A versatile expression vector system for mammalian cell factories

Lund, Anne Mathilde; Kildegaard, Helene Fastrup; Hansen, Bjarne Gram; Andersen, Mikael Rørdam; Mortensen, Uffe Hasbro

Publication date:
2011

Document Version
Peer reviewed version

Citation (APA):
A versatile expression vector system for mammalian cell factories

Anne Mathilde Lund¹, Helene Fastrup Kildegaard¹, Bjarne Gram Hansen¹, Mikael Rørdam Andersen¹, Uffe Hasbro Mortensen¹

¹Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, Kgs. Lyngby, Denmark

Aim

The development of the field of mammalian cell factories requests fast and high-throughput methods which means high need for simpler and more efficient cloning techniques. This project applies the ligation-free USER™ (uracil-specific excision reagent) cloning technique to construct mammalian expression vectors with maximum flexibility.

Cloning strategy

The USER™ cloning is a ligation independent cloning technique. The method applies long complementary overhangs to anneal to each other to form a stable hybridisation product that can be used to transform E. coli without prior ligation. The overhangs on the PCR products are custom-made and their generation is restriction site-independent. Assembly of complex DNA constructs made of up several fragments can easily be fused seamlessly together. The method provides optimal flexibility. The selected cloning strategy is given in the figure below (1, 2).

Mammalian expression vector parts

Traditionally mammalian expression vectors contain elements for expression in mammalian cells, selection in mammalian cells and their replication and selection in bacteria. Basic and optional vector parts which in principle easily could be inserted by USER™ are illustrated below.

Analysis of promoter expression vectors

A vector library of promoters with different expression levels is constructed by using the same primer tails at different promoters. The functionality of the constructed vectors will be tested in CHO and HEK293 cell lines by insertion of eGFP as model protein.

Perspectives

The simplicity and flexibility of the USER™ cloning technique facilitate the adaption of the vector system into high-throughput cloning. Especially, fusion proteins and site-directed mutations are easily prepared. In the future, the system is planned to include site-specific integration and knockout cassettes.

Acknowledgement

This project is funded by the Lundbeck Foundation. Thanks to Dorte Marie Kofod Holm for assistance and providing the Asp/Sn/NheI-BstI cassette with the suicide gene-USER cassette. Thanks to the Danish Cancer Society for providing template plasmids and the HEK293 cell line.

References


The cloning strategy for preparing a basic transient expression vector with a promoter, a USER cassette for gene insertion and a polyA tail.

The simplicity and flexibility of the USER™ cloning technique facilitate the adaption of the vector system into high-throughput cloning. Especially, fusion proteins and site-directed mutations are easily prepared. In the future, the system is planned to include site-specific integration and knockout cassettes.

The cloning strategy for preparing a basic transient expression vector with a promoter, a USER cassette for gene insertion and a polyA tail.

The cloning strategy for preparing a basic transient expression vector with a promoter, a USER cassette for gene insertion and a polyA tail.

The cloning strategy for preparing a basic transient expression vector with a promoter, a USER cassette for gene insertion and a polyA tail.

The cloning strategy for preparing a basic transient expression vector with a promoter, a USER cassette for gene insertion and a polyA tail.

The cloning strategy for preparing a basic transient expression vector with a promoter, a USER cassette for gene insertion and a polyA tail.

The cloning strategy for preparing a basic transient expression vector with a promoter, a USER cassette for gene insertion and a polyA tail.

The cloning strategy for preparing a basic transient expression vector with a promoter, a USER cassette for gene insertion and a polyA tail.

The cloning strategy for preparing a basic transient expression vector with a promoter, a USER cassette for gene insertion and a polyA tail.

The cloning strategy for preparing a basic transient expression vector with a promoter, a USER cassette for gene insertion and a polyA tail.