Hybrid Heat Pump Solutions for Industrial Energy Savings

Jensen, Jonas Kjær

Publication date: 2013

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Hybrid Heat Pump Solutions for Industrial Energy Savings

DTU International Energy Conference
September 10th-12th 2013

Jonas Kjær Jensen
PhD Student
Thermal Energy Section
Agenda

- Introduction to the hybrid absorption compression heat pump
- Advantages of zeotropic mixtures specifically NH$_3$/H$_2$O
- Evaluation of important design parameters.
- Prospect for high temperature development $T_{\text{supply}} < 110^\circ \text{C}$.
- Conclusion & future work
The Hybrid Heat Pump

Absorber

Desorber

IHEX

Liquid/vapour separator

Mixer

\(m_{\text{vapour}} \)

\(m_{\text{lean}} \)

\(Q_{\text{IHEX}} \)

\(Q_{\text{abs}} \)

\(Q_{\text{des}} \)

\(W_{\text{comp}} \)

\(W_{\text{pump}} \)
Advantages of Zeotropic Mixtures
Reduction of Vapor Pressure

![Graph showing vapor pressure vs. temperature for different compositions of mixtures R717 and R718. The graph includes curves for x=0.0 to x=1.0, showing the change in vapor pressure with temperature for each composition. The critical point is also indicated on the graph.](image-url)
Advantages of Zeotropic Mixtures
Reduction of Vapor Pressure

![Temperature vs. Vapor Pressure Graph]

- X-axis: Temperature [°C]
- Y-axis: Vapor Pressure [bar]
- Curves represent different values of x:
 - Red: x=0.0
 - Purple: x=0.1
 - Orange: x=0.2
 - Pink: x=0.3
 - Green: x=0.4
 - Blue: x=0.5
 - Light blue: x=0.6
 - Dark blue: x=0.7
 - Purple: x=0.8
 - Light purple: x=0.9
 - Dark purple: x=1.0
- Critical point at 28 [bar]
- Temp. Range: 63-230 °C

DTU Mechanical Engineering, Technical University of Denmark

DTU International Energy Conference 11.9.2013
Advantages of Zeotropic Mixtures
Reduction of Vapor Pressure

![Graph showing vapor pressure vs. temperature for zeotropic mixtures.
Different mixtures are denoted by different colors, with
x-values ranging from 0.0 to 1.0.

Legend:
- Red: x=0.0
- Orange: x=0.1
- Yellow: x=0.2
- Green: x=0.3
- Blue: x=0.4
- Purple: x=0.5
- Magenta: x=0.6
- Cyan: x=0.7
- Teal: x=0.8
- Light blue: x=0.9
- Dark blue: x=1.0

Key:
- Critical point
- R717
- R718

Temperature Range:
- 63-230°C
- 155-330°C

Vapor Pressure Range:
- 28 bar
- 130 bar

Note: The graph illustrates the vapor pressure of zeotropic mixtures at various temperatures, highlighting the differences between pure R717 and R718.
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

Temperature [°C] vs. Heat Load [kW]

Sink
Source
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

Source
Sink

Temperature [°C]

Heat Load [kW]

Pure Refrigerant

Pure Refrigerant

8
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

Reduced $\Delta T \Rightarrow$ Reduced Entropy Generation

<table>
<thead>
<tr>
<th>Sink</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature [°C]</td>
<td>Heat Load [kW]</td>
</tr>
<tr>
<td>Pure Refrigerant</td>
<td>Zeotropic Mixture</td>
</tr>
<tr>
<td>Zeotropic Mixture</td>
<td>Pure Refrigerant</td>
</tr>
</tbody>
</table>

Reduced $\Delta T \Rightarrow$ Reduced Entropy Generation
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

Absorber

\[x = 0.9 \]

\[T [\degree C] \]

\[Q [\text{kW}] \]

DTU Mechanical Engineering, Technical University of Denmark

DTU International Energy Conference 11.9.2013
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

