TBq/µmol. Using four miniature Geiger-Müller tubes, which are placed within the processing module, we monitor the distribution of activity and control the separation process of 64Cu (Rajander et al., 2009). The recovery of the 64Ni target material and the preparation of the 64Ni electrolyte solution are done in a dedicated rotary evaporator. The computer controlled electrochemical deposition of the 64Ni target material starts with a stepwise increase of the deposition voltage from 2.0 V to 2.5 V within 5 h, followed by a constant voltage of 2.5 V for 40 h.

Results

a) The use of concentrated acid solutions for preparing the 64Ni electrolyte solution as well as for separating 64Ni/64Cu caused serious corrosion problems in the fume hood and in the hot cell. This problem was partly solved by using a closed and remote-controlled module for the processing of the irradiated 64Ni target material, which includes dissolution, separation of 64Ni/64Cu and concentration of the acidic 64Cu fraction. For recovery of the 64Ni target material from the concentrated hydrochloric acid solution, a dedicated rotary evaporator is used inside a fume hood. Acidic vapour from the evaporation process is neutralized by passing the vapours through an alkaline aqueous solution in a flask.

b) Flaking of the 64Ni material from the Au-backing was twice observed during the irradiation. Thus, we included an additional cleaning step for the gold disk in the target preparation procedure. After
cleaning with Deconex®, the gold disk is briefly soaked in 6 M HNO₃ and then rinsed subsequently with DI water to efficiently remove traces of metallic and organic contamination from the gold surface. After this step was included in target processing, no flaking of 64Ni target material from the gold surface during the irradiation has occurred. Also the electroplating process is controlled with a computer program in order to obtain more reproducible results in the target preparation.

c) Due to scratches on the back of the gold disk and thus, insufficient sealing of the O-ring against the cooling water, contamination of the target material with cooling water was twice observed after the irradiation. Due to this, lower specific activities were obtained for 64Cu. In order to solve this problem, the gold disks were henceforth visually inspected and serious scratches were removed by sanding.

d) A first series of targets was irradiated under ambient atmosphere. We then observed twice the formation of insoluble, greenish [64Ni]NiO particles on the target material surface, resulting from an oxidation of 64Ni during the irradiation. In order to avoid oxidation of nickel in the presence of atmospheric oxygen, we henceforth applied a stream of helium on the target material during irradiation. Subsequently, we have not observed formation of [64Ni]NiO.

e) In some cases, a thermal treatment of the irradiated target material with 10 M HCl at 100 °C for 20 min was insufficient to dissolve the target material. This might be a result of a passivation of the 64Ni surface during the irradiation. This problem was solved by applying a stream of helium on the target material during irradiation, and also by extending the period of thermal treatment with concentrated HCl from 20 to 40 min.

Acknowledgement

The study was conducted within the "Finnish Centre of Excellence in Molecular Imaging in Cardiovascular and Metabolic Research" supported by the Academy of Finland, University of Turku, Turku University Hospital and Åbo Akademi University. This work was also supported by the EU-FP7 integrated project Betalmage contract no.: 222980.

References

Technical pitfalls in the production of 64Cu with high specific activity

- Incomplete dissolution of the irradiated target material
- Formation of insoluble $[^{64}\text{Ni}]$NiO during the irradiation
- Contamination of the target material with cooling water
- Leaking of the target material during the irradiation
- Aggressive corrosion by concentrated acid solutions

64Cu production

- Reproducible 64Ni-target preparation with ultra-low metal contamination
- Semiautomated 64Ni/64Cu separation yields 64Cu with high specific activity (3000 GBq/µmol)
- Adapted proton energy and beam profile yields 64Cu in high quantities (38 GBq) with economical 64Cu production (95% recovery rate)
- Recycling of 64Ni for an economical large scale production
- High effective specific activity
- Post- and prelabeling techniques
- 64Cu-labelling
- Preclinical investigations
- Micro-PET studies in vivo
- Metabolite analysis
- Receptor binding assays
- Automated processing/labeling/purification for a future GMP production
Cooling water leakage

Corrosion in the fume hood

Insoluble NiO on the gold disc

Flaking of the target material from the gold backing
1. Problems in Cu production
 • Hotcell oxidation/corrosion caused by acidic environment

2. Target material
 • Gold?
 - NiO found in gold, but removable by He flux
 • Silver?
 - Rust, impurities if not very high quality silver
 • Gold coating?
 - Scratching can be a problem
 • Rhodium?
 - Easy to plate, hard, no problems found by users

3. Energy degradation on target?
 • Just to 13 MeV
 • Oxidation can be a problem
 • Gold coating?
 - NiO found in gold, but removable by He flux
 • Rhodium?
 - Easy to plate, hard, no problems found by users

WTTC XIII – Presentation Discussions

Turku PET Centre
Supported Foil Solution for Legacy Helium-Cooled Targets
When An Alternative to Havar Foil Material is Desired

Benjamin R Bender and G. Leonard Watkins

PET Imaging Center, University of Iowa Health Care, Iowa City, IA 52242, USA

For any given radionuclide target system, the choice of targetry is often made as a compromise between Quantity and Quality. Quantity refers primarily to higher target yield or in the case of smaller volumes, higher specific activity. Quality, for the purpose of this discussion, refers to radionuclidic and chemical purity. Most recent target system design innovations have been driven by the need for increased target yield per run. In no application is this more evident than in the evolving design of 18F targetry [Eriksson, et al; Zyuzin, et al]. This pursuit of “quantity” has resulted in numerous target design innovations. Most notable are improvements in target geometry, optimization of target cooling thermodynamics and designs modifications intended to reduce proton beam loss due to interceding structures and foils. But for those facilities whose overall production does not require target yields beyond a few Curies, the helium-cooled, two-foil target systems (fig 1) have remained in service, even if only for backup or research 18F production. These legacy targets are characterized as having two foils along the beam path terminating in the target volume (gas or liquid). The front foil separates the tank vacuum from a helium cooling flange. The back foil separates the helium cooling flange from the target volume chamber.

Figure 1. Representative image of a two-foil helium-cooled 18F target design.

Our facility produces 18F and other radionuclides solely for our own clinical and research needs; thus our production needs are modest. But to satisfy our low-level research production needs while also improving the yield of our low-efficiency radiopharmaceutical syntheses (eg. $[^{18}$F]FLT) we have directed our targetry efforts towards reduction of radionuclidic and chemical impurities. Regardless of target type, improvement in product purity may have significant implications to the efficiency of radiopharmaceutical syntheses as well as patient/participant dosimetry. To achieve this we have retrofitted our two-foil 18F target to utilize Niobium for both the back foil (0.003" thick) and the body material of the target volume chamber [Nye, et al]. The significantly lower strength of Niobium when compared to Havar for the back foil presented an additional hurdle to the retrofit. Additionally, local heating of the Niobium foil by the proton beam further threatens its ability to perform without failure. To address these issues we opted to include another modern target feature, the grid support. This became the evolution of our novel retrofit grid support solution (fig 2). Support grids in modern targetry are generally made from copper or aluminum and cooled by the same water that cools the target volume chamber. This observation brings to light the final hurdle in our design – grid cooling. The solution is the existing Helium cooling system, but since a grid support, placed to support the Niobium foil, would block the flow of the Helium cooling, the grid must be modified. Therefore, we have included a vent hole through the grid perpendicular to the beam path to allow helium flow which now becomes the grid cooling mechanism of this retrofit design.
The primary benefit of this design is its low cost. Commercially available targets may cost as much as $50,000, but the direct cost for this design was less than $3,000 for materials and machining. To achieve this inexpensive solution, the aluminum grid foil support we designed requires only that the beam aperture in the helium flange be widened slightly to hold the grid support captive. Additionally, this grid support can be fabricated using standard machining practices and a simpler rectangular grid design. This significantly reduced the expense when compared to the commercial copper or aluminum hex-grid supports which utilize a more expensive EDM machining technology.

A second benefit of this design is its ease of incorporation into the existing target. It may be either slipped or press fit into the widened Helium flange beam aperture.

Yet a third benefit is the utilization of the existing Helium cooling. Where previously the Helium flow was directed to cool both the front and back foils, that flow will now pass through the vented support grid to conduct its heat away. Because the grid is in direct contact with the back foil, it also acts as a heat sink to conduct heat away from the localized point where proton beam heating may weaken it. Also, because we utilize the existing helium cooling, it need not be defeated as a target interlock, as it is on many older cyclotrons. And lastly, there is no need to make additional modifications to the target to cool the grid using the water cooling system as is common in the commercially available systems.

As a final site specific benefit, our older, self-designed target allows easy replacement of the target insert (ie. the target load chamber). This has allowed us to very easily convert this target at any time for the in-target production of $\mathrm{^{13}N}$Ammonia [Krasikova, et al] by simply replacing the Niobium insert and foils with Aluminum versions of each and overpressuring with CH4. Without the support grid, it would likely be impractical to use such thin (0.005” thick) aluminum foils, as they would be far too weak.

In conclusion, this grid foil support design is an economical solution allowing the use of more chemically advantageous, though weaker, foils materials while easily maintaining integrity, even with overpressure in excess of 300 psi. Additionally, no negative impact on the overall yield of the target was observed.

Acknowledgement: University of Iowa Medical Instruments shop and Tim Weaver for design support.

References:

RN Krasikova, OS Fedorova, MV Korsakov, B Landmeier Bennington & MS Berridge. “Improved $\mathrm{^{13}N}$ammonia yield from the proton irradiation of water using methane gas”. *Appl. Radiat. Isot.* (1999);51: 395-401
Supported Foil Solution for Legacy Helium-Cooled Targets

When An Alternative to Havar Foil Material is Desired

Benjamin R. Bender, G. Leonard Watkins
University of Iowa Health Care, Iowa City, Iowa, USA

Introduction

Target Choice

Quantity:
- Higher yields
- Higher specific activity
- Fewer target foils

Quality:
- Reduced radionuclidic & nonradionuclidic impurities
- More chemically compatible target & foil materials
- Fewer target foils
- Better target cooling
- Better target geometry

Target Improvements

Quantity:
- Better target design (newer target designs)
- Commercial radionuclide production facilities
- Higher volume in-house clinical needs
- Higher synthesis production for low-efficiency radiopharmaceutical syntheses

Quality:
- Higher specific activity
- Fewer target foils
- Better target cooling
- Better target geometry
- More chemically compatible target & foil materials

More efficient target load material

University of Iowa Health Care, Iowa City, Iowa, USA
Introduction

Application

Using Two-Foil Target for Research & Backup Clinical Production

5

Design

Problem #1:

• Havar Foils Leave Problematic Contaminants

\[_{18}F \]FDG and \[_{18}F \]FLT syntheses

Solution:

• Niobium Foil Instead of Havar [Nye, et al]

Niobium Foil Instead of Havar

Niobium target body is also preferred

Problem #2:

• Niobium is Much Weaker Than Havar

Solution:

• Grid Support for Target Foil
• Thicker Foil

Havar 1860
Niobium 585
Aluminum 190

Vacuum (Front) Foil
Target Roll End (Vacuum)
Target Roll End (Grid)

Grid Support Design

Grid Geometry:

• Designed so Grid Walls Avoid Beam
• Outer Walls are Outside Target Aperture
• Helium flange aperture slightly widened

Quality:

• Pure Chemically Compatible Target & Foil Materials

Grid Cooling:

• Conductive Cooling of both Foils & Grid
• Existing Helium System Left Intact

Design

Clinical Production

Using Two-Foil Target for Research & Backup
Foil Considerations

Thermal Conductivity:
- Havar: Better heat transfer to grid
- Reduced localized boiling

Other:
- Niobium-coated Havar
- Difficult to get
- Havar contamination leak through

Material Thickness

<table>
<thead>
<tr>
<th>Material</th>
<th>Havar</th>
<th>Niobium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness</td>
<td>0.003"</td>
<td>0.001"</td>
</tr>
<tr>
<td>Beam Energy Loss (keV)</td>
<td>~730</td>
<td>1095</td>
</tr>
</tbody>
</table>

Aluminum
- 0.005" : 770

Beam Energy Loss:

<table>
<thead>
<tr>
<th>Material</th>
<th>Havar</th>
<th>Niobium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam Energy</td>
<td>0.0065"</td>
<td>0.005"</td>
</tr>
<tr>
<td>Thickness</td>
<td>~1095</td>
<td>~730</td>
</tr>
<tr>
<td>Energy Loss (keV)</td>
<td>400</td>
<td>70</td>
</tr>
</tbody>
</table>

Burst Pressure:

<table>
<thead>
<tr>
<th>Material</th>
<th>Havar</th>
<th>Niobium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burst Pressure (ps)</td>
<td>>530</td>
<td>>280</td>
</tr>
<tr>
<td>W/ Grid</td>
<td>360</td>
<td>150</td>
</tr>
<tr>
<td>W/o Grid</td>
<td>430</td>
<td>190</td>
</tr>
</tbody>
</table>

Results

Beam Transmission

- Calculated 3.5%
- Measured < 2.5%
- Assumes beam homogeneity between upper & lower horizontal grid walls

Stopping Power:
- Havar = ~157 MeV/cm
- Niobium = ~144 MeV/cm
- Aluminum = 60.6 MeV/cm

Shiomi-Tsuda et al.

Burkig et al.

Janni
Conclusions

Benefits of Grid Design

Cost:
• Low-Cost Machining Techniques Used vs expensive EDM machining methods used for hex grid in commercial targets
• Modification Far More Inexpensive Than New Target

Ease of Implementation:
• Simple Design
• Grid Fits in Helium Flange with Slip-or Press-Fit
• Target Not Significantly Modified

Other:
• Careful with impurities in foil material
• Ti can be used in Sep-pak
• No discernable effect on production yields

Adaptation of Design:
• Condenser cooling of foil (very compact with grid)
• Condenser Helium Convective Foil Cooling

Benefits of Grid Design

Better Foil Cooling:
• Conductive cooling of foil (with compact grid)

Application to Foil Cooling:
• Condenser Helium Convective Foil Cooling
A Simple Target Modification to Allow for 3-D Beam Tuning

J.S. Wilson, K. Gagnon and S.A. McQuarrie

Edmonton PET Centre, Cross Cancer Institute, University of Alberta, Edmonton, AB, CANADA

Introduction: The TR19/9 cyclotron at the Edmonton PET Centre (EPC) is a variable energy machine with a proton beam energy range from 13 to 19 MeV and a deuteron beam energy range from 6.5 to 9 MeV. The energy and trajectory of the extracted beam is determined by the orbital at which the beam is intercepted by the extractor foil and it is essential, especially with the longer gas targets, that the beam is being directed down the centre of the target. To ensure optimal beam alignment, more feedback on the angle of beam entry to the target was desired than could be offered by the 2 dimensional target port collimators.

Aim: To provide a means of monitoring the beam position during normal operation. This would allow for interactive real-time target alignment to assure that the beam is centred on target.

Methods: The nosepiece of the target was lengthened to provide a 1 cm cylindrical beam port extending 5 cm prior to the target body. (Extended nosepiece with current pickup and original nosepiece, pictured opposite) The nosepiece was fabricated from anodized aluminum so that with insulated attachment, electrical isolation from the target body was possible. Use of insulated bolts and plastic washers during target assembly enabled separate current pick-ups to be attached to the target body and the nosepiece.

A solid target plate was prepared which had a hole drilled in the top to allow a temperature probe to be inserted to the middle of the plate. This enabled the temperature of the target plate to be monitored between the beam spot and the water cooling on the back of the plate.

Results: Beam alignment was easily achieved on gas targets equipped with the extended nosepiece and the irradiation pressure was readily optimized on true aligned conditions. The effect of varying different ion source, radiofrequency and magnet parameters was also readily observed and all while the beam was at maximum normal operating specifications.

Solid target irradiation (no nosepiece present): We found a very linear relationship between the beam current and the target plate temperature. It became increasingly difficult, however, to maintain this linear relationship at higher beam currents indicating that the registered beam was not hitting the plate. As beam spread is more pronounced at higher currents, it is probable that the 1 cm target aperture was no longer accommodating the entire beam. Use of an isolated nosepiece would maintain alignment and show at what point maximum beam on target had been reached.

Recently the nosepiece has been put onto the high current water targets and we will be evaluating the saturated yields vs observed nosepiece currents to determine the extent of beam expansion.

Conclusions: The isolated nosepiece allows for facile beam tuning and gives useful real time information on beam size and alignment.
Variable energy extraction determined by:

- Ion source parameters
- Magnetic field (temperature)
- Extractor foil condition
- Azimuthal angle of extractor
- Extractor depth

Beam trajectory affected by:

Beam Extraction

Beam trajectory related to extractor depth

Beam trajectory affected by:

- Extractor depth
- Azimuthal angle of extractor
- Extractor foil condition
- Magnetic field (temperature)
- Ion source parameters

A simple Target Modification to Allow for 3-D Beam Tuning

TR 19/9 Cyclotron

Edmonton, AB, Canada

John Wilson
Edmonton PET Centre

WTTC 13 July, 2010
Beam Collimation

Extended Nosepiece

Intended for gas targets to provide more space at target head and to confirm target alignment. The effect of varying different ion source, radiofrequency and magnet parameters was also readily observed and all while the beam was at maximum normal operating specifications.

Both have a 1 cm circular aperture divided into 4 sectors each with separate current pickup.

Extended Isolated Nosepiece

Target nosepiece extended from 1 cm to 5 cm in length with 1 cm cylindrical hole. Anodized aluminum for electrical isolation.

Two current pickups used.

Results

C-11 gas target ruptured – Maximized pressure on slightly misaligned target.

Water targets were fairly aligned. - Routine saturated yield determination.
Solid Tar et Conclusions

Over collimation results in beam loss.

- Higher intensity beams - larger not smaller collimator apertures at low current, critical at high currents

Electrically isolated, water cooled, He window best option?

Solid Target Conclusions

- Over collimation results in beam loss.

Solid tar gets

No pressure indicator linear relationship between the beam current and the target plate temperature.

Linear relationship not maintained at higher beam currents (100 uA) indicating that not all registered beam was not hitting the plate.

He window temperature rise

Solid targets
Evolution of a High Yield Gas Phase 11CH$_3$I Rig at LBNL
James P. O’Neil, James Powell, Mustafa Janabi
Biomedical Isotope Facility, Lawrence Berkeley National Laboratory, Berkeley CA USA

After working with a home built “wet method” 11C methyl iodide system for a number of years, an effort was made towards the in-house development of a gas phase rig. This began with personal communication and visits to both TRIUMF and the University of Washington, Seattle PET centers for many helpful discussions, photos, drawings and hints that only years of experience can provide. The culmination of this was the construction of a first iteration single pass, gas phase 11C methyl iodide system that closely resembled the Seattle system described by Link [1].

The Biomedical Isotope Facility (BIF) at the Lawrence Berkeley National Laboratory houses the prototype CTI RDS111 ($E_{\text{proton}} = 11$MeV) negative ion cyclotron. We run an original 7mL aluminum-body target filled to 300psi with 1% O$_2$/N$_2$ to produce 11C CO$_2$. Typical production irradiations are 40 minutes in duration at 35uA beam current and provide on average 1.5Ci of 11C CO$_2$ that is most often converted to 11C CH$_3$I. Operation of the 11C CH$_3$I system is as follows: (a) Post irradiation, target gas is rapidly unloaded through a Carbosphere trap (60-80 mesh, 1.4g) at room temperature. Discussions with Bruce Mock led us to choose this trapping medium over molecular sieves for the chromatographic properties providing trapping of the 11C CO$_2$ and separation from target gas and side products. (b) After static heating of the trap to >80°C, the trap is swept with helium (50mL/min) and combined with hydrogen (50mL/min). (c) The mixture is passed through a heated (400°C) nickel catalyst (Harshaw) and the resulting 11C CH$_4$ is trapped on a PoroPak-Q trap (100mg in aluminum u-tube, 2mm id x 90mm tall) at -196°C. (d) The 11C CH$_4$ is released by raising the trap from the liq-N$_2$ dewar and flushing with helium (60mL/min) directing the gas stream through a quartz reaction tube (10mm id x 350mm). The head of the tube is packed with solid iodine that is heated to provide I$_2$ vapor which mixes with incoming 11C CH$_4$ and is pushed further downstream into a high temperature segment (100mm long) where conversion takes place. (e) The resulting 11C CH$_3$I exits the quartz reactor, is passed through a dry ascarite column (7mm id x 150mm), and is trapped on a glass test tube (4mm id x 50mm) immersed in liq-N$_2$.

Single-Pass Optimization

Significant optimization of the single pass system was initially required to generate usable yields and purity of 11C CH$_3$I. There are primarily three parameters that govern the overall conversion of 11C CH$_4$ to 11C CH$_3$I in the system, namely: (1) iodine oven temperature (I$_2$ concentration); (2) flow through the reactor tube (residence time); and (3) temperature of the reactor (energy potential). These three factors are highly interdependent, thus changing any one parameter requires a re-optimization of the other two. For example, higher quartz tube (reactor) temperatures may require a faster flow rate and lower iodine oven temperature to decrease the co-production of 11C CH$_2$I$_2$ and maintain 11C CH$_3$I yield. Through this process we experimentally determined a push gas flow of 80mL/min and I$_2$ oven temperature of 70°C and then re-explored a range of reactor temperatures. Over a range of 625-775°C, the undesired production...
of $[^{11}C]CH_2I_2$ increased linearly from 1.5-15%. Over the same temperature range (625-775°C), $[^{11}C]CH_3I$ yield started at 15.5%, peaked at 32% (680°C) and fell back to 21%. Total conversion of methane to iodinated species followed a similar curve as shown in Figure 1. Consistent yields of 25-30% were realized for production runs for a number of months.

Recirculation System In order to increase the conversion yield we installed a recirculation pump in the system, passing the unconverted $[^{11}C]CH_4$ back to the reactor as described by Larsen[2]. In addition, we have separated the conversion oven from the $[^{11}C]CH_2I_2$ and $[^{11}C]CH_3I$ trapping station allowing vertical placement on the hotcell side wall thus saving space. At the exit of the oven, a vortex chiller (-8°C) rapidly condenses I₂ vapor ensuring nearly complete iodine recovery. Other refinements to the system include a low mass Kapton resistive heater on the I₂ reservoir and a LED/photodiode based I₂ concentration detector.

With very little modification to either equipment or parameters we were able to realize a significant gain in conversion yield as compared to the single-pass setup. Optimized conditions provide 64-73% decay corrected yield of $[^{11}C]CH_3I$ based on trapped $[^{11}C]CO_2$ with >98% purity. The high purity is attributed to cryogenically trapping the iodinated methane in a glass loop, releasing the $[^{11}C]CH_3I$ while the glass warms, and recooling the glass before the $[^{11}C]CH_2I_2$ is pushed to the reaction vial.

Over the past 5 years we have seen 50-60% conversions on a daily basis. Maintenance is minimized by having the $[^{11}C]CH_4$ Poropak trap outside of the recirculation path, trapping iodine at -8°C, and cold trapping the $[^{11}C]CH_3I$ on a glass trap. We have routinely used this system to produce a variety of $[^{11}C]$ labeled PET tracers at or above literature yields and high specific activity (5-12Ci/umol eos).

References:
Evolution of a High Yield Gas Phase

Background

Biomedical Isotope Facility, Lawrence Berkeley National Laboratory, Berkeley CA USA

James P. O’Neil, James Powell

Prototype CTR ROD1 Cyclotron

Biomedical Isotope Facility, Lawrence Berkeley National Laboratories

For a fixed flow rate the production of \([^{11}C]CH_2I_2\) increases steadily.

Optimization of \([^{11}C]CH_4\), \([^{11}C]CH_2I\), and \([^{11}C]CH_3I\) conversion in single-pass mode.

At a higher temperature \([^{11}C]CH_2I_2\) production yield drops rapidly.

After discovery trip to Seattle and Vancouver a gas phase rig established.

optimal for these conditions

Optimized for these conditions

Original system single-pass modeled after Link's work

Production Optimization

LBNL Single Pass Gas Phase Methyl Iodide Rig circa 2004

Check system: CTR 2.397. Production of \([^{11}C]CH_4\) by single pass reaction of \([^{11}C]CH_2I\).
For an optimized set of parameters it is important to maintain consistency and pumping speed.

