Spatially-explicit LCIA endpoint model for marine eutrophication and application to future climatic-driven pressures

Cosme, Nuno Miguel Dias; Larsen, Henrik Fred; Hauschild, Michael Zwicky

Publication date:
2013

Citation (APA):
Spatially-explicit LCIA endpoint model for marine eutrophication and application to future climatic-driven pressures

Session: Nutrients and ecology of the coastal zone and how they improve our understanding of environmental change
Thu July 4th 2013 – University of York

Nuno Cosme, Henrik F. Larsen, Michael Z. Hauschild
nmdc@dtu.dk
Research Assistant and PhD student

Technical University of Denmark

This research was partly financed by the EU LC-IMPACT project: Development and application of environmental Life Cycle Impact assessment Methods for imProved sustAinability Characterisation of Technologies (Grant agreement No.: 243827 – LC-IMPACT), which is financially supported by the EU Commission within the Seventh Framework Programme Environment ENV.2009.3.3.2.1: Improved Life Cycle Impact Assessment methods (LCIA) for better sustainability assessment of technologies.
Marine Eutrophication
Ecosystem response to the availability of plant nutrients

① PP sustained by nutrients released from microbial and animal metabolism.

② Balance disrupted by anthropogenic fertilization. Sources: run-off from agriculture, atmospheric deposition, and sewage waters.

③ Nutrients enrichment promotes excessive growth of phytoplankton and macroalgae.

④ Bacterial degradation of biomass consumes dissolved oxygen. Excessive oxygen depletion may originate hypoxic to anoxic bottom waters.

⑤ Sublethal and lethal effects on resident biota are expected.
Life Cycle Assessment (LCA)
- Environmental assessment tool
- Evaluates the environmental exchanges (technosphere-ecosphere)
- Potential environmental impacts of a product or service throughout the entire life cycle (resources extraction, processing, manufacturing, assembly, packaging, transport, use, reuse, recycling, and disposal stages)

Life Cycle Impact Assessment (LCIA)
- Characterisation of emissions with Characterisation Factors (CF)
- CFs are substance-specific and represent the substance potency
- CFs translate emissions into potential impacts
- Regional and global impacts
Future scenarios
Increase in food demand

Climatic-driven pressures
Increase in crops productivity

Projected development of cereal production, global population, fertilizer use and arable land (FAO 2003)
Drivers and goals

Research question

- Understand the **fate processes** affecting nitrogen loadings to coastal waters
- Include ecosystems’ sensitivity to obtain a damage dimension (loss of biodiversity)
- Estimate factors for the impact characterisation (**CFs**)
- Introducing **spatial differentiation** at a suitable scale
- Produce an endpoint damage model to support decision-making processes

How to define CFs for marine eutrophication in a spatially differentiated LCIA endpoint model?
To define the **Characterisation Factor (CF)** in (PAF·)[m³·d/kg]:

\[
\text{CF}_{ij} = \text{FF}_{ij} \cdot \text{XF}_j \cdot \text{EF}_j
\]

Where:

- \(\text{FF}_{ij}\) is the **Fate Factor** [d] for emission route \(i\) to receiving ecosystem \(j\)
- \(\text{XF}_j\) is the **Exposure Factor** [kgO₂/kgN] in receiving ecosystem \(j\)
- \(\text{EF}_j\) is the **Effect Factor** (PAF·)[m³/kgO₂] in receiving ecosystem \(j\)
The FF_{ij} [d] is obtained by:

$$FF_{ij} = \frac{f_{exp \ i}}{\lambda_{j}}$$

Where:
- $f_{exp \ i}$ [dimensionless] is the fraction of the emitted N that reaches coastal marine waters (exported) calculated for each emission route i
- λ_{j} [d$^{-1}$] is the N-loss rate coefficient in receiving ecosystem j

<table>
<thead>
<tr>
<th>$f_{exp \ i}$</th>
<th>River-N fate</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_{j}</td>
<td>Marine-N fate</td>
</tr>
</tbody>
</table>
River-N fate modelling

Fate modelling and export to marine coastal waters

\[f_{\text{exp } i} = \]

- \((\text{LCI}_N \text{ to air})\) * \(f_{\text{dep}}\) to sea * \(f_{\text{dep}}\) to mw +
- \((\text{LCI}_N \text{ to air})\) * \(f\) to inland * \(f_{\text{dep}}\) to ns * \(f_{\text{leach}}\) from ns * Denitr in sfw +
- \((\text{LCI}_N \text{ to air})\) * \(f\) to inland * \(f_{\text{dep}}\) to as * \(f_{\text{leach}}\) from as * Denitr in sfw +
- \((\text{LCI}_N \text{ to air})\) * \(f\) to inland * \(f_{\text{dep}}\) to sfs * Denitr in sfw

\(f_{\text{exp } i} = \)

- \((\text{LCI}_N \text{ to ns})\) * Denitr in gw * Denitr in sfw
- \((\text{LCI}_N \text{ to sfw})\) * Denitr in sfw

\(\text{ns} = \text{natural soil} \quad \text{as} = \text{agricultural soil} \quad \text{sfw} = \text{surface freshwater} \quad \text{mw} = \text{marine waters} \)