Absorber

x=0.8

T [°C] vs. Q [kW]
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

Absorber

\[x = 0.6 \]
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

Absorber

\(T \) [\(^\circ C \)]

\(Q \) [kW]

\(x=0.5 \)
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

Absorber

\[T \text{ [}^\circ\text{C}] \]
\[Q \text{ [kW]} \]

\(x=0.3 \)
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

Absorber

x=0.3

\(T \ [^\circ C] \)

\(\dot{Q} \ [kW] \)

\(0 \)

\(100 \)
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

Absorber

\[x = 0.2 \]

\[\dot{Q} \text{ [kW]} \]

\[T \text{ [\degree C]} \]

DTU Mechanical Engineering, Technical University of Denmark

DTU International Energy Conference 11.9.2013
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation
The Hybrid Heat Pump: Design parameters x_r & f

Absorber

Desorber

IHEX

Liquid/vapour separator

Mixer

\dot{Q}_{abs}

\dot{W}_{pump}

\dot{W}_{comp}

m_{vapour}

m_{rich}

m_{lean}

Q_{IHEX}

Q_{des}

Q_{abs}

Q_{des}

W_{comp}

W_{pump}

\dot{Q}_{abs}

\dot{Q}_{IHEX}

\dot{m}_{vapour}

\dot{m}_{rich}

\dot{m}_{lean}
Influence of x_r & f: $T_{sink,out} = 110^\circ C$, $\Delta T_{lift} = 30^\circ C$

Inputs and Assumptions

<table>
<thead>
<tr>
<th>External Inputs</th>
<th>Internal Inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_{sink,in} = 80^\circ C$</td>
<td>$\Delta T_{pinch,abs} = 5^\circ C$</td>
</tr>
<tr>
<td>$T_{sink,out} = 110^\circ C$</td>
<td>$\Delta T_{pinch,des} = 5^\circ C$</td>
</tr>
<tr>
<td>$T_{source,in} = 80^\circ C$</td>
<td>$\eta_{is,comp} = 0.7$</td>
</tr>
<tr>
<td>$m_{sink} = 1\text{ kg/s}$</td>
<td>$\eta_{is,pump} = 0.7$</td>
</tr>
<tr>
<td>$m_{source} = 10\text{ kg/s}$</td>
<td>$\epsilon_{IHEX} = 0.8$</td>
</tr>
</tbody>
</table>

Pressure drops are neglected.
Influence of x_r & f: $T_{sink,out} = 110^\circ C$, $\Delta T_{lift} = 30^\circ C$
Influence of x_r & f: $T_{sink,out} = 110^\circ C$, $\Delta T_{lift} = 30^\circ C$
Influence of x_r & f: $T_{sink, out} = 110^\circ C$, $\Delta T_{lift} = 30^\circ C$
Influence of x_r & f: $T_{sink, out} = 110^\circ C$, $\Delta T_{lift} = 30^\circ C$
Influence of x_r & f: $T_{sink,out} = 110^\circ C$, $\Delta T_{lift} = 30^\circ C$
Influence of x_r & f: $T_{\text{sink, out}} = 110^\circ C$, $\Delta T_{\text{lift}} = 30^\circ C$
Influence of x_r & f: $T_{sink,\,out} = 110°C$, $\Delta T_{lift} = 40°C$
Influence of x_r & f: $T_{sink,out} = 110^\circ C$, $\Delta T_{lift} = 50^\circ C$
Design Constraints