Sequence of operation as seen by radiation detectors.

System separation

Lower iodine concentration and overall temperature

Flow limited by pump capacity (500 ml/min)

Re-Optimized parameters

CH₄ trap kept out of recirculation loop to avoid contamination/trapping of CH₄

Added KNF micro-diaphragm pump

Conversion to recirculation
Summary

Key system attributes and components for success:
- Low system volume...less contact, more passes, milder reaction conditions
- Monitoring iodine concentration quick adjustments
- LED - Photo Diode based absorbance detector
- Iodine Trap Cooler
- Vortex Chiller as Iodine Trap Cooler
- Iodine concentration adjustment

The Numbers

- Free up hotcell floor space for chemistry and other clutter
- System separation
- Iodine reuse very important for purity
- Effective post oven iodine trapping - reuse of iodine
- Low cost ELZ LED absorbance detector
- Monitors iodine concentration quick adjustments
- Low system volume - less contact, more passes, milder reaction conditions

Typical conversion yield (CO2–CH3I) 55–65%

Typical tracer specific activities (1 Ci CO2) 20 Ci/umole

System Volume

- 25–30 mL recirculating path
- Recirculation time 4–5 s per pass (3.8 min)

Run Parameters

- Time of production: 9 min EOB to CH3I complete delivery
- Repeatable time: 4–5 sec per pass (3.8 min)
- System volume: 25–30 mL recirculating path
- Run parameters: 1, 2, 3

Relatively Consistent Iodine Concentration can be Maintained >25 runs
1. System can (also) do, at environment temperature
 - Methane triflate
 - Methane
 - Raclopride

2. System performance
 - Running consistently = better performance on specific activity
 - After long stop, run cold couple of times before going hot
 - Reduce
 - Increase flow
 - System can (also) do, at environment temperature

WTTC XIII – Presentation Discussions
One Year Experience With a IBA 18/9 Cyclotron Operation for F-18 FDG Rutin Production

Nicolini J; Ciliberto J; Nicolini M A; Nicolini M E; Baró G; Casale G; Caro R; Guerrero G; Hormigo C; Gutiérrez H; Pace P; Silva L

Laboratorios Bacon S.A.I.C. Ururuguay 136 –B1603DFD- Villa Martelli, Bs. As. Argentina

This paper tries to encourage those countries that still do not have an industrial production system to supply FDG to PET centers. We show a compilation of performance data, maintenance and production yield. With the statistical analysis of these data we conclude that the whole system is robust and effective. This work also shows graphic performance of the ion source before and after maintenance and repositioning, and also performance of targets and chemical process yields. we include the layout of the installation which was designed to have visual control of the important areas from the control room of the cyclotron.

![Graph showing performance of FDG production system](image)

\[y = 1790.9 \ln(x) - 4938.1 \]
One-Year Experience

Cyclotron Operation

for F-18 FDG Routine

Production

with an IBA 18/9

The Cyclotron Facility

- Designed to have visual contact with the Power Unit and Hot cells at the Radiochemistry Laboratory

The Bunker

Hot Cell

Chemistry Synthesis Unit

The Target
The bunker is designed to shield neutron and gamma radiation. Walls are made of concrete (density 2350 kg/m³) and the bunker is closed by a 14-ton concrete door. Designed to limit the dose to the workers to 0.5 mSv/year. The ventilation system keeps a depression greater than 100 Pa. The safety system locks the door if the dose rate inside the bunker is greater than 100 µSv/h.

The Cyclotron

- Cyclone® 18/9-HC model.
- During the irradiation the bunker is closed by a 14-ton concrete door.
Chemistry Synthesis Unit

- Synthesa® nucleophilic substitution
- FDG Synthesis time <25 min.
- Yield EOS 60% (70% corrected yield)
- Integrated Fluidic Processor (IFP™)

Adjustable Parameters

- Reactor: temperature 30-150°C
- Pressure: 0-2 bar
- Timing: each step adjustable

Dispensing HOT cell

- Ventilation systems: 70% recycling
- Completely efficient HEPA filters (HEPA >99.99%)
- 60 mm Pb shield in the front, 50 mm Pb shield at Side, behind, bottom and top

Synthesizing Hot cell

- The HEPA filter and charcoal filter are built to filter the exhaust air.
- A continuous radiation air monitoring system.
- Front lead shielding 75mm thickness.
- Side and back shielding 60 mm thickness.

Adj stable Parameters

- Reactor: temperature
- Pressure: adjustable
- Timing: each step adjustable

Chemistry Synthesis Unit

- Synthesa® nucleophilic substitution
- FDG Synthesis time <25 min.
- Yield EOS 60% (70% corrected yield)
- Integrated Fluidic Processor (IFP™)
System

Performance of FDG Production

Target Care

- Fill enriched water to all the IBA commercial target
- Use recycled enriched water
- Replace the o'ring and foils windows at 5000 µAh
- Keep the Tgt/Tgt + Coll between 27-30 Bar
- Keep the pressure

Water Target

- 98% enriched water
- Filling volume 2 ml
- Large volume 2.4 ml
- Nibium body 50 µm Havar window
- IBA commercial target
More than 200 runs

Average daily production of FDG: 2300 mCi.

Maximum FDG activity obtained in one run: 3970 mCi (147,54 µAh in 3.5 h).
Comparison of $[^{11}\text{C}]\text{CH}_3\text{I}$ yields from 2 in-house Methyl Iodide Production systems – Does size matter?

Salma Jivan, Ken R. Buckley, Wade English & James P. O’Neil

UBC/TRIUMF PET Program, 4004 Wesbrook Mall, Vancouver, B.C., Canada

1Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, U.S.A.

The TRIUMF/PET Program is largely reliant on carbon-11 tracers for neurology studies. The reliability and high specific activity radiotracers are key components to the success of the program. Recently, we experienced low in-target $[^{11}\text{C}]\text{CH}_4$ yields which prevented us from synthesizing certain low radiochemical yield tracers. To circumvent the problem, a new module was constructed. We report our conversion yields obtained from 2 in-house built CH$_3$I modules and describe the changes made between the two systems.

$[^{11}\text{C}]\text{CH}_4$ is produced in a niobium target as previously described(1). The target contents and helium flushes (approximately 1.5 litres) are transported 50 metres in 3.2 mm stainless steel tubing to a hotcell in the radiochemistry lab that houses the CH$_3$I module. The target contents pass through phosphorous pentoxide to trap ammonia formed in target and are collected on 2 grams of Poropak N cooled at -196°C. Helium is used to flush nitrogen and hydrogen off the trap upon warming. After flushing, the recirculating pump is started and the $[^{11}\text{C}]\text{CH}_4$ is pumped through a 720°C quartz tube containing iodine vapour. An ascarite trap (9.5mm OD x 7mm ID x 12cm length) is placed between the quartz tube and CH$_3$I trap which is packed with 0.2 grams of Poropak N. Recirculation proceeds until the radiation level on the CH$_3$I detector levels off. The trap is heated to 180°C and helium elutes the $[^{11}\text{C}]\text{CH}_3\text{I}$ into precursor solution or solvent for quantifying CH$_3$I.

Methyliodide Systems Description

The first TRIUMF gas phase recirculating $[^{11}\text{C}]\text{CH}_3\text{I}$ system built in 1996 was based on works by Link and Larsen (2,3) with minor modifications. Our first system had a 19mm OD x 16.5mm ID x 30.5cm length quartz tube placed in a 15 cm horizontal oven. The I$_2$ vapour source was a heated side arm near the head of the quartz tube and temperature was varied from 50°C to 90°C to maintain a constant I$_2$ concentration. A copper coil with running water was placed at the end of the quartz tube to condense iodine and prevent migration through the system. System pressures during recirculation ranged from 2 to 4 psi and flows were 250-300ml/min for a period of 6 minutes. The $[^{11}\text{C}]\text{CH}_4$ trap was in the recirculation loop for this system. The conversion yields of $[^{11}\text{C}]\text{CH}_3\text{I}$ averaged 20% decay corrected based on $[^{11}\text{C}]\text{CH}_4$ production. The system worked reliably and made enough dose for injection until we experienced target problems and low yields from our Niobium target. With high demand for scanning tracers to be shared with multiple scanners, the need for another CH$_3$I system was pushed forward.

The new system was built with the same model oven rotated into a vertical orientation with a 12.75mm OD x 10.5mm ID x 38cm length quartz tube as the reactor and the flow upward through the tube. The I$_2$ is now inside a heated portion of the quartz tube (2.5 cm band heater set at 50°C) and sees the flow path directly. A Peltier cooler is used to condense and trap the I$_2$ vapor exiting the oven to prevent migration through the system. The relatively large volume diaphragm Cole Parmer pump from the original system was replaced with a micro diaphragm KNF pump as the recirculation pump. The system volume was further reduced by replacing the 3.2 mm stainless steel tubing to 1.6 mm teflon tubing where possible. Tubing from the outlet of the quartz tube to the ascarite trap was kept to 3.2 mm due to iodine plating out and causing high pressure and plugging of the system. Fittings were changed to PFA from stainless steel where possible to prevent corrosion in the system. The major difference between the two systems was the recirculation path. After CH$_4$ trapping, the trap contents were pressurized into the quartz tube. The CH$_4$ trap was isolated from the recirculation path and $[^{11}\text{C}]\text{CH}_4$ was recirculated for 3.5 minutes at a flow rate of 300 to 400ml/min. Pressures during recirculation ranged between 9 and 12 psi.
Results and discussion

The original CH₃I system provided conversion yields averaging 20%. Due to poor trapping of I₂ after the oven, the ascarite trap was changed between every run, while the I₂ pot was topped up every 20 runs. The system was given a complete cleaning after 60 runs. Upon cleaning of traps, it was found that the CH₃I Poropak packing appeared light yellow in colour proving the breakthrough of iodine and preventing efficient [¹¹C]CH₃I trapping. It was also noticed that the counts on the CH₄ trap radiation detector would rise during recirculation confirming breakthrough of the formed product. With routine maintenance of the system, high specific radioactivity was maintained and the mass of CH₃I produced ranged from 5 to 10 nmols.

With the new system we find the conversion yields increased close to 2 fold and averaged 40% with measured masses of CH₃I ranging between 15 and 25 nmols. We replace the ascarite trap at the beginning of each production day and can perform up to 6 batches with short turnaround time of 20 minutes. The iodine is scraped down the quartz tube for re-use periodically as the vapor concentration decreases thus avoiding the need to add fresh iodine. The system currently has operated with 100 runs without any intervention or I₂ filling.

A smaller recirculation volume allows for larger number of passes of [¹¹C]CH₄ through the reaction chamber over the same time period. The original system had a recirculation cycle time of 40 sec per pass providing approximately 10 to 12 passes for the given 6 to 8 minute recirculation time whereas the new system has a recirculation cycle time of 10 sec per pass providing approximately 18 to 24 passes in the 3 to 4 minute recirculation step. In addition, the removal of the CH₄ trap from the recirculation system avoids buildup, and therefore the loss, of any [¹¹C]CH₃I not trapped or bled from the [¹¹C]CH₃I trap. In conclusion, the changes made to the new system with smaller recirculation volume improved the conversion yield of the system.

References:

Photograph of New TRIUMF [¹¹C]methyliodide module. Note the vertically mounted quartz tube in the oven, band heater for iodine vaporization below and Peltier cooling unit for iodine trapping above.

Lookout Screen capture of new system. The graph trends target pressure, flow rate and pressure in recirculating loop, radiation detector values for methane trap, methylidode trap and product.

References:
Motivation

Existing system not adequate, low conversions
Syntheses of low RC yield tracers
Target issues
In-target \(^{11}C\)CH\(_3\)
Reliable but needed frequent maintenance
15-20 syntheses per week
Original system built 1997

Comparison of \(^{11}C\)CH\(_3\)I yields from 2 in-house

System Schematics

Motivation

Comparison of \(^{11}C\)CH\(_3\)I yields from 2 in-house

UBC/TRIUMF, Vancouver, BC, Canada
The take home message...

System Hardware

Peltier cooler

Iodine heater

Radioactivity Trend

1800 1200 1400 1600

methane trap MeI trap

600 800 1000

Summary

Original New

Quartz tube volume 65ml 33ml

Recirculation pump large volume micro

Recirculation volume 150ml 80ml

Cooling source

Water (18-20°C) Peltier (0°C)

Conversion based on 11CH

15-20% 35-40%

Number of passes 10-12 18-24

Recirculation time 6-8 min 3-4 min

Recirculation volume 80ml 56ml

Quartz tube volume 65ml 33ml

Performed 200 runs without needing to replace traps or increase in number of passes

Removal of CH₄ trap

System volume reduction

removal of CH₄ trap increase in number of passes increase in conversion yield

System volume reduction

removal of CH₄ trap increase in number of passes increase in conversion yield

Performed 200 runs without needing to replace traps or replenish iodine thus reducing maintenance requirements

The takedo message:

Size does matter!!
1. Temperature during synthesis
 - 720ºC in all synthesis
 - Too high temperature = problems

2. Specific activity
 - 7 Ci/umol
 - No difference observed between systems

3. Cold trap
 - Cold trap outside: decreased volume
 - Cold trap inside: no difference observed between systems
 - 720ºC in all systems
 - Temperature during synthesis: 720ºC

WTTC XIII – Presentation Discussions
Cyclotron production of 99mTc via the 100Mo(p,2n)99mTc reaction

K. Gagnon1, F. Bénard2, M. Kovacs3, T.J. Ruth4, P. Schaffer4, and S.A. McQuarrie1

1 Edmonton PET Centre, Cross Cancer Institute, University of Alberta, Edmonton, AB, CANADA
2 BC Cancer Agency, Vancouver, BC, CANADA
3 Lawson Health Research Institute, London, ON, CANADA
4 TRIUMF, Vancouver, BC, CANADA

Introduction: In light of the current world-wide shortage of reactor-produced 99Mo/99mTc, there is a growing interest in exploring the large-scale cyclotron production of 99mTc via the 100Mo(p,2n)99mTc reaction (a method first proposed by Beaver and Hupf, *J Nucl Med*, 1971, 12: 739). In producing 99mTc, knowledge of the cross sections and theoretical yields are essential for optimizing the high-current irradiation conditions and verifying the processing/recovery techniques. A review of the existing published cross section data for the 100Mo(p,2n)99mTc reaction however reveals large discrepancies in these measured values.

Aim: Given the large cross section discrepancies in the current literature, the goal of this work was to re-evaluate the cross sections for the 100Mo(p,2n)99mTc and 100Mo(p,pn)99Mo reactions.

Methods: The 99mTc and 99Mo cross sections were evaluated using both natural abundance (7.5 mg/cm2) and 100Mo enriched (97.42%, 7.4–11.1 mg/cm2) foils. Foils were individually irradiated with proton energies up to 18 MeV for 600 seconds on the Edmonton PET Centre’s TR 19/9 variable energy cyclotron (Advanced Cyclotron Systems Inc., Richmond, BC). A copper foil was in place for all irradiations for the purpose of monitoring the beam energy and irradiation current. Unless otherwise noted, all decay data were obtained from the NuDat 2.5 database.

The molybdenum foils were assayed multiple times (from a few hours to several days post-EOB) using an HPGe detector (sample distance ≥ 25 cm, dead time < 7%). The detector was calibrated using standard sources of 22Na, 54Mn, 57Co, 60Co, 109Cd, 133Ba and 137Cs. The 99Mo activity was determined using a weighted average of the 181 keV and 739 keV peaks. In determining the 99mTc activity, the non-resolved 140/142 keV peak (89.06%/ 0.02%) was measured. Two additional contributing sources to the 140 keV peak were subtracted prior to evaluation of the direct 99mTc cross section. Firstly, as 99Mo decays to 99mTc, the 99Mo associated 99mTc activity at the start of counting was determined from the measured 99Mo activity using the radioactive parent-daughter relationship described by Attix (*Introduction to Radiological Physics and Radiation Dosimetry*, 2004, pp. 105–106) with the branching ratio to 99mTc taken as 87.6% (Alfassi et al., *Appl Radiat Isot*, 2005 63: 37). Next, as 99Mo gives rise to a 140 keV (4.52%) gamma ray upon decay, this peak contribution was calculated from the measured 99Mo activity of each respective foil. Cross sections were calculated using the standard activation formula (Krane, *Introductory Nuclear Physics*, 1988, pp. 169–170) with values normalized to 100 percent 100Mo enrichment.

Thick target yields were calculated from the measured 99mTc cross sections assuming 100 percent 100Mo and fitting the cross-section data with a 2nd order polynomial. Values are reported for 18\rightarrow10 MeV, and 22\rightarrow10 MeV (cross sections extrapolated to 22 MeV from a polynomial curve fit).

Results: The following figures compare the evaluated cross sections for the direct production of 99mTc and 99Mo to previously published cross section data. For the purpose of comparison, we have normalized the 99mTc data of Challan et al. (*Nucl Rad Phys*, 2007, 2: 1) to 100 percent 100Mo by dividing by 9.63%. For both reactions, our results are in good agreement to values published by Levkovskij (1991). Good 99mTc cross section agreement is also noted up to E_p ~12 MeV when...
comparing with Lagunas-Solar (IAEA-TECDOC-1065, 1999) and Challan et al. We believe that the elevated ^{99m}Tc cross sections for Lagunas-Solar for $E_p > ~12$ MeV may be attributed to the incomplete subtraction of the ^{99}Mo 140 keV peak contributions due to underestimated ^{99}Mo cross sections. Although Challan et al. mention that they have corrected for the growth and decay of the metastable and ground states, it is unclear if the ^{99m}Tc 140 keV peaks were corrected to account for $^{99}\text{Mo}\to^{99m}\text{Tc}$ contributions post-EOB. The absence of such a correction would similarly explain the elevated ^{99m}Tc cross sections for $E_p > ~12$ MeV. While the ^{99}Mo cross sections are in good agreement, the ^{99m}Tc cross sections measured in this work are significantly higher than values published by Takács et al. (J Radioanal Nucl Chem, 2003, 257: 195) and slightly higher, by approximately 2σ, than values presented by Lebeda and Pruszynski (to be published in Appl Radiat Isot). An overall disagreement was noted for both reactions when comparing with the published cross sections of Scholten et al. (Appl Radiat Isot, 1999, 51: 69).

Throughout this experiment the beam current and detector efficiency were carefully monitored and we are confident with the 140 keV peak area corrections performed in this experiment as the evaluated ^{99m}Tc cross sections were consistent, independent of the time post-EOB upon which they were evaluated (i.e. calculated within a few hours post-EOB or >24 hours post-EOB).

Thick target yields were determined to be 14.2 mCi (526 MBq)/µAh for 18$^\gamma$ to 10 MeV, and 18.2 mCi (674 MBq)/µAh for 22$^\gamma$ to 10 MeV. These yields are higher than the value of 11.2 mCi (415 MBq)/µAh for 22$^\gamma$ to 12 MeV reported by Scholten et al., and are in good agreement with the value of 17 mCi (629 MBq)/µAh for 25$^\gamma$ to 5 MeV given by Takács et al.

As we are not only interested in optimizing the yield of ^{99m}Tc, but also the purity, future work is planned to experimentally evaluate the $^{100}\text{Mo}(p,2n)^{99m}\text{Tc}$ cross sections. Preliminary calculations using cross sections modelled with Empire–II suggest that a $^{99m}\text{Tc}/^{99m+99g}\text{Tc}$ ratio of 18% is possible for a 3 hour irradiation at 22$^\gamma$ to 10 MeV. In comparison, assuming a 24 hour elution frequency and 5% retention, the $^{99m}\text{Tc}/^{99m+99g}\text{Tc}$ ratio calculated for the standard generator setup is 26% (Alfassi et al., Appl Radiat Isot, 2005 63: 37).

Conclusion: We have presented updated cross sections for the $^{100}\text{Mo}(p,2n)^{99m}\text{Tc}$ and the $^{100}\text{Mo}(p,pn)^{99}\text{Mo}$ reactions. Results of this work suggest that production of large quantities of ^{99m}Tc via a cyclotron may be a viable alternative to the current reactor-based production strategy.

Acknowledgements: The authors would like to thank Advanced Cyclotron Systems, Inc. This work was supported through a grant from NSERC/CIHR (MIS 100934).
Motivation/Background

- Current/ongoing worldwide shortage of reactor-produced 99Mo/99mTc.
- Growing interest in exploring the large-scale cyclotron production of 99mTc via the 100Mo(p,2n)99mTc reaction.
- Knowledge of the cross sections and theoretical yields.
- Irradiations:
 - Thin foils, both natMo and 100Mo (97.42% enrichment).
 - Foils individually irradiated on the TR-19/9 at the EPC.

Reaction scheme:

\[^{99}\text{Mo} + n \rightarrow ^{99m}\text{Tc} + n + \gamma \text{ (140 keV photon used for imaging)} \]

\[^{100}\text{Mo} + p \rightarrow ^{99}\text{Tc} +
\]

Larger discrepancy amongst published literature.

- Energy and current monitored.
- Irradiations: 1 = t; t = 600 seconds.
- Thin foils, both natMo and 100Mo (97.42% enrichment).
- Foils individually irradiated on the TR-19/9 at the EPC.
- Thin foils, both natMo and 100Mo (97.42% enrichment).
- Foils individually irradiated on the TR-19/9 at the EPC.
- Thin foils, both natMo and 100Mo (97.42% enrichment).
- Foils individually irradiated on the TR-19/9 at the EPC.

\[^{99m}\text{Tc} + n + n \rightarrow ^{99}\text{Mo} \]
Results

Future/Ongoing

Alberta’s Radiogenic Isotope Facility:
- RDDS will be archived via IGP-Mat at the University of
- Currently awaiting for decay of 99Mo, 96Tc, etc.
- Production of 99Mo and 99mTc have been measured for
 enriched foils were irradiated ~12,000 pAh (20 Pf x
 Enriched measurement of the 100Mo(p,2n)99mTc
 Planned measurement of the 100Mo(p,x)

Future/Ongoing

Planed measurement of the 100Mo(p,2n)99mTc

Tightly Targeted Yields

Cross sections for 100Mo(p,2n)99mTc

Cross sections for 100Mo(p,x)

76

Irradiation

Expt Energy (MeV)

Incident Energy (MeV)

Yield

10

20

22 MeV

22 MeV extrapolated to

Cross sections

Cross sections

22 MeV

Cross sections

- Indirect (99Mo → 99mTc)
- Direct (14% 23%)

Correct for overlapping 140 key contributions from

Note: HPGe calibration source included ZCO

Absorbers were 300 seconds.

To minimize contribution of 99Mo, assayed for 99mTc

Folks assayed at multiple time points post-EOB

Foils assayed at multiple time points post-EOB

To minimize contribution of 99Mo, assayed for 99mTc

Absorbers were 300 seconds.

To minimize contribution of 99Mo, assayed for 99mTc

Absorbers were 300 seconds.
We have presented updated cross sections for the reactions $^{100}\text{Mo}(p,2n)^{99}\text{mTc}$ and $^{100}\text{Mo}(p,\alpha)^{96}\text{Mo}$ reactions.

Experiments are underway to evaluate the calculated thick target yields, suggesting that cyclotron may be a feasible alternative to the current reactor-based strategy. Neutron measurements difficult in thin foil methodology.

