Wind atlas of the Northern European Seas based on Envisat ASAR, QuikSCAT and ASCAT

Hasager, Charlotte Bay; Mouche, Alexis; Badger, Merete; Karagali, Ioanna; Driesenaar, Tilly; Stoffelen, Ad; Bingöl, Ferhat; Peña, Alfredo

Publication date:
2013

Citation (APA):
Hasager, C. B., Mouche, A., Badger, M., Karagali, I., Driesenaar, T., Stoffelen, A., ... Peña, A. (2013). Wind atlas of the Northern European Seas based on Envisat ASAR, QuikSCAT and ASCAT. Poster session presented at ESA Living Planet Symposium, Edinburgh, United Kingdom.
Wind atlas of the Northern European Seas based on Envisat ASAR, QuikSCAT and ASCAT

Charlotte Bay Hasager¹, Alexis Mouche², Merete Badger¹, Ioanna Karagali², Tilly Driesenaar³, Ad Stoffelen², Ferhat Bingöl¹, Alfredo Peña¹
¹ DTU Wind Energy, Denmark, ² CLS, France, ³ KNMI, the Netherlands

In the EU project NORSEWiND (Northern Seas Wind Index database, www.norsewind.eu) which lasted from 2008 to 2012 there was a goal of contributing a satellite-based wind atlas for the Northern European Seas. The effort included collection of more than 9000 Envisat ASAR WSM wide swath mode scenes covering the Baltic Sea, Irish Sea and North Sea during the years 2002 to 2012. The near-real-time processing to wind maps was done at CLS and DTU Wind Energy using various CMOD’s and with a priori input of wind directions from the ECMWF and NOGAPS models. At CLS the in-house processing was used. At DTU Wind Energy the Johns Hopkins University Applied Physics Laboratory processing was used.

The study include inter-comparison of results between various CMOD’s. The variations between CMOD5 and CMOD-IFR were only minor. It was decided to reprocess all maps with CMOD-IFR and use ECMWF wind directions as input to obtain a homogenous data set. This massive processing was done by CLS. The number of overlapping scenes ranges from a few hundred in the Irish Sea to more than 1400 in parts of the North Sea and Baltic Sea. The more overlapping scenes, the less uncertainty is there in the resulting maps. The spatial resolution of the final maps is 2 km by 2 km. The maps are freely available through the web-sites http://soprano.cls.fr

Also QuikSCAT ocean wind vector maps from Remote Sensing Systems and ASCAT from KNMI OSI-SAF were used to assess the wind climate. The analysis of QuikSCAT ocean winds included wind speed and direction comparisons against observations from selected offshore meteorological masts. The resulting wind maps of variations in winds across the Northern European seas in time and space are presented (Karagali et al. 2012 and Karagali et al. 2013). The analysis of ASCAT include comparison the mesoscale model WRF results (see Hahmann et al. 2012) on the modeling, and the comparison showed small variations (Hasager et al. 2012).

References:
Karagali I., Peña, A, Badger, M., Hasager C 2012 Wind characteristics in the North and Baltic Seas from the QuikSCAT satellite, Wind Energy, DOI: 10.1002/we.1565

EU NORSEWiND project TREN-FP7EN-219048 is acknowledged. Acknowledgements go to QuikSCAT from Remote Sensing Systems, ASCAT data from KNMI and Envisat ASAR from the European Space Agency.