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COP</td>
<td>$> 4[-]$</td>
<td>Economic</td>
</tr>
<tr>
<td>P_H</td>
<td>$< 25[\text{bar}]$</td>
<td>Standard refrigeration equipment</td>
</tr>
<tr>
<td>P_L</td>
<td>$> 1[\text{bar}]$</td>
<td>No entrainment of air from ambient</td>
</tr>
<tr>
<td>V_{HC}</td>
<td>$> 2 [MJ/m^3]$</td>
<td>Economic ($\dot{Q}{abs}/\dot{V}{suc,comp}$)</td>
</tr>
<tr>
<td>T_H</td>
<td>$< 160[^\circ\text{C}]$</td>
<td>Thermal stability of oil</td>
</tr>
</tbody>
</table>
Working domain hybrid heat pumps

\[T_{\text{out}} = 110[^\circ C] \quad T_{\text{lift}} = 30[^\circ C] \]

Possible design options

COP < 4 [−]

Possible design options

COP < 4 [−]
Working domain hybrid heat pumps

\[T_{out} = 110[^\circ C] \quad T_{lift} = 30[^\circ C] \]

Possible design options:
- COP < 4
- \(P_H > 25 \text{[bar]} \)
Working domain hybrid heat pumps

$$T_{\text{out}} = 110[^\circ\text{C}] \quad T_{\text{lift}} = 30[^\circ\text{C}]$$

Possible design options:
- COP < 4
- $P_H > 25$ [bar]
- $P_L < 1$ [bar]

DTU Mechanical Engineering, Technical University of Denmark

DTU International Energy Conference 11.9.2013
Working domain hybrid heat pumps

\[T_{\text{out}} = 110[^\circ C] \quad T_{\text{lift}} = 30[^\circ C] \]

Possible design options:
- COP < 4
- \(P_H > 25 \) bar
- \(P_L < 1 \) bar
- VHC < 2 MJ/m\(^3\)
Working domain hybrid heat pumps

\[T_{out} = 110[^{\circ}C] \quad T_{lift} = 30[^{\circ}C] \]
Working domain hybrid heat pumps

Constraints corresponding to supercritical CO$_2$ refrigeration components and new synthetic oils

<table>
<thead>
<tr>
<th>Design Constraints</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$COP > 4[-]$</td>
<td>Economic</td>
</tr>
<tr>
<td>$P_H < 130[bar]$</td>
<td>Standard refrigeration equipment</td>
</tr>
<tr>
<td>$P_L > 1[bar]$</td>
<td>No entrainment of air from ambient</td>
</tr>
<tr>
<td>$VHC > 4[MJ/m^3]$</td>
<td>Economic ($\dot{Q}{abs}/\dot{V}{suc,comp}$)</td>
</tr>
<tr>
<td>$T_H < 250[^{\circ}C]$</td>
<td>Thermal stability of oil</td>
</tr>
</tbody>
</table>
Working domain hybrid heat pumps

\[T_{\text{out}} = 110[^{\circ}\text{C}] \quad T_{\text{lift}} = 30[^{\circ}\text{C}] \]

Possible design options

COP<4[−]
Working domain hybrid heat pumps

$T_{\text{out}} = 110[^\circ\text{C}]$ $T_{\text{lift}} = 30[^\circ\text{C}]$

Possible design options
- COP < 4
- $P_H > 130$[bar]
Working domain hybrid heat pumps

\[T_{\text{out}} = 110[^{\circ}\text{C}] \quad T_{\text{lift}} = 30[^{\circ}\text{C}] \]
Working domain hybrid heat pumps

\[T_{\text{out}} = 110[^\circ\text{C}] \quad T_{\text{lift}} = 30[^\circ\text{C}] \]

Possible design options:
- COP < 4
- \(P_H > 130 \text{[bar]} \)
- \(P_L < 1 \text{[bar]} \)
- VHC < 4 \text{[MJ/m}^3]\)
Working domain hybrid heat pumps

\[T_{\text{out}} = 110[^\circ\text{C}] \quad T_{\text{lift}} = 30[^\circ\text{C}] \]
Working domain hybrid heat pumps: $T_{sink,out}$

$T_{out} = 120[^\circ C]$ $T_{lift} = 30[^\circ C]$
Working domain hybrid heat pumps: $T_{sink, out}$