1. Resolve g/m states by neutron counting?
Cyclotron Production of \(^{99m}\)Tc

A. Zyuzin\(^1\), B. Guérin\(^2\), E. van Lier\(^1\), S. Tremblay\(^2\), S. Rodrigue\(^2\), J.A. Rousseau\(^2\), V. Dumulon-Perreault\(^2\), R. Lecomte\(^2\), J.E. van Lier\(^2\)

\(^1\)Advanced Cyclotron Systems Inc., Richmond, BC, Canada
\(^2\)Sherbrooke Molecular Imaging Center, Université de Sherbrooke, QC, Canada

Introduction. Current global interruptions of \(^{99m}\)Mo supply, aging reactors, and the staggering costs of their maintenance have accelerated the search for alternative sources of \(^{99m}\)Tc. Direct production of \(^{99m}\)Tc via \(^{100}\)Mo(\(p,2n\))\(^{99m}\)Tc nuclear reaction can be considered as one of such alternatives. The feasibility of \(^{99m}\)Tc production with a cyclotron was first demonstrated in 1971 by Beaver and Hupf\(^1\) and confirmed by a number of researchers.\(^2\)\(^3\)\(^4\)\(^5\) Measured yields indicate that up to 2.1 TBq (56 Ci) of \(^{99m}\)Tc can be produced in 12 h using a 500 \(\mu\)A 24 MeV cyclotron. This amount will be sufficient to cover population base of 5-7 million assuming: 15% \(^{99m}\)Tc losses, an average injected dose of 25 mCi and a 10 hrs decay. Initial results of the target development and thick target yields are presented in the “Mo-100 development for direct Tc-99m Production” abstract. In this work we compared the chemical and radiochemical properties and in vivo behavior of cyclotron- and generator-produced \(^{99m}\)Tc.\(^6\)

Experiment. Targets, 6-mm diameter discs, were prepared by melting \(^{100}\)Mo pellets (99.54% enrichment) onto tantalum backing supports. Targets were bombarded for 1.5–3 h with 15.5–17.0 MeV protons (14–52 \(\mu\)A), using a TR-19 cyclotron (ACSI). After bombardment, \(^{100}\)Mo targets were partially dissolved and purified by the method of Chattopadhyay et al.\(^7\) The radionuclide purity of the \(^{99m}\)Tc was >99.99%, as assessed by \(\gamma\)-spectroscopy, exceeding USP requirements for generator-based \(^{99m}\)Tc. Although small peaks corresponding to \(^{99}\)Mo were observed in the initial solute, these were not detectable in the purified \(^{99m}\)Tc-pertechnetate solution. Minute amounts of \(^{97}\)Nb were also quantitatively separated from during target processing. The content of other technetium isotopes was measured after allowing sufficient time (4 days) for \(^{99m}\)Tc decay. The presence of 0.0014% \(^{96}\)Tc and 0.0010% \(^{95}\)Tc at the end of bombardment, was below USP requirements of 0.01% for generator-produced \(^{99m}\)Tc. No other radionuclidic impurities were found. The radiochemical purity of cyclotron-produced \((^{99m}\)Tc\)\(^{2+}\) as determined by instant thin-layer chromatography was >99.5%, well above the USP requirement of 95%. The content of ground state \(^{99}\)Tc \((T_\frac{1}{2} = 2.1 \times 10^6 \text{ years})\) was not determined in these experiments and is one of the tasks for future work. For imaging studies, both cyclotron- and generator-produced \(^{99m}\)Tc were formulated as 3 different radiopharmaceuticals: \(^{99m}\)Tc-pertechnetate for thyroid imaging, \(^{99m}\)Tc-methylene diprophosphate (\(^{99m}\)Tc-MDP) for bone scanning, and \(^{99m}\)Tc-hexakis-2-methoxyisobutyl isonitrile (\(^{99m}\)Tc-MIBI) for heart imaging. These radiopharmaceuticals account for more than 75% of all \(^{99m}\)Tc scans currently used in diagnostic nuclear medicine. The latter two radiopharmaceuticals were prepared using commercially available kits. Labeling efficiency for the bone imaging agent \(^{99m}\)Tc-MDP and heart imaging agent \(^{99m}\)Tc-MIBI were 98.4% and 98.0%, respectively, well above USP requirements of >90%.

Animal Scans. The bio-distributions of \(^{99m}\)Tc-pertechnetate, \(^{99m}\)Tc-MDP, and \(^{99m}\)Tc-MIBI, prepared with either cyclotron- or generator-produced \(^{99m}\)Tc, were assessed in a healthy rat model. For each experiment 2 animals were simultaneously injected with a 0.3-mL physiologic saline solution containing 34–90 MBq of the selected \(^{99m}\)Tc-radiopharmaceutical, prepared either with cyclotron- or generator-produced \(^{99m}\)Tc. Dynamic acquisitions were continued over a 2 h period. At the end of scanning, the rats were killed and dissected to
measure activities of target tissues. Static images obtained 2 h after administration of each of these 99mTc-radiopharmaceuticals show matching 99mTc distribution patterns, clearly delineating the thyroid with 99mTc-pertechnetate, skeleton with 99mTc-MDP, and heart with 99mTc-MIBI (Fig. 1). Uptake kinetics calculated over the target organs (thyroid, bones, and heart), show identical uptake patterns for the cyclotron- and generator-produced 99mTc-radiopharmaceuticals (Fig. 2). Tissue activities from dissected samples collected 30 min after the end of imaging with 99mTc-MDP and 99mTc-MIBI also show matching patterns between cyclotron- and generator-derived 99mTc preparations (Fig. 3).

Figure 2. Time/radioactivity curves derived from regions of interest drawn around target organs (Fig.1) Dotted line: cyclotron-produced 99mTc, Solid line: generator produced 99mTc. Radioactivity is expressed as percentage of injected dose per unit area, corrected for radioactive decay.

Figure 3. Tissue uptake in healthy rats, expressed as percentage of injected dose per gram of tissue, 2.5 h after intravenous injection of 34 MBq of 99mTc-MDP or 15 MBq of 99mTc-MIBI, prepared from cyclotron-produced 99mTc (open bars) or generator-produced 99mTc (solid bars).

Conclusion. The results of these in vivo experiments and quality control tests support the concept that cyclotron-produced 99mTc is suitable for preparation of USP-compliant 99mTc radiopharmaceuticals. Establishing decentralized networks of medium energy cyclotrons capable of producing large quantities of 99mTc may effectively complement the supply of 99mTc traditionally provided by nuclear reactors, at a fraction of the cost of a single nuclear reactor production facility, while sustaining the expanding need for other medical isotopes, including short-lived positron emitters for PET imaging.

5. Lebeda, O. et al. New measurement of excitation functions for (p,x) reactions on 100Mo with special regard to the formation of 95mTc, 96mTc, 99mTc and 99Mo. Appl. Radiat. Isot., in press
Cyclotron Production of Tc-99m

1Advanced Cyclotron Systems Inc Richmond BC Canada
2Sherbrooke Molecular Imaging Center, Université de Sherbrooke, QC, Canada
3Cross cancer Institute, Edmonton, AB, Canada

History

May 2009
Recent isotope crisis begins: NRU Shutdown

Jun 2009
NRCan calls for Expressions of Interest

ACSI propose to implement direct Tech production in
Cyclotron Production of Tc-99m

100Mo(p,2n)99mTc Production Yield

Takacs (2002)

ACSI TR24 Cyclotron

The measured production yields @24 Mev

-150 mCi/µA at saturation

May 2009
NRCan calls for Expressions of Interest

Jun 2009
NRCan commits to develop non-fission solution

Two Canadian organizations purchase 24 MeV Cyclotron

Jul 2009
EOI Submitted to NRCan: National Cyclotron Network for Production of Medical Isotopes

Sep 2009
CIHR/NSERC grant submission

Oct 2009
First production runs and animal scans

Nov 2009
Expert Panel Report

Two Canadian organizations purchase 24 MeV Cyclotron

First production runs and animal scans

CIHRNSERC grant submission

For production of Medical isotopes

EOI Submitted to NRCan: National Cyclotron Network

ACSI propose to implement direct Tech production in

Cyclotron Production of Tc-99m

100Mo(p,2n)99mTc Production Yield

Takacs (2002)
How many 99mTc doses can we make?

Sat Yield 24 MeV 150 mCi/u

A

Measured yields @ 24 MeV
Beam on TA 500 uA
Hrs / day 12 hrs

Production 56 Ci / day 37 Ci in 6 hours (75 Ci in 2 x 6 hrs)

AD 25 Ci

Av. dose 25 mCi
20-30 mCi for cardiac and NPT bone scans
Av. t EOB 10 hrs
Tc losses 15%
Av. dose @ EOB 93 mCi
Doses per site 602

Doses/day Tc-99m Req 600 Ci/day For entire Canadian Population

Cost of Production

Cyclotron production of 99mTc can be economically viable, it can effectively supplement and possibly compete with reactor based supply.

Currently available enrichment 99.54 %
For >99.5% enrichment: 97mTc - 0.006%
96gTc - 0.08%
For >99.3% enrichment: 97mTc - 0.008%
96gTc - 0.11%
For >99.0% enrichment: 97mTc - 0.012%
96gTc - 0.2%

Currently available enrichment 99.54 %
For >99.5% enrichment: 97mTc - 0.006%
96gTc - 0.08%
For >99.3% enrichment: 97mTc - 0.008%
96gTc - 0.11%
For >99.0% enrichment: 97mTc - 0.012%
96gTc - 0.2%

Currently available enrichment 99.54 %
For >99.5% enrichment: 97mTc - 0.006%
96gTc - 0.08%
For >99.3% enrichment: 97mTc - 0.008%
96gTc - 0.11%
For >99.0% enrichment: 97mTc - 0.012%
96gTc - 0.2%

Cost of Production

2-3% for whole body
0.5 to 1.5% for target organs

Radioactivity purity: Preliminary estimated dose:
Dosimetry studies will be required to determine dose from

Given to dosimetry

USP requirements <0.01% for any y-emitter with no consideration

For <99.5% enrichment: 97mTc - 0.08%
96gTc - 0.2%
For <99.3% enrichment: 97mTc - 0.008%
96gTc - 0.11%
For <99.0% enrichment: 97mTc - 0.012%
96gTc - 0.2%

Currently available enrichment 99.54 %
For >99.5% enrichment: 97mTc - 0.006%
96gTc - 0.08%
For >99.3% enrichment: 97mTc - 0.008%
96gTc - 0.11%
For >99.0% enrichment: 97mTc - 0.012%
96gTc - 0.2%

Cost of Production

2-3% for whole body
0.5 to 1.5% for target organs

Radioactivity purity: Preliminary estimated dose:
Dosimetry studies will be required to determine dose from

Given to dosimetry

USP requirements <0.01% for any y-emitter with no consideration

For <99.5% enrichment: 97mTc - 0.08%
96gTc - 0.2%
For <99.3% enrichment: 97mTc - 0.008%
96gTc - 0.11%
For <99.0% enrichment: 97mTc - 0.012%
96gTc - 0.2%

Cost of Production

2-3% for whole body
0.5 to 1.5% for target organs
Challenges. Specific Activity

Cyclotron 99mTc specific activity is 2.5-3 (EOB) times lower than 99mTc eluted from a generator after 24 hr growth in period:

- 24 hr generator - 99%
- 12 hr run cyclotron ~ 28%
- 6 hr run cyclotron ~ 9%

Measured by ICP MS 6 hrs @16.4 MeV 99mTc/Tc ~19% equivalent to 36 hr generator.

Labeling with specific activity as low as 2.8% has been studied for HMPAO, TF, MAG3 ECD and MIBI as model compounds. All the standard quality control indicators, radiochemical purity and labeling efficiency values were unaffected.

Work in Progress

First experiments on direct 99mTc production started in October 2009 at University of Sherbrooke. The main objective was:

1. To demonstrate the feasibility of 99mTc production using a cyclotron.
2. To compare the chemical and radiochemical properties and in vivo behavior of cyclotron- and generator-produced technetium.
3. To examine the chemical and radiochemical properties and in vivo behavior of cyclotron-produced technetium using a cyclotron.

99mTc was formulated as 3 different radiopharmaceuticals:

- 99mTc-pertechnetate for thyroid imaging
- 99mTc methylene diphosphate (99mTc-MDP) for bone scanning
- 99mTc hexakis-2-methoxyisobutyl isonitrile (99mTc-MIBI) for heart imaging

The radionuclidic purity of cyclotron produced [99mTc]TcO4 was 99.5% (USP requirement of 95%)

The labeling efficiency potentially affected by ground state technetium:

- 99mTc was prepared by 15.5-17.0 MeV protons using TR-19 cyclotron.
- No 97mTc were detected.
- 99Mo and 97Nb were quantitatively separated.
- No 99mTc was detected.

Radiochemical purity: 0.0014% 99mTc, 0.0010% 96Tc and 0.0003% 96mTc.

The labeling efficiency of 99mTc-MIBI was measured by ICP MS 6 hrs @16.4 MeV:

- 24 hr generator - 99%
- 12 hr run cyclotron - 9%
- 6 hr run cyclotron - 28%
- 24 hours post injection for heart imaging.

Whole-body scintigrams of two rats 2 h after administration of:

- 90 MBq of 99mTc-pertechnetate
- 34 MBq of 99mTc-MDP
- 15 MBq of 99mTc-MIBI

Guerin et al. J Nuclear Med 2010;51:13N-16N

Work in Progress

The radionuclidic purity of cyclotron produced [99mTc]TcO4 was 99.5% (USP requirement of 95%).
Conclusion

• Make the use of safe and relatively low-cost cyclotron technology effective and competitive as a regional alternative to reactor-based production of medical isotopes.

• Flexible solution. As production demand changes, sites can react within a few weeks or even days.

• Cyclotron production of 99mTc can effectively compete with reactor-based supply.

• Expanding availability for other medical isotopes including for PET imaging.

• Worldwide interest in this model.

Work in Progress

1.3

WTTC XIII – Presentation Discussions

1. Specific activity

- Generator 24h: 28%
- Cyclotron 12h: 9%
- Cyclotron 6h: 12%
- Careful with Tc96: bad energy to collimators

2. Supply of Mo100

- Max 10Kg available worldwide
- Price will depend on demand

3. Final price

- Mo100 price decisive in overall process price
- GMP compliance: 2$ USD / dose

4. Alternative processes

- Nuclear reactor will start again (n, gamma)M99: 10Ci/g but still not profit wise for power plants

- Other reactor processes
Introduction: The measured yields of direct 99mTc production via 100Mo(p,2n)99mTc suggest that 99mTc can be produced in quantities sufficient for supplying regional radiopharmacies, thereby reducing our reliance on reactor-derived 99Mo. Cyclotron- and generator-produced 99mTc-radiopharmaceuticals were shown to be radionuclidically, chemically and biologically equivalent, giving matching images and identical kinetic and biodistribution patterns in animals, indicating that a medical cyclotron can produce USP-compliant 99mTc-radiopharmaceuticals for nuclear imaging procedures. In this work, several different 100Mo target configurations were investigated and thick target yields were measured, validating the production of clinically useful quantities of 99mTc on a medical cyclotron.

Target Holders: Two different solid target holders were used to measure the thick target yields of the 100Mo(p,2n)99mTc nuclear reaction. The straight 90° target holder has a heat removal capacity of 1.5 kW and while the 30° tilted solid target holder has a heat removal capacity of 3.0 kW. Two different solid target holders (Advanced Cyclotron Systems Inc., Richmond, BC, Canada) were installed on three compact medical cyclotrons (TR-19, Cross Cancer Institute, Edmonton, AB, TR-19 Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke QC, Canada, GE PETTrace, Lawson Health Research Institute, London ON, Canada).

Mo Targetry: Molybdenum has been a metal of choice in accelerator targetry for several decades. With a high melting point, good thermal conductivity and chemical stability, molybdenum is nearly an ideal material for manufacturing high power targets. While a number of low and medium current cyclotron targets that use natural and enriched molybdenum isotopes have been developed and used for production of technetium isotopes: 94Tc, 96Tc and 99mTc, a reliable process for preparation of enriched molybdenum targets has not yet been implemented. A number of standard target manufacturing techniques are being evaluated: melting, sintering, pressing/pelletizing, rolling, plating from solutions or molten salts, formation of low melting temperature Mo alloys, brazing or soldering 100Mo to a target substrate, coating molybdenum with a protective layer, development of a thick target, plasma sputtering and other coating techniques.

Mo Target Preparation: Between 100-450 mg natural and enriched 100Mo (99.5%) were pressed into 6 and 9.5 mm pellets at between 25,000 N and 100,000 N. The pellets were sintered in wet or dry hydrogen at 800-900°C, and subsequently mounted into a tantalum substrate, either by pressing or arc melting or electron beam melting at currents between 40-70 mA with different sweeping / focusing patterns.
99mTc Production: 99mTc was produced via the 100Mo(p,2n)99mTc nuclear reaction on a 19 MeV medical cyclotron using an incident proton energy of 15-17 MeV at current between 14-52 μA. After bombardment targets were subjected to electrochemical dissolution, 99mTc was purified by ion-exchange chromatography and recovered as pertechnetate.

Results: Up to 44.7 GBq (1.2 Ci) (EOB) of 99mTc was produced after a 6-h bombardment at 16.4 MeV and 39 μA. This corresponds to a thick target production yield of 0.25 GBq/μA/h (6.8 mCi/μA/h) and 2.3 GBq/μA (63 mCi/μA) at saturation and is in good agreement with literature data. The radionuclide purity of the cyclotron-produced 99mTc was >99.99%, as assessed by γ spectroscopy, exceeding USP requirements for generator-based 99mTc. The content of other technetium isotopes was measured after allowing sufficient time (4 days) for 99mTc decay and was below USP requirements of 0.01% for generator-produced 99mTc. No other radionuclidic impurities were found. The radiochemical purity of cyclotron-produced 99mTcO4− was >99.5%, well above the USP requirement of 95%.

Conclusion: This study confirms that clinically useful quantities of 99mTc can be produced on medical cyclotrons installed worldwide. Extrapolating these results to the optimal energy of 22-24 MeV indicates that over 2 TBq of 99mTc can be produced daily for regional distribution on a high-current medium-energy cyclotron. Implementing networks of high-current medium energy cyclotrons would reduce reliance on nuclear reactors and attenuate the negative consequences associated with the use of fission technology.

3 Lebeda, O.; Pruszynski, M.: New measurement of excitation functions for (p,x) reactions on natMo with special regard to the formation of 95mTc, 96m+gTc, 99mTc and 99Mo, Appl. Radiat. Isot., in press, (personal communication)
5 Zuyuzin, A.; Guérin, B.; van Lier, E.J.; Tremblay, S; Rodrigue, S.; Rousseau, J.A.; Dumulon-Perreault, V.; Lecomte, R.; van Lier, J.E.; Cyclotron production of 99mTc WTTC 13, Abstract
6 Qaim, S.M., Production of high purity 94mTc for positron emission tomography studies, Nuclear Medicine and Biology, 27, 4, 2000, 323-328
Overview

- Cross-Section measurements
- Targets for Cyclotron Production
 - Target Stations: 40 µA - 500 µA
 - Cross-Section measurements

Target Stations

- Straight Target: 40 µA
- 30° Target: 80 µA
- PET: 2.6 Ci in 6 hrs
- TR24: 5.6 Ci in 6 hrs

- High Current: 500 µA
- Medium Current: 200 µA
- PET: 6.6 Ci in 6 hrs
- TR24: 14 Ci in 6 hrs

Future Work

- Thick Target Yields -- Results
- Pressed Molybdenum Powders
- E-Beam Melting Molybdenum
- Arc Melting Molybdenum
- Targets for Cyclotron Produced Tc-99m

Thick Target Yields

- 100Mo(p,2n)99mTc Cross Section

Gagnon et al. WTTC13

- 14 Cm in 6 hrs
- 6.6 Ci in 6 hrs
- 14 Ci in 6 hrs
- 35 Ci in 6 hrs

E.J. van Lier, J. Burbee, A. Zyuzin
M.S. Kovacs, J. Bureau, P. Zy菌
J.E. van Lier, J. Bureau, P. Zy菌, K. Gagnon
E.J. van Lier, J. Bureau, P. Zy菌, S. Rodrigues

Advanced Cyclotron Systems Inc., Richmond, BC, Canada

Brockhouse Inst. for Mat. Research, McMaster University, Hamilton, ON, Canada

Sherbrooke Molecular Imaging Centre, Université de Sherbrooke, QC, Canada

Dept of Medical Biophysics, University of Western Ontario, London, ON, Canada

Dept Oncologic Imaging, Cross Cancer Institute, Edmonton, AB, Canada

Cancerous Molecular Imaging Centre, University of Toronto, ON, Canada

Brachytherapy Inst for Med. Research, McGill University, Montreal, QC, Canada

1 Advanced Cyclotron Systems Inc., Richmond, BC, Canada
2 Brockhouse Inst. for Mat. Research, McMaster University, Hamilton, ON, Canada
3 Sherbrooke Molecular Imaging Centre, Université de Sherbrooke, QC, Canada
4 Dept of Medical Biophysics, University of Western Ontario, London, ON, Canada
5 Dept Oncologic Imaging, Cross Cancer Institute, Edmonton, AB, Canada
6 Cancerous Molecular Imaging Centre, University of Toronto, ON, Canada
7 Brachytherapy Inst for Med. Research, McGill University, Montreal, QC, Canada
Pressed Molybdenum Powder

- Bulk Density of Molybdenum Pellet vs. Force

Pro:
- Accurate control of E-beam
- 50-70 mA E-beam

Con:
- No bonding Mo/Ta

Press Molybdenum Targets - Arc Melting

Pro:
- Good thermal contact Mo/Ta
- Easy to manufacture
- Can run up to 65 µA

Cons:
- Difficult to control arc
- Potential alloy formation
- Slow dissolution of target

Press Molybdenum Targets - E-beam Melting

Pro:
- Accurate control of E-beam
- No bonding Mo/Ta
- Critical Temp Mo melting (mp 2617°C)
- Critical Temp Ta deformation (mp 3017°C)

Cons:
- Potential alloy formation
- Can run up to 65 µA
- Critical Temp Mo melting (mp 2617°C) and Ta deformation (mp 3017°C)
- Critical Temp Mo melting (mp 2617°C) and Ta deformation (mp 3017°C)
- Critical Temp Mo melting (mp 2617°C) and Ta deformation (mp 3017°C)
- Critical Temp Mo melting (mp 2617°C) and Ta deformation (mp 3017°C)
Results – Thick Target Yields

Pros:
- Relatively Inexpensive
- Easy to dissolve Mo
- Can run up to 40 µA
- Relatively inexpensive

Cons:
- Brittle Mo pellets
- Poor thermal contact
- Mo pellets pressed directly into 24 mm Al disk
- Mo pellets pressed into Al ring then to 24 mm Ta disk

Conclusion

Target Yields:
- Thick target yields agreement with previously measured
- PET cyclotrons can produce multi-Ci Tc-99m
- Saturated yield
- Preliminary results (23.8 → 12.5 MeV, 5 min, 1.94 µA)
 - 2.3 GBq/µA (63 mCi/µA) (measured)
 - 0.25 GBq/µA (6.8 mCi/µA) (scaled to 24 → 10 MeV)

Target Yields:
- Saturated yield
- Thick target production yield
 - 4.7 GBq (1.2 Ci) Tc-99m (EOB)
 - 39.6 GBq/µA 0 MeV, 39.6 µA 14 MeV, 1.3 Ci
- Traktor, 14 MeV
Future Work

- Continue to study targets:
 - Pressed Targets
 - Ebeam/Arc Melting
 - Foils
 - Plating
 - Vapor deposition / Plasma spray
 - Foils
 - Ebeam/Arc Melting

Select most appropriate method:
- Scalable with overall process integration
- Reliable / Robust
- Cost effective

Tc/Mo separation?
- Next step

Cyclotrons needed to replace nuclear production of Tc-99m for Canada, 10x more for the USA
- But: 500uA cyclotrons…
- FDA approval? It was approved 3 decades ago.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Tc/Mo separation</td>
</tr>
<tr>
<td>2.</td>
<td>Next step</td>
</tr>
</tbody>
</table>

WTC XIII – Presentation Discussions
A further exploration of the merits of a Niobium/Niobium vs Niobium/Havar target body/foil combination for [18F]Fluoride production: A detailed HP γ-spectrometry study

John Sunderland, G Leonard Watkins, Colbin E Erdahl, Levent Sensoy, Arda Konik
PET Imaging Center, University of Iowa Health Care, Iowa City, IA 52242, USA

In the current nuclear medicine environment, both the Molybdenum crisis and FDA regulation, are driving the PET community to look more closely at the production of [18F]NaF for PET imaging. This situation has led the University of Iowa to design and construct a targetry unit and a synthesis/purification module designed to obtain highest purity [18F]NaF. In this study we investigate the radionuclidic purity of [18F]NaF from this module with [18F]NaF produced from both a Nb/Havar and Nb/Nb target/body combination. The rationale for the targetry comes from the recent observations of the Wisconsin and Edmonton groups1,2,3.

As can be seen from the schematic in Figure 2 [18O]H2O was irradiated in a Nb target body equipped with either a Nb or Havar front foil. The target water was emptied into a target collection vessel (TCV). Under N2 overpressure the contents were passed sequentially through a CM cation SPE cartridge and a QMA anion SPE cartridge to an [18O]H2O recovery vessel. Any non-anionic material was then flushed from the QMA with water (5 mL) to waste. The [18F]NaF and any other anionic species were then eluted into the final product vial with isotonic saline (15 mL).

To assess radionuclidic purity, the Nb/Niobium body/foil combination was bombarded at 30 µA for 5, 10, 20 and 80 minutes. The Nb/Havar body/foil combination was bombarded at 30 µA for 80 minutes. In all cases the TCV, CM, QMA, and Product Vial were quantitatively assessed for radionuclidic content using a GEM20P4-70. ORTEC GEM Coaxial P-type HPGe Gamma-Ray Detector. Results are summarized in Figure 2.

The Nb-Nb body/foil combination spectrum was simple; 30 µA for 10 minutes created minute quantities of 56,57,58Co and 52Mn (<0.1 nCi) from the trace quantities of iron and chromium in the Nb foil, but approximately 1 µCi of 93mMo from the 93Nb(p,n)93mMo reaction (Figure 1). The CM cation cartridge quantitatively bound the cobalt isotopes, while the 93mMo, initially trapped by the QMA anion cartridge, eluted quantitatively with the [18F]NaF. Under similar conditions, the Nb/Havar body/foil created 12 radionuclides at 10-100 nCi levels. The CM/QMA cartridge combination served to eliminate 6 of 12 contaminants, and reduce the quantities of the remaining nuclides substantially, but not completely. The product vial from the Nb/Nb combination had only 93mMo, while the product vial from the Nb/Havar target resulted in [18F]NaF with 51Cr, 95,96Tc,181,182Re, and 93mMo (from Nb target body) contaminants with activities ranging from 1-30 nCi.

References:
Figure 1. Radionuclidic Impurities associated with 30A, 10 minute and 80 minute bombardments on Nb-Nb and Nb-Havar.

Figure 2. [18F]NaF Synthesis schematic with radionuclidic impurities.
A Further Exploration of the Merits of a Niobium/Niobium vs. Niobium/Havar target/foil combination for 18F Fluoride Production: A detailed HPGe spectrometry study

PET Imaging Center, University of Iowa Health Care, Iowa City, IA

Project Rationale

1. In the current nuclear medicine environment, both the Molybdenum crisis and FDA regulations are driving the PET community to look more closely at the production of 18F NaF for PET imaging. This situation has led the University of Iowa to design a synthesis module designed to obtain the highest purity 18F NaF.

2. In this study we investigate the radionuclidic purity of 18F NaF from this module with 18F Fluoride produced from both a Nb/Havar and Nb/Nb target/foil combination.

Project Rationale for 18F Fluoride Production: A detailed HPGe spectrometry study

Nioibium/Niobium vs. Niobium/Havar target/foil combination

Health Care, Iowa City, IA
In all cases the Target (TCV), CM cartridge (CM), and Product vial were quantitatively assessed for radionuclidic contaminants using a shielded coaxial-p-type HPGe gamma-ray detector calibrated CEM204-70 ORTEC CEM system.

For Nb combination resulted in only Co and Mo radionuclidic contaminants. The Co radionuclides resulted from trace impurities in the Nb foil, while the Mo-93m resulted from the (p,n) reaction on Nb. The Havar foil spawned radionuclidic contaminants were on the order of 100–1000X the absolute quantities from Nb foil.

Typical Target water spectra from Nb-Havar combination.
1. The University of Iowa

NaF synthesis/purification system produced a final product with acceptable radionuclidic purity regardless of whether the Nb-Nb or Nb/Havar target body/foil combination was used.

2. Order of magnitude calculations suggest that additional radiation dose resulting from picoCurie levels of radionuclidic contaminants will result in substantially less than 1 mR additional whole body radiation for both target body/foil combinations using highly conservative assumptions that:

a) All particulate and gamma radiation emitted in the body are absorbed.
b) Biological half-lives are infinite.
c) No attempt to model biodistribution was included in the calculation.

3. It is NOT clear which of the two target body/foil systems is optimal.

Mo-93m has a short half-life (6.85 hours) but it also has three relatively energetic gamma emissions of approximately 1 MeV.

The radionuclides from Havar have generally longer half-lives, but lesser quantities. Havar has the additional advantage of having less radionuclidic emissions of approximate 1 MeV.

4. Niobium-Havar target system is preferred to Niobium-Niobium (experience).

5. Which one is the best foil?

 - Niobium-Niobium: no yield difference
 - Niobium-Havar: no yield difference
 - Careful with impurities in foil material
 - Nb-93m has a short half-life (685 hours) but it also has three relatively energetic gamma emissions of approximate 1 MeV.
 - Mo-93m has a short half-life (6.85 hours) but it also has three relatively energetic gamma emissions of approximate 1 MeV.
 - Nb-93m has a short half-life (6.85 hours) but it also has three relatively energetic gamma emissions of approximate 1 MeV.
 - Niobium-Havar preferred to Niobium-Niobium (experience)

 • Nb-93m has a short half-life (6.85 hours) but it also has three relatively energetic gamma emissions of approximate 1 MeV.
 • Mo-93m has a short half-life (685 hours) but it also has three relatively energetic gamma emissions of approximate 1 MeV.
 • Nb-93m has a short half-life (6.85 hours) but it also has three relatively energetic gamma emissions of approximate 1 MeV.
A multi-wire proportional counter for measurement of positron-emitting radionuclides during on-line blood sampling

H. T. Sipila¹, A. Roivainen¹ and S-J. Heselius²
¹ Turku PET Centre, Turku University Hospital, P.O. Box 52, FI-20520 Turku, Finland
² Turku PET Centre, Accelerator Laboratory, Porthansgatan 3, FI-20500 Turku, Finland

Introduction. Pharmacokinetic analyses of PET data require the exact determination of the input function, i.e. the determination of radioactivity concentrations in blood and plasma. Silicon diodes have been used for the measurement of blood radioactivity during PET imaging of rodents [1]. Conventional BGO detectors are widely used for blood radioactivity measurements in human studies (Allog Ab, Sweden). The purpose of the present study was to develop a flow-through multi-wire proportional counter with high sensitivity for positrons emitted from the commonly used positron emitters 11C, 15O, 18F and 68Ga. The proportional counter used in this work was a multi-wire flow-through detector filled with argon-methane gas (P10). The detector system was tested for measurements of 11C, 15O, 18F and 68Ga with mean positron energies in the energy interval 250 - 830 keV. Although the sensitivity of a gas-filled detector is low for 511 keV photons, positrons in the mentioned energy range will give an efficient signal when they interact with the detector fill gas. This type of detector requires only light lead shielding and the detector system can be installed very close to the animal or patient. The detector was used in studying time-activity curves in rats after i.v. injection of $[^{15}$O]water. Our measurements indicate that the conventional proportional counter technique is useful for routine on-line analyses of blood samples obtained during PET studies of rodents and humans.

Materials and Methods. The multi-wire proportional counter (Fig. 1) was constructed in our laboratory. The electronics was purchased from Oxford Instruments Analytical Oy (Finland). The detector was equipped with an aluminum tube window (thickness 100 µm, diameter 13 mm, length 78 mm). The detector was filled with argon-methane gas (P10) and closed at 1060 mbar pressure. The counter electronics, preamplifier, linear amplifier and high-voltage power supply were all placed in the same aluminium box. The counter A/D converter and software for data collection were custom made. The detector was shielded with 50 mm of lead (25 kg). The background count rate was 2-4 cps. The stability and working conditions of the detector were tested with a 241Am X-ray source. The performance of the multi-wire proportional counter was tested with known activities of 11C, 15O, 18F and 68Ga in water solutions. Oxygen-15 was produced with the Cyclone 3 cyclotron (IBA, Belgium) of the Turku PET Centre. $[^{15}$O]water was produced with a Hidex Radiowater Generator (Hidex Oy, Finland). 11C and 18F sources were produced with the MGC-20 and CC-18/9 cyclotrons of the Turku PET Centre. 68Ga-chloride solution was obtained from a 68Ge/68Ga generator (Obninsk, Russia).

The rats were anesthetized with isoflurane. $[^{15}$O]water (50 - 60 MBq, 500 µL) was manually injected via tail vein using a cannula. The blood sampling tube (Teflon, i.d. 0.5 mm, o.d. 1.0 mm) was installed through the detector. A peristaltic pump was used for blood sampling from the arteria femoralis. The blood-flow rate through the detector was 500 µL/min. The animals were placed in a PET scanner (HRRT, Siemens) in order to get a reference input function from the heart left ventricle.

Results and Discussion. Fig. 2 shows the detector efficiency as a function of the mean energy of positrons. The radionuclides 11C, 15O, 18F and 68Ga in water solutions in the Teflon tubing (i.d. 1.5 mm, o.d. 2.5 mm) were used as positron sources. The graph reflects a linear relationship between the detector efficiencies and the mean energies for positrons of the four radionuclides ($R^2 = 0.9982$). The multi-wire proportional counter responses to 11C, 15O, 18F and 68Ga activities in the Teflon tubing are shown in Fig. 3. The detector response was linear for 15O in the range 5 - 80 kBq/mL with the i.d. 1.5 mm Teflon tubing and in the range 100 - 1300 kBq/mL with the i.d. 0.5 mm Teflon tubing. These ranges cover the radioactivity concentrations for both human and...
rat studies. Radioactivity levels in humans are about 20 times lower but still well above the signal to noise level.

Blood time-activity curves (arteria femoralis) were recorded for $^{[15O]}$water in rat studies. Our results show that a multi-wire proportional counter setup can be used for measurements of blood time-activity curves in PET studies with $^{[15O]}$water. Blood radioactivities with injection of 11C, 18F and 68Ga labelled tracers can also be measured. The detector efficiency for 18F is low (0.9 - 4.0 %, depending on wall thickness and i.d. of sampling tubing), which limits the use of the detector in 18F applications. Taking into account the abundance of positron decay of 68Ga (86%) the actual detector efficiency for 68Ga is slightly less than for 15O (positron decay 100%).

![Fig. 1. Exploded view of multi-wire proportional counter.](image)

![Fig. 2. Detector efficiency versus mean energy of positrons. Radionuclides 11C, 15O, 18F and 68Ga were used as positron sources.](image)

![Fig. 3. Multi-wire proportional counter response to 11C, 15O, 18F and 68Ga activities in Teflon tubing.](image)

A multi-wire proportional counter for measurement of positron-emitting radionuclides during on-line blood sampling.

- Low background.
- Low sensitivity for 51 keV photons.
- Gas proportional counter = position sensitive detector.
- Low 51 keV photon sensitivity.
- Good geometry - flowthrough detector.
- High 51 keV photon background.
- Low activity.

H. T. Siipila, A. Roivainen, and S.-J. Heselius
1 Turku PET Centre, Turku University Central Hospital, PO Box 52, 20500 Turku, Finland
2 Turku PET Centre, Turku University Central Hospital, PO Box 52, 20500 Turku, Finland
3 Turku PET Centre, Accelerator Laboratory, Porthaninkatu 3, FI-20500 Turku, Finland
4 Turku PET Centre, Accel Laboratory, PO Box 52, F-20500 Turku, Finland
Detector efficiency vs. mean energy of positrons.

- **Efficiency**
 - Efficiency not corrected
 - Efficiency corrected

- **Energy (corrected)**
 - **$E_{\text{Lin.}}$**: 0.9982

- **Data Points**
 - ^{18}F
 - ^{11}C
 - ^{18}O
 - ^{68}Ga
 - ^{25}O

- **Equation**
 - $y = 0.0553x - 13.464$
1. 15O calibration

 \[y = 41,458x + 3,4734 \]

 \[R^2 = 0.9999 \]

2. 68Ga calibration

 \[y = 40,172x + 1,5117 \]

 \[R^2 = 0.9999 \]

3. 2000 2500 3000

 Count rate [cps]

 Radioactivity concentration [kBq/mL]

4. 500 1000 1500

 Count rate [cps]

 Radioactivity concentration [kBq/mL]

5. 11C calibration

 \[y = 10,512x + 1,6171 \]

 \[R^2 = 0.9999 \]

6. 18F calibration

 \[y = 1,3587x - 1,0124 \]

 \[R^2 = 0.9987 \]

7. PTFE tubing o.d. 2.5mm. i.d. 1.5mm

8. WTTCXIII, July 2010, Riso, Denmark
Black line: measured blood curve; Red and green plot: measured blood curve with dispersion correction by Munk's and Iida's methods, respectively. Blue line: Image based input, by Nobu Kudomi.
Introduction

Radionuclide 90Y is a widely used tool for cancer therapy due to its suitable half-life, ready availability in high specific activities at relatively low cost. As it is a pure β^- emitter with no associated γ rays, there is a need for a tracer of 90Y. Promising candidate for these purposes is 86Y, since it is a positron emitter with half-life of 14.74 h. This radionuclide has been usually produced by the (p,n) reaction on enriched 86Sr solid targets (SrCO$_3$) [1]. Handling and processing of those targets have several disadvantages. There is an interesting alternative to this approach, namely irradiation of a liquid target filled with aqueous solution of strontium nitrate [2]. It makes the target processing significantly easier and allows for automation of the process. Separation step can be also simplified, since usual electrolysis can be replaced by filtration of yttrium colloid in alkaline milieu [3].

Materials and methods

Strontium carbonate (96.3% 86Sr) was purchased from JV Isoflex, Moscow. Trace select ultra grade HNO$_3$, HCl and NH$_4$OH were purchased from Sigma-Aldrich. Puratronic grade (NH$_4$)$_2$CO$_3$ was purchased from AlfaAesar. High purity de-ionized water was used (specific resistance 18.2 MΩ/cm).

The main part of target assembly was water cooled chamber (volume 2.4 ml) made out of pure Nb with Ti entrance foil. The concentration of irradiated solution of strontium nitrate was 35% (w/w). After irradiation, the solution was transferred to separation unit, target was washed with 10 mM nitric acid and water. All parts were collected together, pH was set to 10, filtered through PVDF filter and washed with 50 ml water. Filtrate was collected for Sr recovery. Yttrium was eluted from the filter with 10 ml 1M HCl. Eluate was evaporated to dryness and re-dissolved in 100–300 μl of 0.05M HCl as a stock solution for labelling.

Radionuclidic purity and activity of produced yttrium was measured with γ-ray spectrometry (HPGe detector GMX45, Ortec).

Content of chemical impurities (for 86Y – Fe, Cu, Zn, Al, 86Sr) was determined via ICP-MS at the Institute of Chemical Technology Prague. We used two alternative methods for determination of the purity of the produced 86Y: differential pulse voltametry and labelling efficiency of DOTATOC. Ca. 40 MBq of 86Y stock solution was mixed with 20 μg of DOTATOC in 300 μl of 0.4 M sodium acetate and heated in for 30 min at 80 °C. The labelling yield was monitored with TLC, using silica gel plates (Merck, Germany) developed with 10 % NH$_4$OAc aq. / MeOH = 1:1, R_f = 0.46, and measured on a Cyclone autoradiography system (Perkin-Elmer).

Enriched 86Sr was recovered by precipitation of strontium carbonate with ammonium carbonate [1]. The precipitate was decanted with water and acetone. Strontium carbonate was then dissolved in concentrated nitric acid, evaporated to dryness and re-dissolved in water for further irradiations.

Results

The yield of irradiation was 33 MBq/µAh. It corresponds well to the published data [1] and given content of 86Sr in the target matrix. Radionuclide purity was excellent (86Y>99.4 %, 87Y<0.55 %, 88Y<0.025 %). Separation yield was more than 90 %, about 4–5 % is left on the filter. Less than 0.1 % of 86Y stays in filtrate. Also losses during evaporation of 1M HCl are under 1 %. Table 1 shows comparison of methods used for determination of copper concentration as a example of impurity. Labelling efficiency reflects well the copper concentration.
TABLE 1 Comparison of different analytical methods for estimating the copper content in the product

<table>
<thead>
<tr>
<th>Batch</th>
<th>Polarography [µg/ml]</th>
<th>ICP-MS [µg/ml]</th>
<th>Labelling efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.7</td>
<td>8.9</td>
<td>51.0 %</td>
</tr>
<tr>
<td>2</td>
<td>5.7</td>
<td>5.3</td>
<td>77.3 %</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>0.4</td>
<td>96.6 %</td>
</tr>
</tbody>
</table>

Recovery of enriched strontium was nearly quantitative, all solution used in recycling process were collected and reprocessed.

Discussion/Conclusion This work presents a compact, fully automated system for production of 86Y in activity and quality suitable for radiopharmaceuticals production. Transport of irradiated target matrix via a capillary to a separation unit minimizes problematic handling of radioactive material and losses of expensive enriched 86Sr. It also reduces significantly personnel radiation burden.

Acknowledgement The project was supported by Nuclear Physics Institute under the NPI research plan AV0Z10480505 and Ministry of Education, Youth and Sports, grant no. 2B061665.

Yttrium-86

Decay Properties of 86Y

<table>
<thead>
<tr>
<th>Eγ (keV)</th>
<th>Iγ (%)</th>
<th>Eβ±,max (keV)</th>
<th>Iβ± (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>443.14</td>
<td>16.9</td>
<td>213.1</td>
<td>33%</td>
</tr>
<tr>
<td>627.72</td>
<td>32.6</td>
<td>3141.3</td>
<td>100%</td>
</tr>
<tr>
<td>777.35</td>
<td>35.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1153.01</td>
<td>83.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1854.38</td>
<td>38.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1920.72</td>
<td>20.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1976.64</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Suitable half-life (14.74 h)

86Y is good choice, since it is a positron emitter with a diagnostic yttrium, because 90Y is a pure β+ emitter, there is a need for a carrier-free state at relatively low cost due to its suitable half-life (1/2 = 64 h), Iβ± = 100%.

Suitable half-life 14.74 h

86Y is a widely used radionuclide for cancer therapy.

Production of Liquid Target System

- Water cooled chamber (volume 2.4 ml) made out of pure Nb with Ti entrance foil
- Ti entrance foil
- Water cooled chamber
- Helium cooling of target foils
- Automated operation (filling and processing)
- Integrated colimator at the beam entrance
- Integrated colimator at the beam entrance
- Collected in a liquid target system

Jan Ráliš, Ondřej Leděa and Josef Kučera

Nuclear Physics Institute, Academy of Sciences of the Czech Republic, public research institution, Academy of Sciences of the Czech Republic, near Prague.
Liquid Target System

Separation of 86Y

Production

Solution ready for labelling:
- Dissolved in 100–300 ml of 0.05M HCl (stock)
- Eluate was evaporated to dryness and re-dissolved in 10–20 ml of 1M HCl

Yttrium was eluted from the filter with 10 ml 1M HCl
- Eluate was collected for Sr recovery
- Filtered through PVDF filter
- pH was set to 10, filtered through PVDF filter and washed with 50 ml of water
- Iridiated solution was transferred to separation unit

Iridiated solution was transferred to separation unit

Iridiated solution was transferred to separation unit

Typical irradiation conditions were 1–2 hours:
- Irradiation on beam line of U-120M synchrotron

Typical irradiation conditions were 1–2 hours:
- Irradiation on beam line of U-120M synchrotron

Yttrium was eluted from the filter with 10 ml 1M HCl
- Eluate was collected for Sr recovery
- Filtered through PVDF filter
- pH was set to 10, filtered through PVDF filter and washed with 50 ml of water
- Iridiated solution was transferred to separation unit

96.3% (JV Isoflex) 86Sr(NO$_3$)$_2$, enrichment 95–96%
- 2.4 ml of 35% solution of 86Sr(NO$_3$)$_2$, enrichment

Since 1993 (Rösch, Qaim and Stocklin)
- Since 1993 (Rösch, Qaim and Stocklin)
- Since 1993 (Rösch, Qaim and Stocklin)
- Since 1993 (Rösch, Qaim and Stocklin)

Liquid Target System
Methods for quality control of ^{86}Y

- Polarographic estimation of metal impurities (Cu and Fe)
- ICP-MS estimation of metal impurities (Al, Fe, Sr, Cu, Zn)
- SLT (standard labelling test) based on the determination of the labelling efficiency of the product ^{86}Y with DOTATOC

Sensitivity of SLT

<table>
<thead>
<tr>
<th>Batch No.</th>
<th>Cu dem. by ICP-MS [μg/ml]</th>
<th>Cu detm. by polarography [μg/ml]</th>
<th>Cun, Zn, Sr, Cu, Zn [%]</th>
<th>Cu detm. by polarography [μg/ml]</th>
<th>Cun, Zn, Sr, Cu, Zn [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>93.6</td>
<td>0.5</td>
<td>3</td>
<td>9.6</td>
<td>8.9</td>
</tr>
<tr>
<td></td>
<td>77.3</td>
<td>5.3</td>
<td>2</td>
<td>8.7</td>
<td>8.7</td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>5.9</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Recovery of ^{86}Sr

- Strontium carbonate was precipitated with ammonium carbonate
- The precipitate was decanted with water and acetone
- Strontium carbonate was precipitated with acetone

Separation of ^{86}Sr

- All solutions with enriched strontium were collected together and evaporated to approx. 30 ml
- Strontium carbonate precipitate was washed with water and acetone
- Strontium was precipitated with ammonium carbonate
- Strontium was dissolved in concentrated nitric acid
- Strontium solution was evaporated to dryness and re-dissolved in concentrated nitric acid, heated for 30 min at 80°C
- 0.4 M sodium acetate, heated for 30 min at 80°C
- 20 μg of DOTATOC in 300 μl of Octreotide (DOTA-Tyr3-Octreotide)
Conclusions

- Fully automated system for production of 86Y in amounts and quality appropriate to usual requirements for labelling very fast and efficient

- Possibility to transport irradiated target matrix via a capillary to a separation unit minimizes problematic handling of radioactive material and losses of expensive enriched 86Sr

- It also reduces significantly personnel's radiation burden

Acknowledgements

The project was supported by the Academy of Sciences of the Czech Republic under the NPI research plan AV0Z10480505 and by the Ministry of Education, Youth and Sports, Grant Agency of the Czech Republic, no. Z8061656.

Vacuum Production s.r.o.

Assoc. Prof. František Melichar, D.Sc.

MSc. Jan Hukka

MSc. Jan Silera

MSc. Jan Kučera

MSc. K. Eigner Henke

Department of Radiochemistry

Department of Accelerators

1. What happens to nitrates?

- Some hydrolyses
- Some stays in the solution
- No salt precipitation from high concentration

- Some stays in the solution

- No salt precipitation from high concentration

WTTC XIII – Presentation Discussions
Can Half-life Measurements Alone Determine Radionuclidic Purity of F-18 Compounds?

THOMAS JØRGENSEN¹, MILLE ANKERSTJERNE MICHEELSEN², AND MIKAEL JENSEN¹

¹Hevesy Lab, Risoe-DTU, Technical University of Denmark, DK-4000 Roskilde, Denmark
²Dept. Clinical Physiology and Nuclear Medicine, Koege Hospital, DK-4600 Koege, Denmark

Current revisions of monographs for F-18 pharmaceuticals in the European Pharmacopoeia call for a radionuclidic purity (RNP) of or better than 99.9%. If (debatably) this requirement is put at end of shelf life, typically 10 hours EOS, the requirement can be very difficult to assure by actual measurements, if all possible radionuclide contaminations should be considered. Clearly, gamma spectroscopy can do much, but only if the contaminant has strong gamma emissions above 511 keV. We have tried to analyse mathematically to what extent that half-life measurements alone can establish RNP for F-18 compounds. The method could in principle be extended to other isotopes. The current method of half-life determination in the Ph.Eur with two measurements at 6h interval is not sufficient nor effective for testing the required RNP level.