Spatially-explicit LCIA endpoint model for marine eutrophication
Marine-N fate modelling

Nitrogen losses (λ_j) in the marine compartment may be caused by:

- **Denitrification ≈ 30%** (Van Drecht et al., 2003)
 (microbial mediated reduction of NO_3^-, NO_2^- and NO into N_2 in bottom sediments)

- **Sedimentation ≈ 5%** (Nixon et al., 1996)
 (loss to mineralization of N into bottom sediments)

- **Advection ≈ 1/τ**
 (transport of nitrogen forms or net flushing)

To find residence time (τ):
- Search literature
- Build archetypes:
 - High dynamics & exposure to regional currents: $\tau \approx 3 \text{ mo}$
 - Medium dynamics & exposure to local currents: $\tau \approx 2 \text{ yr}$
 - Low dynamics: $\tau \approx 25 \text{ yr}$
 - Very low dynamics or embayment: $\tau \approx 90 \text{ yr}$
Marine-N loss rate coefficient \((\lambda_j)\)

Includes the 3 loss routes:
- Denitrification
- Advection
- Sedimentation

\[
\lambda_j = \lambda_{\text{denitr}} + \frac{1}{\tau_j} + \lambda_{\text{sed}}
\]

N-loss routes follow first-order kinetics with a constant removal rate \((\lambda_r)\)

\[
N_t = N_0 \cdot e^{-\lambda_r t}
\]

\[
\lambda_{\text{denitr}} = -\ln(0.70)
\]

\[
\lambda_{\text{sed}} = -\ln(0.95)
\]

From literature or archetypes to find \(\tau_j\) for LME \(j\)

\[
\lambda_{\text{adv}} = \frac{1}{\tau_j}
\]
Exposure Factor (XF)

The $X F_j$ (unit: kgO_2/kgN) is estimated by:

$$X F_j = \frac{kgOM}{kgN} \times \frac{kgO_2 \times (1 - BGE)}{kgOM} \times NIE_j$$

Bacterial Growth Efficiency is the amount of new bacterial biomass produced per unit organic C substrate assimilated after (photosynthesis)

Nitrogen Incorporation Efficiency expresses the environmental factors affecting PP rates (ecosystem response) with (Nixon et al., 1996)

Exposure Factor (XF) then: after (respiration)

(del Giorgio & Cole, 1998)
Effect Factor (EF)

The EF (unit: PAF·m³/kgO₂) is estimated by the average gradient method (Pennington et al., 2004):

\[
EF = \frac{\Delta PAF}{\Delta [O_2]} = \frac{0.5}{HC_{50}}
\]

where \(HC_{50} = 10^{\text{avg}(\log EC_{50})} \)

Species sensitivity to hypoxia (EC₅₀) from Vaquer-Sunyer & Duarte (2008)

- The Potentially Affected Fraction of species (PAF) is a measure of the loss of biodiversity in the receiving ecosystem.
- From Species Sensitivity Distribution (SSD) curves for 5 climate zones + global.
- Probabilistic model that estimates the variability of the sensitivity of individual species to an environmental stressor (Posthuma et al. 2002)
Spatial differentiation of the model results

Geographical distribution of the countries showing the Top10 (red) and Bottom10 (green) CFs (emissions to surface freshwater). CF unit = $\times 10^3 \text{ PAF-m}^3\cdot \text{d/kgN}$
Sensitivity analysis

Sensitivity Ratios (SR) were calculated by:

\[
SR_X = \frac{(CF_{end} - CF_{start})/CF_{start}}{(X_{end} - X_{start})/X_{start}}
\]

(Strandesen et al., 2007)

Tested input parameters:

- \(f_{exp} \) in \(FF \)
- Sedimentation rate in \(FF \)
- Denitrification rate in \(FF \)
- Residence time (LME) in \(FF \)
- BGE in \(XF \)
- PP rate in \(XF \)
- VCC in \(XF \)
- HC\textsubscript{50} value in \(EF \)

Independent 10% variation of each input parameter.
Uncertainty estimation

Extreme values of possible variation range

- \(f_{\text{exp}} \) for countries exporting to multiple receiving LME: null to total export
- Sedimentation rate: 5% to 8% (Nixon et al., 1996)
- Denitrification rate: 30% to 52.7% (Van Drecht et al., 2003 and Wollheim et al., 2008)
- Residence time: lower to upper archetype or -50%/+50% of used value
- BGE: 0.01 to 0.69 (del Giorgio & Cole, 1998)
- PP rates datasets show discrepancies between different sources: high uncertainty
- VCC is a model decision: low uncertainty
Key issues
Combining sensitivity and uncertainty
Weaknesses

- Dependency on third-party models (emissions, deposition)
- Dependency on the LCI model for the spatial aggregation of CF and NFs
- Unknown uncertainty associated with these ‘input’ models
- Low confidence on PP dataset
- No spatial differentiation for marine sedimentation and denitrification rates in the FF
Strengths

- Endpoint modelling
- Transparent and reproducible FFs, XFs, and EFs
- Spatially differentiated CFs
- High geographic applicability
- CFs and NFs for 233 Country-to-LME and 143 countries for 4 N-emission routes
- Global default CF and NF
- Key issues for data quality improvement identified
Thank you for your attention

References:

