Milk hydrolysis products may retain their allergenic reactivity

Bøgh, Katrine Lindholm; Barkholt, Vibeke; Madsen, Charlotte Bernhard

Publication date: 2011

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Milk hydrolysis products may retain their allergenic reactivity

Bøgh, Katrine L.1; Barkholt, Vibeke2; Madsen, Charlotte B.1

1Technical University of Denmark, National Food Institute, Division of Toxicology and Risk Assessment, Søborg, Denmark; 2Technical University of Denmark, Department of Systems Biology, Enzyme and Protein Chemistry, Lyngby, Denmark

Introduction
Milk allergy is one of the most common allergies in small children. Extensively hydrolysed milk formulas are therefore an important source of nutrients for infants with cow’s milk allergy and for infants being predisposed for allergy and not being breastfed.

The aim of this study was to investigate two extensively hydrolysed milk whey products for their sensitising and reacting capacity in a Brown Norway (BN) rat model.

Methods
BN rats (12/group) were immunised i.p. three times without the use of adjuvant with 200 µg of either PBS (control), intact β-lactoglobulin (BLG), hydrolysed BLG or an extensively hydrolysed milk whey product, commercially available and used as protein source in infant formulas.

Hydrolysed BLG and the extensively hydrolysed milk whey proteins were analysed for residual intact BLG by RP-HPLC, aggregation profiles by gel permeation chromatography (GPC) and peptide masses by MALDI-TOF mass spectrometry (MS).

Sera from BN rats were analysed for specific IgG1, IgG2a and IgE titres and the avidity of the antibodies were measured in ELISAs.

Results
RP-HPLC showed that no residual intact BLG was left in the hydrolysates. Hydrolysed BLG and hydrolysed whey proteins both had a degree of hydrolysis (DH) of 28 and MALDI-TOF MS showed that peptides in hydrolysed BLG were ≤ 3.5 kDa and that peptides in hydrolysed whey proteins were ≤ 2.5 kDa, of which more than 90% were between 0.5 and 2.0 kDa (Fig. 1). However, GPC profiles indicated that > 40% of the hydrolysed BLG was in aggregated complexes of up to M, 29 and that > 55% of hydrolysed whey proteins were in aggregated complexes of up to M, 22.

The study showed that while intact BLG could induce a statistically significant antibody response, both hydrolysed BLG and hydrolysed whey proteins had no sensitising capacity (Fig. 2). However, IgG1 antibodies from rats immunised with intact BLG could still react with both the hydrolysed BLG and hydrolysed whey proteins, in a statistically significant way. Also IgE antibodies from 1/3 of these rats were able to react with the extensively hydrolysed milk whey protein product.

Results from avidity measurements indicated that antibodies raised in rats immunised with intact BLG had a statistically significant higher avidity towards the intact BLG compared to both hydrolysed BLG and hydrolysed whey proteins (Fig. 3). Also shown was that the avidity of IgE was higher than the avidity of IgG1.

Conclusion
The extensively hydrolysed milk products showed no sensitising capacity. However, they retained their reacting activity and hydrolysed whey proteins were still able to bind IgE from rats sensitised to intact BLG. These results resemble observation seen in humans, where infants allergic to cow’s milk may react to extensively hydrolysed milk formulas.

Finding like these may lead to development of new standards for extensively hydrolysed infant formulas, where higher demands should be made on the protein chemical characteristics of the formula, based on peptide sizes and state of aggregation.