We present a theoretical model leading to a practical procedure for testing RNP of F-18 compounds with a confidence of 95%.

We look at a batch of F-18 contaminated with one other isotope with a half-life of βT_{18F}. The contamination level is α at time 0. The recorded number of counts, $N(t)$, for a sample, that contains one other isotope, is described by

$$N(t) = \frac{N(0)}{1 + \alpha} \left(\left(\frac{1}{2} \right)^{t/T_{18F}} + \alpha \left(\frac{1}{2} \right)^{t/\beta T_{18F}} \right)$$

with $N(0)$ as the total number of counts at $t = 0$.

RNP is defined by the expression

$$RNP = \frac{A_{18F}}{A_{tot}} \Rightarrow RNP(0) = \frac{1}{1 + \alpha} \simeq 1 - \alpha, \quad \alpha = \frac{A_{18F}(0)}{A_{other}(0)}$$

If all measured impulses are converted to initial point values ($t = 0$ min.), the curve should give a straight line with constant value (the initial value of counts) for a pure F-18 sample. Due to the stochastic nature of the F-18 nuclide, the data points will deviate from this line. If the sample is contaminated the curve will increase rapidly. The condition for the pure and unpure curves to be separated is, the difference of the
measurements must be equal to (or larger than) the sum of 1.96 standard deviations for
the two curves (confidence of 95%). An approximated expression for the limit of α
is

$$\alpha \simeq \frac{3.92 \left(\frac{1}{2}\right)^{t/2T_{18F}}}{\sqrt{N(0)} \left(\left(\frac{1}{2}\right)^{1/\beta T_{18F}} - \left(\frac{1}{2}\right)^{1/T_{18F}}\right)}$$

In the figure below a contour plot of RNP(0) ($\simeq 1 - \alpha$) is plotted against β
and recording time for a total amount of initial counts of 10^6 (the limit of the Liquid Scintil-
lation Counter). We can readily see that after 6 hours, we cannot detect a contamination
with $\alpha \leq 0.1\%$ (RNP(0) $\geq 99.9\%$), but after another 6 hours we should be able to detect
a RNP(0) of 99.95\% or smaller (for $\beta = 20$). However at very low β values there is a
strong divergence in the time needed to detect these small RNP’s, which in practice sets
a lower limit for a detectable β. In the case below this lower β value is ~ 3.

![RNP−diagram for F18 with N0 = 1000000](image)

Figure 1: RNP plotted against β and recording time. The confidence is 95%.

In the above method, the lower level of the recording time and β is set by the
inherent poisson noise. By using a series of recordings in a method that looks at the
mean, rather than just two single points (start and stop), the statistical noise is lowered
and consequently the lower limit of β is reduced to approximately 1.5 (recording time
of ~ 800 min). In conclusion we cannot find any contaminating isotope with half-lives
shorter than 1.5 times 109.77 min. for RNP(0) = 0.9990 and a confidence of 95%.
Determining the RNP of a 18F batch with confidence is non-trivial...

Current accepted method uses half-life determined from decay over 6-8 hours... We investigate the boundaries of validity for this method and introduce simple methods that both improve accuracy as well as optimize time consumption...

We can improve on that. If there is 1% impurity at production time, the pink and purple lines illustrate how the impure and pure samples behave.

A possible byproduct from silver (Ag) as target is 107Cd. 107Cd has a half-life that is 3.5 times longer than 18F. With 1% impurity at production, it is clear that this method would not detect the impurity before well after 800 minutes.

We can improve on that. A possible byproduct from silver (Ag) as target is 107Cd. 107Cd has a half-life that is 3.5 times longer than 18F. With 1% impurity at production time, we improve on that. The time t_c where the impurity starts to dominate is given by: $t_c = \frac{\ln(1/\alpha)}{\ln(2)} t_{1/2}$. For $\alpha = 0.001$, $t_c = 1010$ minutes (17 hours).

So for $\alpha = 0.01$, $t_c = 1010$ minutes (17 hours).

The time t_c where the impurity starts to dominate is given by: $t_c = \frac{\ln(1/\alpha)}{\ln(2)} t_{1/2}$. For $\alpha = 0.001$, $t_c = 1515$ minutes (25 hours).

Current accepted method use half-life of 18F to determine the RNP. For this method, the confidence is non-trivial.

Determining the RNP of a 18F batch with confidence is non-trivial...
Simple method 1

We compare a pure and an impure decay curve. Both are converted into initial point values (multiplied by \((\frac{1}{2})^\left(\frac{t}{T}\right)\)).

First we identify the time where the separation of the two curves becomes significant, this is the minimum time our sample needs to decay.

Significance (95\%) occurs when:

\[
\left(\frac{d N}{dt} - \lambda N\right) - \left(0\right) = \left(3.2\right) \frac{N^N}{N_{np} + N_{p} - \lambda N}
\]

If we consider only the Poisson noise in the system we can write up the relation between RNP, t, and p. This is approximately given by:

\[
\left(\frac{d N}{dt} - \lambda N\right) = \left(0\right) N^N
\]

We use this expression to find min t.
Simple method 1

From hereon it's a simple YES/NO answer e.g.

\[\frac{\mu}{\sigma} = x \]

If the answer is YES – then we have a 95% confidence that our sample is not contaminated more than the limit set by RNP.

Some points to stress:

- \(\beta \)
- Lower detection limit for \(\beta \) (depends on RNP)
- For lower RNP – impurity is detected earlier, so we find every impurity \(\beta \) (but strong here).
- Time depends on \(N_0 \) – so this should be as large as possible without distorting measurements (dead time)
- For \(\beta \) < RNP – impurity is detected earlier, so we find every impurity < RNP.

Simple method 2

We can increase efficiency (lower detectable \(\beta \)) by taking more data points in a time frame and use the mean and the standard deviation of the mean.

\[\sigma_{n} = \frac{\sigma}{\sqrt{n}} \]

This way statistical noise is lowered.

For lower RNP – impurity is detected earlier, so we find every impurity \(\beta \) (but strong here).

\[\frac{(\bar{X})_N^\gamma + (0)_N^\gamma}{(0)^N} < (\bar{X})_N \]

From hereon it's a simple YES/NO answer e.g.
Methods have been verified computationally but not yet experimentally.

<table>
<thead>
<tr>
<th>Method</th>
<th>100min</th>
<th>1000min</th>
</tr>
</thead>
<tbody>
<tr>
<td>WTTC XIII - Presentation Discussions</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Example: 107Cd
 - Ag targets by-product
 - Different half-life, but impossible to distinguish before 800 mins
 - Ag targets by-product

2. HPGe spectroscopy needed
 - Requirement: 0.1% RNP: not trivial (if possible) using HPGe

Summary of example with contamination of 18F with 107Cd
PC-controlled radiochemistry system for preparation of NCA ^{64}Cu

Adam Rebeles R., Van den Winkel P., De Vis L., Waegeneer R.
Cyclotron Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium

Due to the rapid increase of the use of nuclear medicine techniques in modern clinical diagnosis and in a selected series of therapies, researchers’ efforts are focusing for the standardization and optimization of different production routes for a series of emerging radioisotopes like ^{64}Cu, ^{67}Cu, ^{114m}In, ^{211}At.

In particular the EC/β+/β− decay of ^{64}Cu makes it a promising candidate for both PET imaging and internal targeted radio therapy. In the last decades several groups studied different production routes like for this radio nuclide, i.e. $^{64}\text{Ni}(p,n)$, $^{64}\text{Ni}(d,2n)$, $^{64}\text{Zn}(d,2p)$.

Taking into account the wider availability of the medium energy proton beam machines, the (p,n) reaction on ^{64}Ni seems to be the most attractive one, although $^{64}\text{Zn}(d,2p)$ may be considered as an alternative where lower activity is necessary, as it may require less investment in enriched material.

The production of large activities of ^{64}Cu on regular basis requires a fast and reliable chemistry system. Based on the experience gathered in the last decades in our laboratory we present here and efficient, remote controlled chemistry system for production of the non carrier added ^{64}Cu via $^{64}\text{Ni}(p,n)$ reaction.

To avoid excessive investment in a gold target carrier, a good practice is to coat the copper target carrier with a thin inert material, i.e. 5-6 μm of gold, followed by electrodeposition of the ^{64}Ni target layer. In that way, the cross contamination of the non carrier added ^{64}Cu with the copper present in the target carrier is excluded. In general the irradiations are performed with protons having incident energy of about 15 MeV, and, depending on irradiation condition, may lead to curie amount of induced activity of ^{64}Cu.

To reduce the thickness of the ^{64}Ni target layer, and, as consequence, to minimize the problems related with the plating and dissolution of the target layer, a low beam/target angle geometry (6 degrees) is desired. Nevertheless, the separation of target / activation product is required. Upon irradiation, our chemistry system proposes the dissolution of the ^{64}Ni layer in a heated flow trough stripper by means of diluted nitric acid. Next, the non carrier added ^{64}Cu is selective extracted into benzene (containing 0.1 M benzyolacetone) at pH 4.5, leaving the enriched ^{64}Ni and possible Co induced isotopes in the inorganic phase. The back extraction of ^{64}Cu is done in a small volume of diluted hydrochloric acid (6 N). The final purification step is achieved using an anion exchange column Dowex 1X8. Finally, the NCA ^{64}Cu is eluted with a small volume (10 ml), diluted hydrochloric acid (1 N).

The overall yield of the chemistry is estimated as being higher than 95% with a short total chemistry time, less than 2 hours, while the gold plated target carriers can be reused as long as the thin gold layer remains intact, meaning that scratches and cracking by careless handling are avoided.
Introduction

- EC/β+ decay of 64Cu
- EC/β- decay of 64Cu

Chemistry – separation of NCA isotope

Different production routes

- Internal targeted radiotherapy.
- Promising candidate for PET imaging.

PC-controlled radiochemistry system for preparation of NCA

Target preparation

- IBA Cyclone 30 solid target carrier
- Copper preplated with a thin Au layer (5 μm)

Plating baths:

- Alkaline bath (NiSO$_4$·6H$_2$O, NiCl$_2$·6H$_2$O, H$_3$BO$_3$)
- Sulfamate (Ni(H$_2$SO$_3$)$_2$·HBO$_3$)
- Chloride bath (NiCl$_2$·6H$_2$O, H$_3$BO$_3$)
- Watts (NiSO$_4$·7H$_2$O, NiCl$_2$·6H$_2$O, H$_3$BO$_3$)

Example of gold preplated target carrier

Cyclotron Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium

Adam Rebeles R., Van den Winkel P., A. Hermanne, De Vis L., Waegeneer R.
Target preparation

- Surface area granulometry (60x)
 - Poor
 - Good

Example of nickel plated target

Overview of PC-controlled radiochemistry system for 64Cu production

Chemistry – separation of NCA 64Cu

- Dissolution of the 64Ni layer in diluted nitric acid
- Selective extraction of 64Cu into tert-butyl methyl ether (containing 0.1 M benzoyltrifluoroacetone at pH 2.7-3)
- Enriched 64Ni and possible Co induced isotopes remain in the inorganic phase (NH4NO3 - HNO3)
- Other solvents like isoamyl acetate or ethyl acetate may be used
- Other solvents like isoamyl acetate or ethyl acetate may be used

Other solvents like isoamyl acetate or ethyl acetate may be used
Chemistry – separation of NCA ^{64}Cu

• Back extraction of ^{64}Cu is done in a small volume of diluted hydrochloric acid (0.05 N).

• The NCA ^{64}Cu is eluted with a small volume of dilute hydrochloric acid (6 N).

• Flow through stripper

• Final purification step – anion exchange column Dowex 1X8.

The NCA ^{64}Cu is eluted with a small volume of diluted hydrochloric acid.

Conclusions

• Based on the experience gathered in our laboratory in developments on solid target chemistry systems, a robust modular system for the separation of NCA was developed.

• Analytical separation techniques:
 - solvent/solvent extraction
 - ion exchange chromatography

• High chemistry yield >95%

• Total chemistry time <2 hours

• The user-friendly Visual Basic interface allows full control over each step of the chemistry with a minimum risk of operator errors and of radiation exposure for the staff.

Acknowledgements

• The authors would like to thank the IBA - Ion Beam Applications - Louvain-la-Neuve company for providing the enriched 64Ni.

• For the sake of the chemistry with a minimum risk of operator errors and of radiation exposure:
 - The user-friendly Visual Basic interface - allows the full control over each step of the chemistry.
1. Extracted in ion exchanger

2. Reuse of golden plated back
 - Reused 10x without big activation
 - Careful: Cu/Au dissolve in each other, hotspot activation
 - Worst: Cu dissemination = low specific activity

\[\text{251} \]
Production of 124I, 64Cu and $[^{11}\text{C}]\text{CH}_4$ on an 18/9 MeV cyclotron

M.Leporis, M.Reich, P.Rajec, O.Szőllős
Biont a.s., Karloveska 63, SK-842 29 Bratislava, Slovakia

Iodine-124 ($T_{1/2} = 4.18$ d) and copper-64 ($T_{1/2} = 12.7$ h) are two very important radionuclides for radiopharmaceuticals production for preclinical research in a positron emission tomography (PET). The method for producing 124I was based on a dry distillation of 124I from a solid $[^{124}\text{Te}]\text{TeO}_2$ target technique. The platinum target disk was used as a base for TeO_2 melt and irradiated on COSTIS target station installed at the end of the external beam line of the IBA Cyclone 18/9 cyclotron. The target station was equipped with a 25 µm aluminum or 250 µm Nb window foil in front of the target, which results in a final beam energy of 17.7 or 13.5 MeV respective.

<table>
<thead>
<tr>
<th>Peak</th>
<th>Nuclide</th>
<th>E, keV</th>
<th>Intensity, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>^{123}I</td>
<td>158.97</td>
<td>83.3</td>
</tr>
<tr>
<td>14</td>
<td>^{123}I</td>
<td>687.95</td>
<td>0.0267</td>
</tr>
<tr>
<td>15</td>
<td>^{124}I</td>
<td>722.78</td>
<td>10.35</td>
</tr>
<tr>
<td>16</td>
<td>^{123}I</td>
<td>735.78</td>
<td>0.062</td>
</tr>
<tr>
<td>17</td>
<td>^{123}I</td>
<td>783.59</td>
<td>0.062</td>
</tr>
<tr>
<td>18</td>
<td>^{124}I</td>
<td>968.22</td>
<td>0.435</td>
</tr>
<tr>
<td>19</td>
<td>^{124}I</td>
<td>1045.0</td>
<td>0.441</td>
</tr>
<tr>
<td>20</td>
<td>^{124}I</td>
<td>1325.50</td>
<td>1.561</td>
</tr>
<tr>
<td>21</td>
<td>^{124}I</td>
<td>1376.0</td>
<td>1.75</td>
</tr>
<tr>
<td>22</td>
<td>^{124}I</td>
<td>1509.49</td>
<td>3.13</td>
</tr>
<tr>
<td>23</td>
<td>^{124}I</td>
<td>1559.8</td>
<td>0.165</td>
</tr>
<tr>
<td>24</td>
<td>^{124}I</td>
<td>1691.02</td>
<td>10.88</td>
</tr>
<tr>
<td>25</td>
<td>^{124}I</td>
<td>1691.02</td>
<td>10.88</td>
</tr>
</tbody>
</table>

γ-lines of the spectra with their energies and intensities

The $^{64}\text{Ni}(p,n)^{64}\text{Cu}$ reaction route was used for ^{64}Cu ($T_{1/2} = 12.7$ h) preparation because its entrance channel is accessible at low energies and yield of the reaction is quite high. Disadvantage of the reaction used is high price of enriched ^{64}Ni. Gold and platinum targets were used for a thick ^{64}Ni target preparation by electro deposition. Because the external beam line of the cyclotron has no beam diagnostic devices, several aluminum plates were irradiated in the COSTIS target station with a 5 µA proton beam for 5 min with different settings for the beam focusing quadrupole magnets. After 15 minutes decay time the plates were scanned by a TLC scanner along the horizontal and vertical central axes of the plates in order to visualize the beam shape. The settings providing the most homogeneous beam spot on the target were selected and used further for the actual target irradiations. The radionuclidic purity of the product was determined by γ-spectrometry.
Carbon-11 ($T_{1/2} = 20.39$ min) was prepared in the form of methane in aluminum target made by IBA. Total irradiated volume of the gas mixture ($90\% \text{ N}_2 + 10\% \text{H}_2$) was 50 cm3. Reaction used at irradiation was $^{14}\text{N}(p,\alpha)^{11}\text{C}$. Aluminum and niobium windows were used during irradiation. The irradiations were performed first without and then with niobium foil inside the target with purpose to eliminate the surface influence of aluminum. During the optimization of irradiation, different pressures of gas were tested as well as the beam currents. Produced methane was sorbed on Carboxen 1000 column at the temperature of -150 °C on TracerLab FXC module made by GE Medical Systems.

Acknowledgement

The authors are indebted to IAEA Vienna for financial support during realization of TC Project SLR/4/010 Production of the Positron Emitting Radionuclides and the work connected with Cu-64 production was supported by the Slovak Research and Development Agency under the contract No. VMSP-P-0075-09
The aim of this study was development an electroplating method for preparation of a nickel target suitable for COSTIS assembly. The desired product is a thick layer of metallic nickel on a gold disc.

Production of 64Cu can be described in these steps:

1. Preparing of a target by electrodeposition – a galvanostatic or potentiostatic electroplating of Ni on thick gold or platinum target
2. Irradiating the target
3. Dissolving of a target material and separation of 64Ni and 64Cu
4. Preparing of a 64CuX solution

The bath, containing 0.5 g NiSO₄·6H₂O, 0.056 g H₃BO₃ and 0.5 g NH₄Cl in 5 ml H₂O, NISO₄.6H₂O, 0.056 H₃BO₃ and 0.5 NH₄Cl in 5 ml H₂O, was brought to pH 9. Simultaneously, NH₄Cl/NH₄OH buffer was added to keep pH at 9 during the whole electrodeposition process. As the electroplating process continued, the color of the electrolytic bath turned from dark blue to colorless. The full loss of color indicates that electrodeposition is finished.

The efficiency of electroplating in this bath was 96%. Decrease of nickel in the bath during the electrodeposition was minimal. The energy of 64Cu was very suitable due to the large cross-section for (d,2n) reactions. Energy of 64Cu is very suitable due to the large cross-section for (d,2n) reactions. Energy of 64Cu is very suitable due to the large cross-section for (d,2n) reactions.
Preparation and characterization of nickel targets for cyclotron production of 64Cu

Our results

<table>
<thead>
<tr>
<th>Yield EOB</th>
<th>Current [µA]</th>
<th>Yield EOB [mg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>64Ni plated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3 ± 0.2</td>
<td>40</td>
<td>0.5 ± 0.05</td>
</tr>
<tr>
<td>2.6 ± 0.2</td>
<td>10</td>
<td>0.0 ± 0.00</td>
</tr>
<tr>
<td>2.77</td>
<td>5</td>
<td>0.0 ± 0.00</td>
</tr>
</tbody>
</table>

Gamma spectrum of the 64Cu target after irradiation

PET scan of the Ni-64 target after irradiation

Production of 11C[CH4]

The 13th International Workshop on Targetry and Target Chemistry

Production of 11C[CH4]

We used standard alumina-body target (50cm³) made by IBA in these three modification:

- Without changes (Al-body)
- With tube made from NIOBIUM foil inside
- With tube from quartz-glass inside (will be realize in near future)

Modified parameters:

- Input gas pressure (from 10⁻³ to 20 barr)
- Beam current (10⁻³ to 20 µA)

Production of 124I

The method for producing 124I was based on a dry distillation of 124Te from a solid (124Te)O₂ target technique. The platinum target disk was used as a base and irradiated on COSTIS target station installed at the end of the external beam line of the IBA Cyclone 18/9 cyclotron. The target station was equipped with a 25 µm aluminum window foil in front of the target, which results in a final beam energy of 17.7 MeV.

Tc From IBA

Standard target (Al-body) for production

Quartz tube

NIOBIUM target window
Production of 124I

<table>
<thead>
<tr>
<th>Peak Nuclide</th>
<th>E, keV</th>
<th>Intensity, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 123I</td>
<td>158.97</td>
<td>83.3</td>
</tr>
<tr>
<td>2 123I</td>
<td>247.96</td>
<td>0.071</td>
</tr>
<tr>
<td>3 123I</td>
<td>281.03</td>
<td>0.079</td>
</tr>
<tr>
<td>4 123I</td>
<td>346.35</td>
<td>0.126</td>
</tr>
<tr>
<td>5 123I</td>
<td>440.02</td>
<td>0.428</td>
</tr>
<tr>
<td>6 123I</td>
<td>505.33</td>
<td>0.316</td>
</tr>
<tr>
<td>7 124I</td>
<td>511.0</td>
<td>46.0</td>
</tr>
<tr>
<td>8 123I</td>
<td>528.96</td>
<td>1.39</td>
</tr>
<tr>
<td>9 123I</td>
<td>538.54</td>
<td>0.382</td>
</tr>
<tr>
<td>10 124I</td>
<td>602.72</td>
<td>62.9</td>
</tr>
<tr>
<td>11 124I</td>
<td>624.57</td>
<td>0.083</td>
</tr>
<tr>
<td>12 124I</td>
<td>645.82</td>
<td>0.988</td>
</tr>
<tr>
<td>13 124I</td>
<td>662.4</td>
<td>0.056 (\gamma)</td>
</tr>
<tr>
<td>14 124I</td>
<td>722.78</td>
<td>10.35</td>
</tr>
<tr>
<td>15 123I</td>
<td>735.78</td>
<td>0.062</td>
</tr>
<tr>
<td>16 123I</td>
<td>783.59</td>
<td>0.059</td>
</tr>
<tr>
<td>17 124I</td>
<td>968.22</td>
<td>0.435</td>
</tr>
<tr>
<td>18 124I</td>
<td>1045.0</td>
<td>0.441</td>
</tr>
<tr>
<td>19 124I</td>
<td>1325.50</td>
<td>1.561</td>
</tr>
<tr>
<td>20 124I</td>
<td>1376.0</td>
<td>1.75</td>
</tr>
<tr>
<td>21 124I</td>
<td>1488.9</td>
<td>0.199</td>
</tr>
<tr>
<td>22 124I</td>
<td>1509.49</td>
<td>3.13</td>
</tr>
<tr>
<td>23 124I</td>
<td>1559.8</td>
<td>0.165</td>
</tr>
<tr>
<td>24 124I</td>
<td>1691.02</td>
<td>10.88</td>
</tr>
</tbody>
</table>

CONCLUSIONS

- More than 95% efficiency of the electroplating depositions
- First irradiation with yield 2.8 mCi/microAh
- Future – radiochemical separation of 64Cu and 64Ni
- Increasing yield up to 30% using Niobium foil
- In the future continue with Quartz-tube
- Successful synthesis of 124I
- Works were stopped for stopping financial support

Acknowledgement

The authors are indebted to IAEA Vienna for financial support during realization of TC Project SLR/4/010 Production of the Positron Emitting Radionuclides and APVV Slovakia for financial support project VMSP-P-0075-09.
A simple and flexible device for LabView applications
A. Hohn, E. Schaub, S. Ebers, R. Schibli
Paul Scherrer Institut, 5232 Villigen PSI, Switzerland

LabView is the state of the art programming tool for measurement and control applications and the market offers a wide range of sophisticated data acquisition tools (DAQ). However, for radionuclide separation purposes a high sample rate and a high accuracy is often not necessary. Therefore, we were looking for a low-cost DAQ with a USB interface for maximum flexibility and sufficient I/O lines. Finally, we decided to use the USB-6008 by National Instruments. This small size, low-cost DAQ has 8 analog inputs, 2 analog outputs and 12 digital I/O lines. Mounted on a print together with a transistor for each digital line (Fig. 1) this DAQ is the base of our device.

![USB DAQ mounted on a print](image1)

Fig. 1 USB DAQ mounted on a print

For the portable version of our device (Fig.2) the USB DAQ module is mounted in a desktop rack together with a power supply module (24 V, 120 W) and a relay module containing 12 relays. Additional slots are available for other modules. Each single module can be replaced easily in case of a failure. If more slots are needed all modules can be mounted as well in a 19” rack.