$T_{out} = 130[^{\circ}C]$ $T_{lift} = 30[^{\circ}C]$
Working domain hybrid heat pumps: $T_{sink,out}$

$T_{out} = 140[^{\circ}C]$ $T_{lift} = 30[^{\circ}C]$

Possible design options:
- $\text{COP} < 4$ [−]
- $P_H > 130$ [bar]
- $P_L < 1$ [bar]
- $\text{VHC} < 4$ [MJ/m3]
- $T > 250$ [°C]
Working domain hybrid heat pumps: $T_{\text{sink, out}}$

$T_{\text{out}} = 150[^\circ\text{C}]$ $T_{\text{lift}} = 30[^\circ\text{C}]$

Possible design options:
- COP < 4
- $P_H > 130$[bar]
- $P_L < 1$[bar]
- VHC < 4[MJ/m3]
- T > 250[^\circ\text{C}]

$\rho \quad \rho$
Working domain hybrid heat pumps: $T_{sink,out}$

$T_{out} = 160[^\circ C]$ $T_{lift} = 30[^\circ C]$
Working domain hybrid heat pumps: $T_{sink,out}$

$T_{out} = 170[^\circ C]$ $T_{lift} = 30[^\circ C]$
Working domain hybrid heat pumps: $T_{sink, out}$

\[T_{out} = 180[^\circ C] \quad T_{lift} = 30[^\circ C] \]

Possible design options:
- COP < 4
- $P_H > 130$ [bar]
- $P_L < 1$ [bar]
- VHC < 4 [MJ/m3]
- $T > 250[^\circ C]$
Working domain hybrid heat pumps: $T_{sink,out}$

$T_{out} = 190[^{\circ}C] \quad T_{lift} = 30[^{\circ}C]$

Possible design options:

- COP < 4 [-]
- $P_H > 130$ [bar]
- $P_L < 1$ [bar]
- VHC < 4 [MJ/m3]
- $T > 250$ [°C]
Working domain hybrid heat pumps: $T_{sink,out}$

$T_{out} = 200[^\circ C]$ $T_{lift} = 30[^\circ C]$

Possible design options
- $COP < 4\, [\text{--}]$
- $P_H > 130\, [\text{bar}]$
- $P_L < 1\, [\text{bar}]$
- $VHC < 4\, [\text{MJ/m}^3]$
- $T > 250\,[^\circ C]$
Working domain hybrid heat pumps: ΔT_{lift}

$T_{out}=180[^\circ C]$ $T_{lift}=30[^\circ C]$
Working domain hybrid heat pumps: ΔT_{lift}

$T_{out} = 180[^{\circ}C]$ $T_{lift} = 35[^{\circ}C]$
Working domain hybrid heat pumps: ΔT_{lift}

$T_{out} = 180[^\circ C]$ $T_{lift} = 40[^\circ C]$
Working domain hybrid heat pumps: ΔT_{lift}

$T_{out}=180[^{\circ}C]$ $T_{lift}=45[^{\circ}C]$
Working domain hybrid heat pumps: ΔT_{lift}

$T_{out} = 180[^\circ C]$ $T_{lift} = 50[^\circ C]$
Future work

- Heat transfer characteristics, influence of x_r.
- Identification of suitable oils.
- Material compatibility with NH$_3$/H$_2$O should be investigated.
- Two-stage concepts should be evaluated, this could reduce compressor discharge temperature and increase COP.
- Thermoeconomic analysis and optimization should be applied to find cost efficient designs.
Conclusion

• COP and design parameters are highly dependent on x_T and f.
• Standard refrigeration components can be used up to 110[°C].
• Supercritical CO$_2$ components can be used up to 200[°C].
• ΔT_{lift} up to 45[°C] can be attained.
• Dominating constraint is the compressor discharge temperature.
• Hence thermal stability of oil should be tested.
• Case studies should be performed to show the feasibility of the hybrid heat pump implementation.
Thank you for your attention.
Questions?