![Portable device for LabView applications with a mounted PC](image2)

Fig. 2 Portable device for LabView applications with a mounted PC
Several additionally modules like a temperature module and a pulse-width-modulator (PWM) are available. An amplifier for pH measurements and for activity measurements with photodiode radiation detectors (Fig.3) was developed. This amplifier with a variable gain is a modified version of the amplifier described by Zeisler et al. Another module is a mini PC including a hard drive. In combination with a touch screen the device can be used without an external PC or notebook.

![Amplifier with photodiode radiation detector](image)

Fig. 3 Amplifier with photodiode radiation detector

The described devices are used in our group for the routine production of radionuclides (89Zr and 64Cu) for several years without any problems.

Literature:

A simple and flexible device for LabView applications

Data Acquisition Tool (DAQ)

Amplifier for activity and pH measurements

Computer

- USB-6008 by National Instruments
- 8 analog inputs, 2 analog outputs and 12 digital I/O lines
- USB-DAQ mounted on a print for plug and play
- CPU: 500 MHz AMD Geode LX800
- DRAM: 256 MB DDR DRAM
- Storage: 8 GB CompactFlash
- OS: Windows XP
- Alix3d single board PC

Center for Radiopharmaceutical Sciences of ETH, PSI and USZ
Three years experience in operation and maintenance of the \[^{18}\text{F}]\text{F}_2\) proton target at the Rossendorf Cyclone® 18/9 cyclotron

St. Preusche, F. Fuechtner, J. Steinbach
Forschungszentrum Dresden-Rossendorf, Institute of Radiopharmacy, P.O. Box 51 01 19, 01314 Dresden, Germany

Introduction
An increasing demand of radiopharmaceuticals based on electrophilic reaction with \[^{18}\text{F}]\text{F}_2\) gas (for instance \[^{18}\text{F}]\text{FDOPA}\) led to an upgrade of the IBA \[^{18}\text{F}]\text{F}_2\) gas target system in summer 2007. The more than 10 years operated \[^{18}\text{F}]\text{F}_2\) deuteron target \[^{20}\text{Ne}(p,\alpha)^{18}\text{F}\] was not able to meet the increasing requirements in terms of activity anymore and was thus replaced by an IBA \[^{18}\text{F}]\text{F}_2\) proton gas target \[^{18}\text{O}(p,n)^{18}\text{F}\] based on the so-called “double-shot” irradiation method by R.J. Nickles [1].

We run the Cyclone® 18/9 cyclotron in routine operation for more than 14 years. One of the specific features of the Rossendorf PET Center is the Radionuclide transport system (RATS) [2], 500 m in length that bridges the distance from the cyclotron to the radiopharmaceutical laboratories. The activity at the end of bombardment (EOB) is calculated taking into account the transfer time and experimental data of activity losses (about 30%) in the transfer tube [2].

The target and its supply
The \[^{18}\text{F}]\text{F}_2\) proton gas target is connected directly to the vacuum chamber of the cyclotron inside the return yoke. Target body: aluminium; target volume: 35 cm³ of conical shape; target window: aluminium, thickness 500 µm; vacuum window: titanium, thickness 12.5 µm. As target gases are used for the first bombardment: \[^{18}\text{O}\) (enrichment: > 97%; cartridge volume: 75 ml, gas volume: 5250 ml, pressure: 70 bar, manufacturer: Cambridge Isotopes Laboratories, Inc./USA, distributor: ABX/Germany) and for the second bombardment: \(\text{Ne}/2\% \text{F}_2\), filled up with pure Ne (both: Air Liquide/Germany) to achieve \(\text{N}_2/0.45\% \text{F}_2\).

Experience in operation and maintenance of the target
First bombardment: \[^{18}\text{O}_2\): 20 - 22 bar, 40 or 60 or 80 minutes at 22 µA target current
Second bombardment: \(\text{Ne}/\text{F}_2\): 20 - 22 bar, 15 minutes in each case at 22 µA

Hints for operation:
- Keep the target cavity in standby always under \(\text{Ne}/\text{F}_2\) atmosphere
- Prior to the first bombardment of the \[^{18}\text{F}]\text{F}_2\) production a pre-irradiation (5 minutes, 10 µA) with \(\text{Ne}/\text{F}_2\) and transfer of the irradiated gas to the radiopharmaceutical laboratory for the conditioning of the target cavity and the transfer tube is useful.
- After deposition of the irradiated \[^{18}\text{O}\) gas into the liquid nitrogen cooled trap: A careful pump down of the target cavity for some minutes is mandatory before filling it for the second bombardment to prevent the formation of \[^{18}\text{F}]\text{F} – \text{O}\) species.
- One \[^{18}\text{O}\) cartridge is sufficient for \((100 – 120)\) irradiations. An average gas loss of less than 5% per bombardment has to be compensated by filling from the \[^{18}\text{O}\) cartridge. It is possible to use the \[^{18}\text{O}\) gas (from the cooling trap and the cartridge) until the residual pressure of the \[^{18}\text{O}\) cartridge is around 10 bars.

A slight but permanent drop in the target yield is an indication for a target cleaning procedure to be necessary (see Fig. 1).
After target opening it is observed that the surface of the target cavity did not have a metallic sheen anymore. We added a grinding procedure of the cavity with very fine sand paper to the IBA cleaning procedure [3]. After the cleaning the surface of the cavity should look as metallic. We found this procedure necessary to be done after 100 to 120 runs and perform it once a year.

The handling of the target system is not easy because the results of any kind of changes are often not well reproducible. The highly-reactive \[^{18}\text{F}]\text{F}_2\) gas at the µmol level is difficult to handle due to the large surfaces of the target cavity, the transfer tube and the synthesis module.
Results

- Dependence of produced 18F2BOS activity on the irradiation time of first bombardment:
 40 minutes - 16 ± 2 GBq, 60 minutes - 20 ± 3 GBq, 80 minutes - 20 ± 5 GBq ➔ no increase of 18F2BOS activity increasing the irradiation time of first bombardment from 60 to 80 minutes,
- Besides the produced absolute 18F2 activity, the reactivity of the F$_2$ gas is important for the 18FFDOPA activity yields.
- Target cleaning is recommended if:
 o The absolute 18F2BOS activity yield drops down to about 15 GBq or
 o The 18FFDOPA yield is near or below 15%.

The advantages of the new 18F2 proton target are:
- Higher efficiency in terms of 18F2 activity and resulting 18FFDOPA activity yields,
- Operating conditions far from limitations of the target current; that results in less wear of the cyclotron.

A comparison of the 18F2 deuteron and proton targets is given in the table.

<table>
<thead>
<tr>
<th></th>
<th>Deuteron target</th>
<th>Proton target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. target current</td>
<td>18 µA</td>
<td>30 µA</td>
</tr>
<tr>
<td>Irradiating conditions</td>
<td>120 min</td>
<td>First bombardment: 60 min</td>
</tr>
<tr>
<td>average /common current</td>
<td>18 µA</td>
<td>Second bombardment: 15 min</td>
</tr>
<tr>
<td>A18FBOS, GBq</td>
<td>7 - 11</td>
<td>34 ± 5</td>
</tr>
</tbody>
</table>

References

[2] St. Preusche, F. Füchtner, J. Steinbach, J. Zessin, H. Krug, W. Neumann; Long-distance transport of radionuclides between PET cyclotron and PET radiochemistry,

Cancer Research

Three years experience in operation and maintenance of the 18F$^{2-} / ^{18}$O$^2-$gas target at the Rossendorf Cyclone® cyclotron

St. Preusche, F. Füchtner, J. Steinbach

1. Introduction

Why change from 18F$^{2-}$ deuteron target to 18F$^{2-}$ proton target?

- increasing demand of radiopharmaceuticals based on electrophilic reaction with 18F$^{2-}$ gas (for instance 18F$^{2-}$FDOPA)

Measure

Not enough 18F$^{2-}$ activity with 18F$^{2-}$ deuteron target

Institute of Radiopharmacy

St. Preusche et al.

www.fzd.de

July 2010-WTTC13

2. The target and its supply

Institute of Radiopharmacy

St. Preusche et al.

www.fzd.de

July 2010-WTTC13

- routine operation of Cyclone® 18/9 for 14 years
- 500 m RN transport system: losses of 18F$^{2-}$ activity ~ 30% [2]
- upgraded components by IBA
- double-shot irradiation method by R.J. Nickles [1]
- 18F$^{2-}$F$_2$-gas target 18O(p,n)18F
- 18F$^{2-}$F$_2$-gas target Components:

- target body: aluminium
- target volume: 35 cm3 of conical shape
- target window: aluminium, thickness 500 µm
- vacuum window: titanium, thickness 12.5 µm

3. Experience in operation and maintenance of the target

4. Results

5. References

6. Some more details
3. Experience in operation and maintenance of the target

Irradiating conditions

1st bombardment: 18O2: 20 – 22 bar, 40 or 60 or 80 minutes at IT = 22 µA

2nd bombardment: Ne/F2: 20 – 22 bar, 15 minutes at IT = 22 µA

Hints for operation

• Keep the target cavity in standby always under (Ne/F2) atmosphere
• Pre-irradiation (5 minutes, 10 µA) with (Ne/F2)
• After deposition of the irradiated 18O gas into the trap:
 After conditioning of the target cavity and the 500 m transfer line prior to 1st bombardment
 Keep the target cavity in standby minutes under (Ne/F2) atmosphere

Hints for maintenance

• Keep the target cavity look as metallic
• Pre-irradiation (5 minutes, 10 µA) with (Ne/F2)
• A slight but permanent drop in the target yield

Conclusion of operation and maintenance

Handling of target system is not easy

Results of any kind of changes are often not well reproducible

Highly-reactive [18F]F2 gas at the µmol level is difficult to handle

Maintenance

Sufficient for 100 - 120 irradiations

Average gas loss per bombardment: < 5%, compensated by filling from 18O cartridge

Use of 18O gas as (trap, cartridge) until residual pressure of 18O cartridge: ~ 10 bars

Condition of the target cavity and the 500 m transfer line prior to 1st bombardment

Prevent the formation of [18F]F – O species

After deposition of the irradiated 18O gas into the trap:
 • No metallic sheen anymore
 • Pre-irradiation (5 minutes, 10 µA) with (Ne/F2)
 • After conditioning of the target cavity and the 500 m transfer line prior to 1st bombardment
 • Keep the target cavity in standby minutes under (Ne/F2) atmosphere

Before cleaning

Target cavity:
 • Without metallic sheen anymore
 • Pre-irradiation (5 minutes, 10 µA) with (Ne/F2)
 • After conditioning of the target cavity and the 500 m transfer line prior to 1st bombardment
 • Keep the target cavity in standby minutes under (Ne/F2) atmosphere
Target cleaning is recommended if: - a slight but permanent drop in the target yield

Besides the produced absolute [18F]F2 activity, the reactivity of the F2 gas is important for the [18F]FDOPA yield is near or below 15% over a certain period.

Operating conditions far from limitations of the target current, where the [18F]FDOPA-EOS yield is not sufficient for the [18F]FDOPA activity yields that results in less wear of the cyclotron.

Higher irradiation time, minutes

- 30 of the 2nd bombardment of the proton target
- 60 min of the 1st bombardment of the proton target

Higher activity, GBq

- 20 ± 5 GBq at 80 minutes of the 2nd bombardment of the proton target
- 20 ± 3 GBq at 60 minutes of the 2nd bombardment of the proton target
- 16 ± 2 GBq at 40 minutes of the 2nd bombardment of the proton target

3. Results

[18F]F2-gas target

[18F]F2-BOS activity as function of [18F]F2-BOS activity yield drops down to an activity level of 60 ± 2 GBq at 40 minutes of the 2nd bombardment of the proton target.

4. Results

[18F]F2-BOS activity yields over 2.5 years

Comparison of [18F]F2 deuteron target (old) and proton target (new)

- [18F]F2-BOS activity yield drops down to an activity level of 60 ± 2 GBq at 40 minutes of the 2nd bombardment of the proton target.
- 30 ± 4 GBq at 60 minutes of the 2nd bombardment of the proton target.
- 20 ± 3 GBq at 80 minutes of the 2nd bombardment of the proton target.

Higher irradiation time, minutes

- 30 of the 2nd bombardment of the proton target
- 60 min of the 1st bombardment of the proton target

Higher activity, GBq

- 20 ± 5 GBq at 80 minutes of the 2nd bombardment of the proton target
- 20 ± 3 GBq at 60 minutes of the 2nd bombardment of the proton target
- 16 ± 2 GBq at 40 minutes of the 2nd bombardment of the proton target

3. Results

[18F]F2-gas target

[18F]F2-BOS activity as function of [18F]F2-BOS activity yield drops down to an activity level of 60 ± 2 GBq at 40 minutes of the 2nd bombardment of the proton target.

4. Results

[18F]F2-BOS activity yields over 2.5 years

Comparison of [18F]F2 deuteron target (old) and proton target (new)
Cancer Research

References

3. IBA, $[^{18}$F$]F_2$ proton target, maintenance procedure, 2007

6. Target cleaning procedure

1. Dismount the target completely (rear plate too)
2. Grinding the target cavity with very fine sand paper
3. IBA cleaning procedure (solvents, water, dry)
4. Pray for good results

Cleaning tools

- Dose rate of grinding water after 500 S/h use: >500 µSv/h

Work carefully!

4. Radiation protection in the working area

A) Lead brick (5 cm)

- Reduces dose rate in front of the gap
- Increases the radiation protection factor

- Without leak brick $>28,000$ µSv/h
- With lead brick $6,400$ µSv/h

- Without leak brick 330 µSv/h
- With lead brick 75 µSv/h

B) Parker valves of valve tableau

- Problems with inserts (= poppets): drop in target pressure, valves not leak-proof any more

- Keep poppets as spare parts
- Change poppet during He-flush through target
- Some pre-irradiations after changing poppets

5. More details

- Transfer lines
 - Cu 1 5mm diameter used

- Careful with cleaning

- Valve poppets that can handle $[^{18}$F$]F_2$ (IBA has new ones)

5. References

- IBA, $[^{18}$F$]F_2$ proton target, maintenance procedure, 2007

- Lead brick (5 cm)

- Reduces dose rate in front of the gap
- Increases the radiation protection factor

- Without leak brick $>28,000$ µSv/h
- With lead brick $6,400$ µSv/h

- Without leak brick 330 µSv/h
- With lead brick 75 µSv/h

- Parker valves of valve tableau

- Problems with inserts (= poppets): drop in target pressure, valves not leak-proof any more

- Keep poppets as spare parts
- Change poppet during He-flush through target
- Some pre-irradiations after changing poppets

- Transfer lines
 - Cu 1 5mm diameter used

- Careful with cleaning

- Valve poppets that can handle $[^{18}$F$]F_2$ (IBA has new ones)
Non-HPLC Methods for the Production of F-18, C-11 and Ga-68 PET Tracers

Alexander Yordanov¹, Damion Stimson,² Didier Le Bars,⁵ Seth Shulman¹, Matthew J. Combs¹, Ayfer Soylu,⁴ Hakan Bagci,⁴ and Marco Mueller³

¹ Bioscan, Inc., Washington, DC, U.S.A.
² Royal Brisbane Hospital, Brisbane, Queensland, Australia
³ ABX, Radeburg, Germany
⁴ Eczacibasi-Monrol, Ankara, Turkey
⁵ CERMEP, Lyon, France

The most popular PET radionuclides in routine clinical use are C-11 and F-18, although other radionuclides, such as Ga-68, continue to make headlines. This is due to their well established chemistry, their utility for labeling low molecular weight compounds, and their ease of production in modern PET cyclotrons or via commercially available generators. Their relatively short half-lives, along with the global trend toward Good Manufacturing Practice in PET drug production has necessitated the development of aseptic, robust and rapid labeling methodologies. This is achieved by the use of automated radiochemistry systems, which, in turn, has allowed radiosynthesis scale-up and multiple dose preparation.

Major impediments to routine production of a number of useful C-11, F-18 and Ga-68 PET tracers, and to new tracer development, remain: 1) the necessity of thorough system clean up in between consecutive runs; and 2) inconsistent yields and prolonged synthesis time when using HPLC methods for final product separation and purification. To address these issues, new radiochemistry applications have been developed for the radiochemistry modules:

a) for F-18: FLT Lite, F-MISO Lite, F-Choline Lite, and FET Lite;
b) for C-11: Acetate, Methyl Iodide, Methionine, Choline;
c) for Ga-68: DOTA-Peptides.

These methods utilize sterile disposable kits, and allow for the PET tracers to be purified and isolated with SPE cartridges only, thus eliminating the need for HPLC separation. The processes and the radiochemical yields obtained with these methods will be presented, and their utility discussed.
FET Scheme

C-11 Acetate

C-11 Methyl Iodide

C-11 Choline

C-11 Methionine
Non-HPLC Methods for the Production of F-18, C-11, Ga-68, Cu-64 and Sc-44 Radiopharmaceuticals

• A. Yordanov, M. Combs, S. Shulman
 Bioscan, Inc., Washington DC, U.S.A.

• D. Stimson, Royal Brisbane Hospital, Brisbane, Queensland, Australia

• M. Müller - ABX GmbH, Radeberg, Germany

• H. Bağcı, A. Soylu - Eczacibasi-Monrol, Ankara, Turkey

• D. LeBars, CERMEP, Lyon, France

2010 – Good Year for the PET Radiopharmaceutical Industry (cont.)

2010 – Good Year for the PET Radiopharmaceutical Industry

This presentation is solely intended to provide and disseminate the authors' scientific results, interpretation and views. It is not intended to constitute an endorsement of any Bioscan or other commercial manufacturers' products listed displayed herein. No endorsement is implied or intended. The authors do not assume any liability for statements contained herein. Any information contained herein should be verified independently by the user. This presentation is solely intended to provide and disseminate the authors' scientific results, interpretation and views. It is not intended to constitute an endorsement of any Bioscan or other commercial manufacturers' products listed displayed herein. No endorsement is implied or intended. The authors do not assume any liability for statements contained herein. Any information contained herein should be verified independently by the user.
Is There Future for New Radionuclides in Imaging and Therapy?

- Yes if (among other factors) the radionuclide:
 - has a convenient half-life
 - is available in commercial quantities and at reasonable cost
 - has optimal radio-labeling chemistry
 - has established an optimal target–radionuclide match

Is There Future for New Radionuclides in Imaging and Therapy (cont.)?

- Yes if (among other factors) the imaging or therapeutic drug candidate:
 - is manufactured by a process easy to scale up
 - provides high quality image or superior therapeutic effect
 - has demonstrated sufficient in vitro and in vivo stability
 - has a convenient half-life
 - is available in commercial quantities

Radionuclides Status from Industry Point of View

- And last but not least:
 - entrepreneurship (the right person doing the right thing at the right time)
 - availability of funding for clinical trials
 - a trial-and-error process (out of every 12 radiolabeled molecules only one will become a drug on the market)

Overall radionuclides not mentioned here—may be available in large quantities in 10 years or more:

- Existing or under construction manufacturing network: C-11, N-13, O-15, F-18, I-124, Cu-64, Zr-89, Tc-99m, I-123, I-131, Y-90, Re-188, Y-86, At-211, Cu-67, Ho-166, Lu-177, Bi-213.

- Manufacturing issues that are expected to be solved during the next few years: Ga-68, Zr-89, Tc-99m, I-123, I-131, Y-90, Re-188, Y-86, At-211, Cu-67, Ho-166, Lu-177, Bi-213.
Standard Purification Tools for Pharmaceuticals

- Crystallization
- Preparative HPLC purification
- Sublimation
- Distillation
- Filtration
- Liquid-liquid or solid-phase extraction
- Column packing material is variable
- Radiolytic damage to column packing with high activity

Pros:
- Provides universal separation method in complex mixtures

Cons:
- Lengthens radiosynthesis time
Bu4N+, PS-H:
4,4'-dimethoxytrityl alcohol
WAX:
Nosylate anion
HLB:
Later eluted with 10% aq. EtOH

<table>
<thead>
<tr>
<th>Date</th>
<th>Beam Duration (Minutes)</th>
<th>Activity (mCi)</th>
<th>Corrected Yield Precursor (mCi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.02.2009</td>
<td>Single 18</td>
<td>557</td>
<td>61</td>
</tr>
<tr>
<td>14.02.2009</td>
<td>Single 19</td>
<td>1256</td>
<td>106</td>
</tr>
<tr>
<td>18.02.2009</td>
<td>Single 16</td>
<td>3155</td>
<td>493</td>
</tr>
<tr>
<td>13.04.2009</td>
<td>Single 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.04.2009</td>
<td>Dual 88 – 91</td>
<td>3587</td>
<td>493</td>
</tr>
<tr>
<td>16.04.2009</td>
<td>Dual 88 – 77</td>
<td>4290</td>
<td>531</td>
</tr>
<tr>
<td>17.04.2009</td>
<td>Single 90</td>
<td>2509</td>
<td>235</td>
</tr>
</tbody>
</table>

The precursor was dissolved the previous day and kept in a fridge overnight.
C-11 Methyl Iodide (MeI)

Average Yield: 50% EOS

Clearly, there is a lot of work to be done.

WTTC XIII – Presentation Discussions

1. FLT: system by-products
 • Peak always there, maybe just cold FLT

2. Sep-pak vs. HPLC
 • Sep-pak not GMP regulators can see a problem
 • Sep-pak easier than HPLC

3. Challenge: collaboration target/chemistry/manufacturers

Altemative suppliers for enriched target materials

Antibody and antibody fragments radio-labeling automation

At-211 chemistry automation

What about the future of targeted radiotherapy?
Evaluation on metallic Sc as target for the production of 44Ti on high energy protons

K. Zhernosekov1,2, A. Hohn1, M. Ayranov2, D. Schumann2, R. Schibli1, A. Türler1,2

1 Center for Radiopharmaceutical Science, Paul Scherrer Institute, 5232 Villigen, PSI, Switzerland
2 Labor für Radio- und Umweltchemie Departement Chemie und Biochemie Universität Bern Switzerland

Radionuclide generators provide an alternative and often more convenient source of radionuclides compared to the direct production routes at accelerators and nuclear reactors. Especially generator produced positron emitters are of increased interest for development of novel PET-radiopharmaceuticals [1]. Thus 68Ge/68Ga radionuclide generator is successfully introduced into the clinical PET for routine production of 68Ga-PET tracers. Due to rather short half-life ($T_{1/2}$ 68 min) 68Ga is useful, however, only for the investigations on fast in vivo processes.

With 3.97 h half-life and 94.27 % positron branching 44Sc is a very attractive alternative for applications in clinical PET. The major advantage is the production possibility of this radionuclide via 44Ti/44Sc radionuclide generator (44Ti $T_{1/2}$ = 60.0 y). The limited availability of the long-lived mother nuclide 44Ti complicates further development in the radionuclide generator technique and 44Sc-radiolabelled compounds.

44Ti can be produced by the 45Sc(p,2n) nuclear reaction. The long half-life of the accumulating nuclide and a low cross section (Fig. 1) result in a very low production rates and long-term high-current irradiations must be performed. The irradiation facility at Paul Scherrer Institute provides up to 72 MeV and 70 µA proton beam. For the production of 44Ti we are evaluating massive metallic 45Sc targets for the long-term irradiation with protons up to 40 MeV. Up to 10 mm thick scandium blocks are encapsulated in an electron-beam welded thin Al-foil. For the possible routine production the water-cooled target system is supposed to withstand up to 7000 µAh resulting in 50 – 100 MBq of 44Ti. In this respect, the preliminary results on the irradiation yields and optimizations as well as stability of the system are presented.

Figure 1. Excitation function of 45Sc(p,2n)44Ti reaction [2]
Operating RbCl Targets Beyond the Boiling Point? – Work in progress

F.M. Nortier¹, H.T. Bach¹, M. Connors¹, K.D. John¹, J.W. Lenz², F.O. Valdez¹, J.W. Weidner¹

¹Los Alamos National Laboratory, Los Alamos, New Mexico, USA
²John W. Lenz & Associates, Waxahachie, Texas, USA

The 100 MeV Isotope Production Facility (IPF) at Los Alamos National Laboratory produces the medical isotope Sr-82 on a large-scale. For routine production runs, RbCl salt targets are encapsulated in electron beam welded Inconel® 625 capsules and irradiated in a typical target stack consisting of two RbCl targets for Sr-82 production and one gallium target for Ge-68 production [1] (see Fig. 1). These two-inch diameter targets are cooled on their faces with water flowing through 5 mm wide cooling channels that separate the targets. Systematic target performance studies of similar encapsulated targets under extended bombardment with intense proton beams are not available in the literature. Routine production experience at LANL shows that while the unexpected failure of a gallium target after an extended irradiation is often associated with radiation damage and other cumulative effects in the niobium capsule material [2], the abrupt early failure of a RbCl target is usually associated with the thermal effects occurring in the encapsulated target material. Numerous Sr-82 production runs were performed at IPF over a period of six years. Almost one hundred RbCl targets were irradiated with production beam currents of up to the facility administrative limit of 250 µA. Target performance statistics indicate that these targets can reliably accept production beam currents of between 230 µA and 240 µA. At higher beam currents, occasional early target failures are likely to occur. Excessive bulging of the two adjacent RbCl target capsules interrupts the water flow in the cooling channel between the targets and leads to sudden loss of cooling, causing the two target capsules to fuse together (see Fig. 2).

In a recent development, the administrative limit of the IPF facility was increased from 250 µA to 450 µA, increasing the production capacity of the facility by almost a factor of two. In December of 2009 a preliminary high current test was conducted using a test stack consisting of three aluminium targets. During this test, the IPF demonstrated that the facility can safely operate at 360 µA. A follow-up high current test is now planned for the 2010 run cycle in order to demonstrate facility operation at the authorized current limit of 450 µA. Since most of the facility beam time is consumed by the large scale production of Sr-82, this new development sparked the desire to
better understand the RbCl target failure mechanisms in order to push the in-beam performance of the targets beyond their present beam current limit.

The existing failure theory assumes that the observed target bulging results from internal pressure driven by localized boiling of the RbCl salt, which has a boiling point of 1390 °C. In one controlled experimental irradiation, a set of RbCl targets were driven to the point of failure by systematically increasing the beam current. The targets were inspected before each beam current increase. During this experiment, a thermal performance limit for the RbCl targets was established at 275 µA. It should be noted that occasional thermal failure under production conditions could occur at beam currents as low as 245 µA. In a separate, more theoretical effort, a detailed thermal analysis (see Fig. 3) predicted localized RbCl boiling at a beam current of 250 µA, suggesting that the thermal performance limit should be at 250 µA. The analysis took into account the major coupled thermal processes outside and inside the target, such as the water cooling of the target faces by means of forced convection, heat conduction through the solid and molten materials, and natural convection in the molten part of the salt. These results, together with data gained from the few target failures experienced during production runs, tend to support the theory that failure occurs when the maximum temperature reaches the boiling point of RbCl.

However, some evidence also suggests that the maximum temperature must be much higher than the boiling point at the time of failure. For example, it is known that bulging is observed in most of the production targets but that abrupt target failure occurs only when the cooling channel is sufficiently disturbed. This suggests that failure occurs when the bulging windows of the two adjacent RbCl targets touch, meaning the deflection of a single window reaches 2.5 mm. Based upon hydraulic deflection tests of capsule windows, a deflection of 2.5 mm corresponds to an internal capsule pressure in excess of 30 bar. Assuming that the internal pressure is caused by RbCl vapour, the high pressure value suggests a maximum internal target temperature in excess of 2100 °C, which does not correlate with the thermal analysis results.

Considering the growing demand for Sr-82 and the recent increase in the IPF administrative beam current limit, there is renewed interest in increasing the existing beam current limit imposed on our RbCl targets. Efforts to gain a still better understanding of the failure mechanisms occurring in these high-power targets through improved analysis and capsule design changes are in progress.

Operating RbCl Targets Beyond the Boiling Point? A work in progress

F.M. Notter1, M.A. Connors1, M.S. Gulley1, K.D. John1, J.W. Weidner1, L.T. Bach1, M.A. Connors1, M.S. Gulley1, K.D. John1, J.W. Weidner1

Los Alamos National Laboratory, Los Alamos, New Mexico, USA
Facility for Rare Ion Beams, East Lansing, Michigan, USA

Generally targets are irradiated with 100 MeV protons up to 250 µA.
Production occurs simultaneously in 3 energy ranges
Three targets in a stack with cooling channels in between

Pulsed beam with ring-shaped beam profile

Sr-82 production consumes more than 90% of available beam time
Recently demonstrated that beam currents up to 360 µA will open up beam time for RbCl isotopes

Ga target is encapsulated in niobium
Sr-82 and Ge-68 production facts

Stable beam time available (ring, 45 µA) - weapon advantage of this

Thermal performance of RbCl salt targets is significantly lower than most metals
Routine productions use beam currents between 230 and 240 µA – occasional failures beyond 240 µA

What to do?
Understand what is going on
Learn how to control each individual parameter in order of decreasing significance
Understand what is going on

Success!!!
Success!!!

Improving RbCl Salt Target Performance

IF Target Facts

Routing productions use beam currents between 230 and 240 µA - occasionally there are most metals

Sr-82 and Ge-68 production facts
Six years of production experience

>100 production targets irradiated at beam currents up to 250 µA

Occasional failures at currents >240 µA

Thermal performance limit assumed to be 240 µA

Targets fuse together due to obstruction of the cooling water channel

Thermal performance limit assumed to be 240 µA

Thermal performance limit assumed to be 240 µA

Structural analysis predicts an internal pressure of ~25 bar

Targets fail when internal pressure causes 2.5 mm window deflection

Some expert support production experience to be >270 µA

Targets failed at >275 µA

Targets were inspected for bulging after each increment

Targets failed at 275 µA

Thermal performance limit assumed to be 275 µA

Thermal performance limit assumed to be 275 µA

Parallel more theoretical effort

Parallel more theoretical effort

Forced convection cooling with turbulent water

Forced convection cooling with turbulent water

Takes into account major thermal processes

Parallel more theoretical effort

Thermal analysis results

Beam results predict local boiling of the RbCl at beam currents beyond 250 µA

Thermal analysis results

Thermal analysis results

Targets fail when internal pressure causes >25 mm window deflection

Some expert support production experience to be >270 µA

Targets failed at >275 µA

Targets were inspected for bulging after each increment

Targets were inspected for bulging after each increment

Internal pressure was deflected by 2.5 mm

Internal pressure was deflected by 2.5 mm

Thermal performance limit assumed to be 240 µA

Thermal performance limit assumed to be 240 µA

Excessive bulging due to internal pressure

Excessive bulging due to internal pressure

Occasional failures at currents >250 µA

Occasional failures at currents >250 µA

>100 production targets irradiated at beam currents >240 µA

>100 production targets irradiated at beam currents >240 µA
RbCl Vapour Pressure reaches 25 bar at 2200°C, much higher than suggested by Exhibits A, B & C (~1400°C).

1. Production experience anticipates occasional target failure beyond 240 µA.
2. A controlled experimental irradiation confirms target failure at 275 µA.
3. A thermal analysis expects the maximum local internal temperature in the RbCl to exceed boiling point at 250 µA. This may be interpreted as supporting evidence for the results in 1 & 2.
4. The RbCl reaches the boiling point at 250°C. This may be interpreted as an initial analysis of the target capsule's expected target failure.

Are we operating our RbCl targets beyond the boiling point?

How do these targets fail exactly?

Why discrepant results from the thermal and structural analysis results?

Which is more realistic?

To be continued......

Are we the first to routinely operate a solid-liquid-gas target?

WTTC XIII – Presentation Discussions

1. RbCl vs metallic Rb
 - "Bureaucracy" favours RbCl
 - Why not RbF?

2. Gas sealing
 - Electron beam welding

3. Beam shape
 - Focused to 12mm
 - Rotated 5 kHz

4. RbCl changes in density
 - Solid to liquid: 30% change
 - Changes by pressure

Conclusions

Much higher than suggested by Exhibits A, B & C (~1400°C).

Exhibit D – Structural analysis results

RbCl Vapour Pressure reaches 25 bar at 2200°C.
Abstract

The current standard for 18F fluoride production is proton irradiation on a 18O water target. Heat removal is the main obstacle to achieve a higher production. The $16.5 MeV$ proton cyclotron at Risø has a maximum 18F fluoride production rate at an irradiation current of $55 \mu A$. The aim of this target design is to irradiate at a proton current not below $100 \mu A$ while maintaining a 18O water volume close to $5 mL$ and a yield better than 80% compared with theoretical. The theoretical yield is calculated by cross section data [1] and using SRIM [2] H_2O stopping power calculation. At $55 \mu A$ the production yields $84\% \pm 4\%$ of theoretical yield. This corresponds to an average of $140 GBq$ 18F fluoride for 1 hour of irradiation. A higher intensity beam will further reduce the efficiency of the 18F fluoride production. Still much remains in understanding the physics inside the currently used water target. However it is claimed that current water targets operating at maximum yield contain saturated steam vapor phase region(s) which are not constant in volume over time [3]. We propose a new target design which is a deep narrow cylindrical/cone shaped silver target, see figure 1. The target has a depth of over $80 mm$ and width of about $10 mm$ near the target front. The width decreases as the target deepens. Its chosen shape is based on our model, which simulate the extent of the claimed steam/water matrix. This target is designed to operate at $30 bar$ of helium pressure and it is cooled by water at the sides and back and not by helium at the front. Introducing fins inside the target cavity will increase the 18O water-target wall surface and the heat transfer over this boundary is assumed to be the limiting factor in transferring heat from the 18O target water. Possible nucleate boiling heat transfer by conduction via convection may increase the heat conduction of up by a factor 10^2.

References

Silver is chosen as target chamber material during this stage of modelling and prototype development, because of the good mechanical and thermal characteristics, its reasonable low price and universal availability. Once cavity design is optimized other target chamber materials will be used, i.e. noble metal plated silver.
Figure 1: The target cavity of the 18O water target design is illustrated in the figure. The typical dimension of the target is 80 mm deep and 10 mm wide. A schematic extent of an assumed steam/water matrix (Steam/Water) is also shown. In the rest of the cavity is water.
Water Target Design for Production

Currents

Fluoride at High Irradiation

[18O]Water Target Design for Production

The Targets

Present and new design

The Aim:
- Increase the beam current from 55 µA to 100+ µA and maintaining high saturation yield/µA (presently 8.3 GBq/µA)

The New Target Design:
- Deep narrow cylindrical/cone shaped target
- 30 bar (unchanged) He pressure \((T_b = 234 \, ^\circ \text{C}) \)
- Water density \((T_b) = 0.8219 \, \text{g/cm}^3 \)
- No helium cooling in front
- Max 5 mL of \([18\text{O}]\text{water}\) when filled
- Increase the beam current from 55 to 100+ µA

Constraints of the Steam/Water Matrix:

- Determination what is water and what is steam/water matrix
- We set a value for heat removal for the entire water cavity
- Initial: Water
- If total heat load is transferred away
- We lose production rate as increase beam current
- If total heat load is transferred away
- Phase transition

A Theoretical Phase State: Steam/Water Matrix

Fitting with Experimental Data

Consider a volume element in the target cavity:
- Initially: Water
- Irradiate - deposit heat to the water
- Heat is transported away

\[T_b \]

If total heat load is transported away:
- Stays water
- Else
- Phase transition

We set a value for heat removal for the entire water cavity!

\[\text{Total heat load = Total heat removed} \]

- Determines what is water and what is steam/water matrix

Constraints of the Steam/Water Matrix:

- Worst case density \((T_b) \) close to saturated steam vapor \((0.0150 \, \text{g/cm}^3) \), i.e. mostly steam vapor
- The heat load must be transferred to the surrounding water
- The target cavity must contain steam vapor
- Target volume in target cavity is not constant over time

So far...

Established knowledge

Where do we go for a new target design?

- Simulation
- Finite element analysis?
- Or can we do with less?

Established knowledge

So far...

- Liquid volume in target cavity is not constant over time
- Target cavity must contain steam vapor
- We loose production rate as increase beam current
- Liquid volume in target cavity is not constant over time
Steam/Water Matrix
A Static Scenario
Mostly in the center of the impinging beam!
Initial guess of the extent of the steam/water matrix for different irradiation currents for Risø's present target (~55 µA and below)

Blue with blue droplets: Steam/Water Matrix
Blue: Water

Conditions for the Steam/Water Matrix:
• The target cavity is assumed only radially cooled
• We simulate a static target performance (the dynamics is there, but we do not calculate it!)
• A constant value for heat removal is set
• Regions heated above threshold are considered steam/water matrix
• The threshold level: Calculated to match yields of Risø's present targets but scaled to higher irradiation currents

Simulation of the Steam/Water Matrix

Simulation Tools and Data Used
Protons are simulated in ROOT using SRIM and cross section data

SRIM + Cross Section Data:
• SRIM H2O stopping power calculation → Ionization, range and lateral range.
• We use density reduction for water (\(\rho_{\text{water}} = 0.8219 \text{ g/cm}^3\)) and a steam/water matrix (\(\rho_{\text{steam/water matrix}} = 0.0150 \text{ g/cm}^3\))
• Cross section data from E. Hess et al. Radiochim. Acta 89, 357, 2001

Cern ROOT Simulation:
• Used to simulate the extent of SRIM simulation of 16.5 MeV protons impinging on a 25 µA Havar, steam/water matrix.

Average proton range is 195 mm.

Simulation of Heat Transfer Out of the Steam/Water Matrix
Direction of Heat Transfer:
• Hottest in the center of the proton beam.

Heat is transferred radially from the beam center and longitudinally in the steam/water matrix until it reaches the steam/water matrix boundary (left picture).

At the boundary the heat is distributed to nearby water (right picture).

Simulated Results
Risø's Present Standard Target(s)
Beam current 55 µA, Depth 10 mm, 2D axial symmetric view
This matches our day in and day out yields
Simulated Results

The New Target

Beam current 100 µA, Depth 80 mm, 2D axial symmetric view

~80% of theoretical sat yield

1. Simulation results

Simulated Results

Water

Steam/Water

Matrix

Left:

Energy deposited due to ionization is transported from the water/steam/water matrix boundary.

Right:

Extent of the steam/water matrix (red) in the water (blue).

Water

Steam/Water

Matrix

Why not a water mixer inside target?

Coincident with experience

We still wait for experiments...

The New Design

A sketch

Typical 80 mm

Typical 10 mm

Beam

Proton

Typical

Steam/Water

Water

Thank you.

WTTC XIII – Presentation Discussions

1. Simulation results

• Steam observed close to the target window

• Coincident with experience

• Why not a water mixer inside target?

Risø DTU, Technical University of Denmark

10-06-2011
Direct production of Ga-68 from proton bombardment of concentrated aqueous solutions of [Zn-68] Zinc Chloride.

Mikael Jensen, The Hevesy Laboratory, Risoe-Technical University of Denmark
kmje@risoe.dtu.dk
John Clark, University of Edinburgh, College of Medicine and Veterinary Medicine, UK
jcc240@gmail.com

Expecting a drastic increase in use of Ga-68 in the coming years, we have reconsidered the possibilities for direct production by small cyclotrons. Although the Ge-68 generator is widely available and easily used, it often does suffer problems from limited lifetime (shorter than the physical T½ of Ge-68), high price and limited activity output. It is also our concern that a global creep from Tc-99m examinations towards Ga-68 PET-CT counterparts could rapidly exhaust the present global supply of Ge-68.

The direct production by electroplated, solid, highly enriched Zn-68(p,n)Ga-68 is well known and closely mimics the production of the blockbuster isotope Ga-67. Same target, same chemistry, just a little more energy to give the (p,2n) reaction. However the prospect of doing an enriched electroplated solid target, bombardment, etching, ion exchange separation and target material recovery chemistry for a single patient dose of Ga-68 does not seem feasible for routine use.

For this reason we have tested a “solution target”, where we bombard ZnCl2 in high concentration in water. Of course, the water does “eat up” some useful cross section and gives more stopping, but for a high yield “easy” (p,n) reaction and with a short lifetime product, this is certainly possible.

From the outset, we only had four concerns:

1. Can highly concentrated zinc chloride solutions be contained in a metal target and behind a target foil during bombardment? It is, after all, strongly acidic, and popularly used as strong soldering flux, dissolving many metal oxides.
2. Can the yield be predicted and is it high enough for routine application?
3. Will zinc remain as zinc chloride during the rather unusual conditions during proton bombardment? And will Ga-68 come out in solution from the target?
4. Can the Ga-68 be extracted rapidly from the target solution and will it be possible to reuse the enriched zinc chloride solutions directly?

We have addressed all four problems experimentally, and will report the very satisfying outcome. As target we used a slightly modified Niobium target body (designed for F-18 production), kindly provided with very few questions by Tomas Eriksson of GE Medical Systems in Uppsala. As target foil we chose 100 micrometer thick Niobium foil, partly to degrade 16.5 MeV proton beam of our PETtrace down to more optimal (p,n) energies, partly because we wanted to lower the risk of getting foil breaks and loss of the brine solution into a routinely used cyclotron.

We have kept a piece of this Nb foil in a concentrated ZnCl2 solution for 6 months without any signs of attack, loss of luster or change of weight. The target has survived many bombardments at 5, 10 uA and a single 20 uA run. We have not yet pressurised the target beyond atmospheric, and we thus did get boiling through the target filling line at 20 uA. But pressurisation should allow higher currents. After bombardments, the target body chamber and the foil look completely untouched.
Clear ZnCl₂ solutions at room temperature can be prepared with more than 3 grams of ZnCl₂ to 1 gram of water. We did the early target testing with 2 grams of ZnCl₂ to 1 gram of water. When testing with enriched Zn-68, we used 1 gram ZnCl₂ to 1 gram water.

The cross section for Zn-68(p,n)Ga-68 is well known (F. Szelesneyi et al. JARI, 49,1005 (1998). Using this and a straight forward stopping power calculation made by SRIM (version 2008.04, J. F. Ziegler et al 2008 WWW.SRIM.ORG) we predicted a saturation yield for 1µA of 1500 MBq for a one-to-one ZnCl₂ solution. This again corresponds to 1500 MBq at EOB after 20 minutes bombardment at 5 µA.

Experimentally we found values at little higher than this (1800 MBq Ga-68 @ EOS), measured by both dose calibrator after 1 hour and by gamma spectroscopy and thus corrected for influence of other positron emitters. With pressurisation of target, higher current on target and a higher Zn concentration, yields above 10 Gbq EOS should be obtainable.

We have used a batch of Zn-68 from Campro with 99% enrichment for our target solution. The only observed radionuclic impurity (after chemical separation of the Gallium, see below) was Ga-67 (probably from the (p,2n) process), and this accounted for less than 0.1% of total activity EOB.

To extract the Ga-68 from the target solution (still having a pH around 2 after bombardment) we passed it through a preconditioned Waters C-18 sep-pak. From old literature, it is known that Gallium chloride complexes behave “lipophilic”, - but the success of this was still a pleasant surprise to us. Zinc chloride passes through while more than 90% of Ga-68 sticks on the seppak. The seppak was washed by 2 fractions of 10 ml water to remove effectively the remaining Zinc. The primary eluate and the water washings were collected and concentrated by simple boiling up the original ZnCl₂ concentration. Another successful production with same yield was done on this solution. The Ga-68 could be eluted from the seppak in a small volume of 0.1 Molar HCl. Thus, both activity extraction and target material recovery can be done rapidly and simple.

Ga-68 activity will be of limited use, if it cannot be reclaimed in more or less metal free form. The large initial load of Zinc on the column is however effectively washed out by the water fractions. Using Zn-63 and Zn-65 as indicators, the Zinc “decontamination” factor of this process is better than 5000. Other metals, like for example Iron impurities in target solution, can be more difficult to separate out by this method and should thus be avoided.

We believe that this method with some more development can be of value for local production of large activities of Ga-68 for subsequent radiopharmaceutical production. It also looks like the “solution target” with Niobium body and Niobium foil is a viable approach to a broader class of metal radioisotopes, bypassing the need for electroplating and solid targets.
Direct production of 68Ga from proton bombardment of concentrated aqueous solutions of $[^{68}$Zn$]$ Zinc Chloride.

Target

68Zn(p,n)68Ga

JARI, 49,1005,1998

F.SZELECSENYI, T.E.BOOTHE, S.TAKACS, F.TARKANYI, E TAVANO

Validation and upgrade of the recommended cross section data of charged particle reactions used for production of PET radioisotopes (S.Takacs, F.Tarkanyi, A.Hermanne, R.Paviotti de Corcuera).

$dE/dx = 0.025 \text{ MeV/mg/cm}^2$

Target nuclides/mg=9E18

SRIM and EXFOR gives a saturation yield 1500 MBq/µA

Target: 4 gram of 99% enriched $[^{68}$Zn$]$Cl$_2$ dissolved in 4 ml of water

You could imagine 68Ga replacing 99mTc for many purposes.

It gives low doses

It has excellent imaging

It labels nicely (68Ga$^{+++}$)

It is easy to get

It is easy to make

It can work the "bifunctional chelator game"

68Ga-68 is the PET radionuclide of the future.

Why?
Target chamber and foil unchanged.

Ga-68 eluted by 2 ml 0.1 M HCl.
More washing should be possible.
Zn-68 reduced by factor 5000.
Seppak washed by 20 ml of water, 80% loss of Ga-68, Zn.
Target solution was pushed through C-18 Seppak Traps Ga-68.

We had problems with iron from the Zn-68.
Zinc salts out in water wash but can be reclaimed by boiling.

Our DOTA-Octreotate turned purple!
(our DOTA-Octreotate turned purple!)
(our DOTA-Octreotate turned purple!)
1. Irradiation conditions and yields
 - 10uA OK; 20uA = boiling
 - 10GBq in saturation
Using the Neutron Flux from p,n Reactions for n,p Reactions on Medical Cyclotrons

Jonathan Siikanena,b and Anders Sandellb
aLund University, Medical Radiation Physics, Barngatan 2:1, 221 85 Lund, Sweden
bUniversity Hospital in Lund, Radiation Physics, Klinikgatan 7, 221 85 Lund, Sweden

The formation of the isomeric pair \(^{58}\text{Co}\text{m,g}\) can be reached via the \(^{58}\text{Ni}(n,p),^{59}\text{Co}(n,2n),^{59}\text{Co}(p,pn),^{58}\text{Fe}(p,n),^{57}\text{Fe}(d,n),^{55}\text{Mn}(a,n),\) and \(^{61}\text{Ni}(p,a)\) reactions. Natural nickel (68.1\% \(^{58}\text{Ni}\)) foils were placed behind a \(^{18}\text{F}\)Flouride water target to produce \(^{58}\text{Co}\)[1] (\(T_{1/2}=70.86\) d, \(\beta^+ =14.9\%\), \(E_{\gamma}=811\) keV, 99.4\%) through the \(^{58}\text{Ni}(n,p)^{58}\text{Co}\) reaction. The water target is mounted on a MC 17 Scanditronix cyclotron (15.5 MeV protons on water). To quantify the \(^{58}\text{Co}\) activity the irradiated foils were measured after four days (after EOB) for a full conversion of the co-produced metastable state \(^{58m}\text{Co}\) (\(T_{1/2}=9\) h).

Nickel foils (~20x20 mm) with different thicknesses were placed between the water cooling tubes on the backside of the water target according to figure 3. The foils were irradiated with ejected neutrons from the \(^{18}\text{O}(p,n)^{18}\text{F}\) reaction for different accumulated proton charges (µAh) in the water target.

So far, \(^{58}\text{Co}\)-activities of about 0.1-0.15 kBq/µAh have been produced in 0.25 mm thick foils and approximately 1 kBq/µAh in a 2 mm thick foil. The \(^{58}\text{Co}\) activities were quantified with an HPGe detector against a known 511 keV peak in same geometry. More results will be presented at the conference.

\begin{itemize}
 \item \textbf{Fig 1:} Backplate, side view
 \item \textbf{Fig 2:} niobium insert
 \item \textbf{Fig 3:} Backplate housing the niobium-insert with a 2 mm nickel foil on the rearside between water tubes
\end{itemize}

References:
Introduction

Background

Available is a MC 17 Scanditronix cyclotron
- "Scanditronix cyclotron"

Reactions on Medical Cyclotrons
Using the Neutron Flux from p,n Reactions for n,p

Curiosity about the ejected neutrons from p,n
- "Curiosity about the ejected neutrons from p,n"
- "Curiosity about the ejected neutrons from p,n"

Routes to 58Co production:
- "Routes to 58Co production:"
- "Routes to 58Co production:"

- 58Fe (57Fe (2.2 %) (d,n), 55Mn (100 %) (a,n), 61Ni (1.14 %) (p,a) and 59Co (100 %) (d,p), 58Fe (0.28 %) (p,pn), 59Co (68.08 %) (n,p)"
- "58Fe (57Fe (2.2 %) (d,n), 55Mn (100 %) (a,n), 61Ni (1.14 %) (p,a) and 59Co (100 %) (d,p), 58Fe (0.28 %) (p,pn), 59Co (68.08 %) (n,p)"

- 58Co (T1/2 = 70.86 d)
- "58Co (T1/2 = 70.86 d)"

- 100% 58Co (T1/2 = 9.04 h)
- "100% 58Co (T1/2 = 9.04 h)"

- "Available is a MC 17 Scanditronix cyclotron"
- "Available is a MC 17 Scanditronix cyclotron"

- "We were asked if we could produce 58Co activity"
- "We were asked if we could produce 58Co activity"
- "We were asked if we could produce 58Co activity"

- "We were asked if we could produce 58Co activity"
- "We were asked if we could produce 58Co activity"
- "We were asked if we could produce 58Co activity"

- "We currently have no access to a dedicated target"
- "We currently have no access to a dedicated target"

- "Requires enriched 57Fe (only 2.2 % abundance) and a"
- "Requires enriched 57Fe (only 2.2 % abundance) and a"

- "The preferred way may be d,n on 57Fe"
- "The preferred way may be d,n on 57Fe"
- "The preferred way may be d,n on 57Fe"

- "Natural Ni($^{68.08}$% Ni-58) (n,p) 58Co w,g"
- "Natural Ni($^{68.08}$% Ni-58) (n,p) 58Co w,g"

- "The preferred target are normally the most used"
- "The preferred target are normally the most used"

- "For those who have routine production targets a"
- "For those who have routine production targets a"

- "Parasitic/hitch hiking n,p-mode can be useful"
- "Parasitic/hitch hiking n,p-mode can be useful"

- "Curiosity about the ejected neutrons from p,n"
- "Curiosity about the ejected neutrons from p,n"

- "Curiosity about the ejected neutrons from p,n"
- "Curiosity about the ejected neutrons from p,n"

- "Curiosity about the ejected neutrons from p,n"
- "Curiosity about the ejected neutrons from p,n"

- "Curiosity about the ejected neutrons from p,n"
- "Curiosity about the ejected neutrons from p,n"

- "Curiosity about the ejected neutrons from p,n"
- "Curiosity about the ejected neutrons from p,n"

- "Curiosity about the ejected neutrons from p,n"
- "Curiosity about the ejected neutrons from p,n"

- "Curiosity about the ejected neutrons from p,n"
- "Curiosity about the ejected neutrons from p,n"

- "Curiosity about the ejected neutrons from p,n"
- "Curiosity about the ejected neutrons from p,n"
Neutron Source: Home made [18F]Flouride

- Target Design
 - No heat deposition problems
 - No dedicated target
 - No cooling

- Estimation: Neutron Flux on 20x20 mm² nickel plate
 - A = 4 cm² covers 8-14% of sphere area
 - p,n-reactions at R = 1.5-2 cm away from Ni-foil
 - At 45 µA the total neutron flux is > 3.6x10^11 S^-1
 - Experimental 1~2 set yield for the water target (~8)

- Advantages are the short distance to target material (Ni)

- 4 ml H²O
- No pre-pressure
- Runs with 45 µA at 3.5 bars (50 psi)
- A set = 8 GBq/µA at 15.5 MeV
Results - Single Foils

- 0.25 mm foils give ~ 0.1-0.15 kBq/µAh
- 0.2 mm foils give ~ 1-1.3 kBq/µAh
- 2 mm foils give ~ 1.3 kBq/µAh

No productions Saturdays and Sundays

\[\text{Amount of activity produced in a single or several stacks of } \frac{\text{kBq}}{\text{µAh}} = \frac{1}{\text{Day}} \times \frac{1}{\text{Month}} \times 50 \times 1 \times N \cdot \text{MBq} \]

Results - Two Separated Foils

- Front foil ~ 1.3 kBq/µAh
- Back foil ~ 0.4 kBq/µAh

Experiments

- Two 20x20x2 Ni foils separated by 20 mm
- Nickel foils (~20x20 mm) different thicknesses and set-ups
- Interacted with neutrons from F-18 target (about 50 µAh)

L. R. Carroll, 9th WTTC Turku Finland, 2002
1. Irradiation conditions

- Ni foils and a usual F18 target

2. Other isotopes?

- Co58, Co57, Co60

3. Thermalisation?

- Would produce Ni59, Ni60
- 1010 neutrons: too little
- Neutron flux > 3.6 x 1011 Sr-1 (from p,n alone)
In early September, 2009, a water leak opened up in one of the dees of BNL's ACSI TR-19/9 cyclotron. Attempts to patch the leak in place failed, so the dee was removed, repaired and replaced. After a week of operation, a nearly identical leak opened in the other dee. This began a chain of failures in the cyclotron, leading to approximately 8 months of down time in the human PET program at BNL. Multiple water leaks, burned internal components, and two new dees later, the machine is back to running stably.

A time sequence of events will be presented, with cascading problems, and a discussion of what steps were taken and why, with a particular focus on in house repairs that "seemed like a good idea at the time."

Some highlights:

The first leak, in an elbow near the dee stem.

Fingerstock shouldn't look like this. When we opened the vacuum tank and smelled burned flux we knew we had a problem.

This issue was finally resolved with ACSI providing a replacement part with factory-soldered fingerstock.

An attempt by BNL to replace burned fingerstock in situ failed. The cold solder joint held for a few weeks.

The new lower dee was installed and aligned, then removed to replace the burned fingerstock. At some point, it became bent ~2mm at the dee tip. Made of 7mm copper, it did not bend back easily. The cause is unknown.
Improved High Current Liquid and Gas Targets for Cyclotron Produced Radioisotopes

Coordinated Research Project, International Atomic Energy Agency
P.O. Box 100, Wagramer Straße 5, A-1400 Vienna

Radiopharmaceuticals utilizing cyclotron produced radionuclides have already been shown to be extremely valuable in basic medical research, disease diagnosis and radiotherapy. IAEA Member States world-wide have acquired more than 600 cyclotrons employed for nuclear medicine applications and the number is growing every year. In the past, cyclotrons and the related targetry systems were mainly operated by dedicated professionals situated either within academic physics research institutions, large university hospitals or industrial scale radionuclide manufacturers. However, because of the rapidly spreading use of PET and PET/CT, the number of cyclotron installations is rapidly growing and target technology needs to be appreciated by a much larger group of professionals. Although many of the new cyclotrons are primarily erected for the production of a single isotope (F-18) in the form of a single, well defined radiopharmaceutical (FDG) a sizeable fraction of these new installations have declared and started active research programs in C-11 and other non-traditional positron emitting radiotracers. As part of International Atomic Energy Agency (IAEA) activities to disseminate knowledge for member states, a three year Coordinated Research Project (CRP) was organized. The overall goal of this CRP was the development of new and reliable cyclotron targetry technology for the production of high specific radioactivity for the most widely used radionuclides.

Significant advances have been made under this CRP in the development and standardization of high power gas and liquid targets. The primary focus of this CRP was to develop targets and methods to increase specific activity, radionuclidic purity and production reliability for several radionuclides including F-18, C-11, I-123, and Rb-81/Kr-81m. These advances applied in several facilities have minimized the unnecessarily operator exposure to radiation. A particular area of interest for this group was the recovery and characterization of enriched H$_2$O focusing on the reuse of the water and several important conclusions were reached. It was determined that the tritium introduced by the inevitable nuclear reactions does not pose any health physics problems either during the tracer manufacturer or during potential water reclamation. It was further determined that radionuclides produced in the metal foil during irradiation are found in the target water at very low concentrations. These impurities can be essentially eliminated by using noble metal plated foils and by the separation used for fluorine extraction from the O-18 water. In no case were the radionuclides produced in the foil found in the final product. Moreover, a survey of target maintenance procedures has been carried out and the results of this survey are reported in this CRP. In spite of these findings, the knowledge that has been gained needs to be transferred to the countries and facilities where it will help to optimize the production of radionuclides used for PET and SPECT. In this regard, a book will be published focusing on two of the most widely used target systems (F-18 and C-11) and including both fundamental knowledge and practical advice on the operation of these target systems. In addition to this book, lectures have been planned to convey both the knowledge gained in this CRP and the problems identified by the expert panel to the wider radionuclide production community with the idea that further research on these problems will benefit all the member states and the community in general.
120+ µA Single 18F Target and Beam Port Upgrade for the RDS/Eclipse

Matthew H. Stokely1, Thomas M. Stewart2 and Bruce W. Wieland1

1Bruce Technologies, Inc., Chapel Hill, NC, USA, 27514
2D-Pace, Inc., PO Box 201, Nelson, BC, Canada, V1L 5P9

A high power (>1.3 kW) target platform has been developed for the RDS-111/Eclipse and RDS-112 cyclotrons. This fully engineered solution includes upgrades to four subsystems: target, beam port, target support unit and deionized water cooling system. This platform has been in service 6 days per week since August 2009. The target is operated within an intensity range of 100 to 120 µA with a mean 18F saturation yield of 121 mCi/µA. Only 2300 µL of $[^{18}O]$enriched water is consumed each irradiation, resulting in one of the highest aqueous 18F target power densities to date (570 W/cc). In addition to offering unprecedented performance, the single target platform greatly simplifies operation and improves the overall robustness of the cyclotron system.

The water target model CF-1000 is a conventionally pressurized cousin to the highly optimized, bottom pressurized Thermosyphon target. Due to the small volume of the target and the simplicity of using the OEM target support unit software, bottom pressurization was not viable. The target insert is constructed of either EB melted or arc cast tantalum or niobium, and is housed in a 6061 aluminum body. The conduction layer between cooling water and target medium is less than 0.030" for all chamber surfaces except the target window, and the flow regime is fully developed turbulent in all cooling water passages. To achieve turbulent conditions a conservative minimum flow rate of 2.5 GPM is required for this specific geometry. Window cooling is provided by nucleate boiling in the target medium.

The single target port replaces the rotating “turret” target changer on the 111/Eclipse cyclotron. The port includes a beam tube, vacuum isolation valve, water cooled graphite collimator, and vacuum roughing line. The assembly is constructed primarily of hard anodized 6061 aluminum for ruggedness and electrical isolation. Some PEEK is used sparingly in high wear areas and critical insulating layers. The ring collimator is made of very low porosity ATJ grade graphite to mitigate water absorption during target changes. This greatly shortens subsequent pump down time. The graphite is baked out at 150°C under 10 microns partial vacuum prior to installation. The assembly mounts to the cyclotron steel via the carrier plate which allows for independent adjustment in x and y via small lead screws. The collimator, port and beam tube section interface with the carrier plate via a spherical bearing, which is clamped in place after alignment.

![Figure 1: CF-1000 Installed on RDS-111 Cyclotron](image-url)
adjustments are made. This ensures that the collimator and target are coaxial at all times and provides an extremely rigid yet easily adjustable mount.

A larger recirculation pump is installed in the water system to accommodate the additional flow requirements. To ensure that proper flow balance is maintained, adjustable distribution manifolds are installed at the recirculation pump inlet and outlet. The supply manifold has a back-pressure regulating valve to allow bypass flow. This prevents both dead heading and overpressure conditions when the cyclotron is shut down. The upgrades to the water system are a small fraction of the total system fabrication cost and critical to high performance operation.

The target support unit (TSU) geometry was redesigned to mitigate the pressure rise from elevated vapour fraction at high intensity and to improve liquid recovery. The OEM software is used to operate the TSU so the functionality remained the same. Significant improvement is made from a maintenance perspective as a much more suitable pressure transducer is used resulting in smaller hysteresis, increased robustness and a reduction in replacement cost of more than a factor of five.

The performance history of the target system is shown in figure 2. The product was used exclusively for clinical \(^{18}\)FDG, and showed radiochemical yields consistently within specifications for both synthesis modules used. Note that the discontinuity at run number 65 is due to change in the Capintec CRC-15PET dose calibrator settings. This is the result of a technical bulletin issued by Capintec in 2009.
AUTHOR INDEX

A

<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abrams, D.</td>
<td>212</td>
</tr>
<tr>
<td>Abs, M.</td>
<td>122</td>
</tr>
<tr>
<td>Adam Rebeles, L.</td>
<td>246, 247</td>
</tr>
<tr>
<td>AIJammaz, I.</td>
<td>299</td>
</tr>
<tr>
<td>ALRayyes, A.</td>
<td>299</td>
</tr>
<tr>
<td>Alves, F.</td>
<td>71</td>
</tr>
<tr>
<td>Aromaa, J.</td>
<td>140, 142</td>
</tr>
<tr>
<td>Arponen, E.</td>
<td>140, 142</td>
</tr>
<tr>
<td>Arth, C.</td>
<td>40, 42</td>
</tr>
<tr>
<td>Asad, A. H.</td>
<td>115, 159, 161</td>
</tr>
<tr>
<td>Avila-Rodriguez, M.</td>
<td>45, 46, 65, 66, 81, 82, 173, 175</td>
</tr>
<tr>
<td>Ayranov, M.</td>
<td>276</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bach, H. T.</td>
<td>278, 280</td>
</tr>
<tr>
<td>Bagci, H.</td>
<td>268, 270</td>
</tr>
<tr>
<td>Barnhart, T. E.</td>
<td>97, 99, 105, 107, 110, 112</td>
</tr>
<tr>
<td>Baró, G.</td>
<td>194</td>
</tr>
<tr>
<td>Bedeschi, P.</td>
<td>85, 87</td>
</tr>
<tr>
<td>Bender, B. R.</td>
<td>178, 180</td>
</tr>
<tr>
<td>Benediet, M.</td>
<td>69, 71</td>
</tr>
<tr>
<td>Bénard, F.</td>
<td>205, 207</td>
</tr>
<tr>
<td>Brini, G.</td>
<td>85, 87</td>
</tr>
<tr>
<td>Bolten, W.</td>
<td>14, 16</td>
</tr>
<tr>
<td>Bosi, S.</td>
<td>85, 87</td>
</tr>
<tr>
<td>Buckley, K. R.</td>
<td>200, 202</td>
</tr>
<tr>
<td>Buffler, A.</td>
<td>167</td>
</tr>
<tr>
<td>Burbee, J.</td>
<td>216, 218</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calisesi, G.</td>
<td>85, 87</td>
</tr>
<tr>
<td>Caria, S.</td>
<td>85, 87</td>
</tr>
<tr>
<td>Caro, R.</td>
<td>194</td>
</tr>
<tr>
<td>Caron, D.</td>
<td>91</td>
</tr>
<tr>
<td>Carroll, L.</td>
<td>1, 3</td>
</tr>
<tr>
<td>Casale, G.</td>
<td>194</td>
</tr>
<tr>
<td>Cavelier, J.</td>
<td>91</td>
</tr>
<tr>
<td>Chai, J.</td>
<td>299</td>
</tr>
<tr>
<td>Chan, S.</td>
<td>115, 159, 161</td>
</tr>
<tr>
<td>Christian, B. T.</td>
<td>105, 107</td>
</tr>
<tr>
<td>Chun, K. S.</td>
<td>28, 30</td>
</tr>
<tr>
<td>Ciliberto, J.</td>
<td>194</td>
</tr>
<tr>
<td>Clark, J. C.</td>
<td>34, 40, 42, 288, 290</td>
</tr>
<tr>
<td>Coenen, H. H.</td>
<td>14, 16</td>
</tr>
<tr>
<td>Connors, M.</td>
<td>278, 280</td>
</tr>
<tr>
<td>Conradie, J. L.</td>
<td>167</td>
</tr>
<tr>
<td>Combs, M. J.</td>
<td>268, 270</td>
</tr>
<tr>
<td>Čomor, J. J.</td>
<td>23, 24</td>
</tr>
<tr>
<td>Cryer, D.</td>
<td>115, 159, 161</td>
</tr>
<tr>
<td>Csiba, V.</td>
<td>254</td>
</tr>
<tr>
<td>Cunha, L.</td>
<td>69, 71</td>
</tr>
</tbody>
</table>

D

<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>DeJesus, O. T.</td>
<td>105, 107, 110, 112</td>
</tr>
<tr>
<td>De Vis, L.</td>
<td>246, 247</td>
</tr>
<tr>
<td>Ditroi, F.</td>
<td>299</td>
</tr>
<tr>
<td>Dumulon-Perreault, V.</td>
<td>210, 212</td>
</tr>
</tbody>
</table>

E

<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ebers, S.</td>
<td>258, 260</td>
</tr>
<tr>
<td>Elema, D. R.</td>
<td>128, 130</td>
</tr>
<tr>
<td>Engle, J. W.</td>
<td>97, 99, 105, 107, 110, 112</td>
</tr>
<tr>
<td>English, W.</td>
<td>200, 202</td>
</tr>
<tr>
<td>Erdahl, C. E.</td>
<td>222, 224</td>
</tr>
</tbody>
</table>

F

<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flores-Moreno, A.</td>
<td>45, 46, 65, 66, 81, 82</td>
</tr>
<tr>
<td>Fontaine, D.</td>
<td>153, 155</td>
</tr>
<tr>
<td>Fostier, C.</td>
<td>122</td>
</tr>
<tr>
<td>Frederiks, G.</td>
<td>136</td>
</tr>
<tr>
<td>Fuechtner, F.</td>
<td>262, 264</td>
</tr>
<tr>
<td>Fulvi, M.</td>
<td>85, 87</td>
</tr>
</tbody>
</table>

G

<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gagnon, K.</td>
<td>49, 51, 54, 56, 60, 62, 184, 205, 207, 212, 216, 218</td>
</tr>
<tr>
<td>Gameiro, C.</td>
<td>93</td>
</tr>
<tr>
<td>Garret, J.</td>
<td>216, 218</td>
</tr>
<tr>
<td>Gauron, G.</td>
<td>91</td>
</tr>
<tr>
<td>Geets, J-M.</td>
<td>23, 24, 122, 123</td>
</tr>
<tr>
<td>Gelbart, Wm.</td>
<td>69, 71</td>
</tr>
<tr>
<td>Gillings, N.</td>
<td>117, 119</td>
</tr>
<tr>
<td>Givskov, A. D.</td>
<td>283, 285</td>
</tr>
<tr>
<td>Govender, I.</td>
<td>167</td>
</tr>
<tr>
<td>Guerin, B.</td>
<td>210, 212, 216, 218</td>
</tr>
<tr>
<td>Guerrero, G.</td>
<td>194</td>
</tr>
<tr>
<td>Gutiérrez, H.</td>
<td>194</td>
</tr>
</tbody>
</table>

H

<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haji-Saeid, M.</td>
<td>299</td>
</tr>
<tr>
<td>Helin, S.</td>
<td>140, 142</td>
</tr>
<tr>
<td>Hermann, A.</td>
<td>247</td>
</tr>
<tr>
<td>Heselius, S-J.</td>
<td>227, 229</td>
</tr>
<tr>
<td>Hillmer, A.</td>
<td>105, 107</td>
</tr>
<tr>
<td>Hohn, A.</td>
<td>258, 260, 276</td>
</tr>
<tr>
<td>Hormigo, C.</td>
<td>194</td>
</tr>
</tbody>
</table>

J
Sossi, V.: 71
Soylu, A.: 268, 270
Spellerberg, S.: 14, 16
Steinbach, J.: 262, 264
Stewart, T. M.: 300
Steyn, G. F.: 167
Stimson, D.: 268, 270
Stodart, N.: 167
Stokely, M. H.: 300
Stoner, J. O. (Jr.) 19
Sunderland, J.: 222, 224
Szöllös, O. 252, 254

T

Tadino, V.: 153, 155
Tedesco, F.: 153, 155
Thisgaard, H.: 54, 56, 128, 130
Thoonen, P.: 34
Tremblay, S.: 210, 212
Türler, A.: 276

V

Valdez, F. O.: 278, 280
Van den Winke, P.: 246, 247
van der Vliet, L.: 134, 136
van Ham, R. C. 34, 40, 42
van Lier, E. J.: 210, 212, 216, 218
van Lier, J. E.: 210, 212, 216, 218
Vermeulen, C.: 167
Villeret, G.: 153, 155

W

Waegeneer, R.: 246, 247
Watkins, G. L.: 178, 180, 222, 224
Weidner, J. W.: 278, 280
Wester, G.: 134, 136
Wieland, B. W.: 300
Willemsen, M. A. B.: 34, 40, 42
Wilson, J. S.: 49, 51, 60, 62, 184, 185, 212, 216, 218
Winke, P.: 299
Wooten, D.: 105, 107

Y

Yordanov, A.: 268, 270

Z

Zamora-Romo, E.: 45, 46, 65, 66, 81, 82
Zarate-Morales, A.: 45, 46, 65, 66, 81, 82
Zhernosekov, K.: 276
Zyuzin, A.: 210, 212, 216, 218
TOPIC INDEX

A
- Argon-36: 110 – 114

B
- Beam Energy: 54 – 55, 189, 97, 159, 163, 182, 184, 205, 252, 256

C
- Chlorine-34m: 110 – 114
- Copper-61: 29 – 30, 97 – 104
- Copper-62: 30, 55, 104
- Copper-66: 30
- Copper-67: 29 – 30
- Counter: (see Detector)
- Cyclotron advances: 122 – 127

D

F
- FASTLab: 36, 40 – 41

G
- Gallium-66: 102
- Germanium-68: 227, 276, 278, 280

I
- Indium-110: 146, 147, 150
- Indium-111: 146, 150
- Indium-114m: 84, 86, 146 – 148, 150, 246
- Iodine-123: 23 – 24, 84 – 87, 90, 252, 257, 271, 299
- Iodine-124: 85 – 86, 88 – 90, 252, 254, 256 – 257, 271

L

M
- Molybdenum-99: 71, 74, 80, 205 – 211, 213, 216 – 218
- Molybdenum-100: 69, 73 – 75, 205 – 219

N
- Niobium-95: 213
- Niobium-96: 208, 213
- Niobium-97: 208, 210, 213 - 214
- Nitrogen-13: 14, 105 – 107, 271
O

Oxygen-15: 122 – 123, 227 – 228, 231 – 232, 271

S

Scintillation: 1, 3, 8, 13, 23, 241

Stripping Foil:
- Carbon 19 – 22, 75
- Strontium-86 234 – 235, 237 – 239

T

Target:

Target foil:
- Copper 54 – 55, 178, 205, 207
- Havar 181
- Niobium (see Niobium: General)
- Technetium-95: 210, 222
- Technetium-96: 222
- Technetium-95m: 211, 214, 217
- Technetium-99: 80, 212 – 213
- Technetium-99m: 69 – 74, 78, 205 – 218, 220
- TracerLab: 36, 50, 51, 84, 153 – 155, 253

X

Xenon-124: 23 – 24

Y

Yttrium-86: 234 – 236, 238 – 239

Z

Zinc-64: 99, 102, 246 – 247, 254
- 30 – 31, 161, 254
- Zirconium-89: 99, 159, 161, 259, 261, 271
Risø DTU is the National Laboratory for Sustainable Energy. Our research focuses on development of energy technologies and systems with minimal effect on climate, and contributes to innovation, education and policy. Risø has large experimental facilities and interdisciplinary research environments, and includes the national centre for nuclear technologies.