Relationship between the force on implant screw and the corrective angle of scoliosis deformity

Salmingo, Remel A.; Fujisaki, Kazuhiro; Tadano, Shigeru; Abe, Yuichiro; Ito, Manabu

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
9:00 - 9:40 脊椎1

座長：原利昭（新潟医工科大学）
笠井裕一（三重大学）

110 高齢者の座位バランス能力の評価
.. 128
○佐々木誠1）、巖見武裕2）、宮脇和人3）、島田洋一4）
1) 岩手大学大学院工学系研究科
2) 秋田大学大学院工学資源学研究科
3) 秋田工業高等専門学校機械工学科
4) 秋田大学大学院医学系研究科

111 Crosslink Systemの固定性に関する生体力学的評価
.. 128
○中上祐希1）、植原紀彦2）、王卓2）、笠井裕一2）、吉川高正1）、加藤貴也3）、稲葉忠司1）
1）三重大学大学院工学研究科機械工学科
2）三重大学大学院医学系研究科脊椎外科・医用工学
3）三重大学社会連携センター

112 Pedicle screw and rod systemが脊椎回旋運動において固定骨接
椎間へ及ぼす生体力学的影響
.. 129
○米川淳也1）、植原紀彦2）、王卓2）、笠井裕一2）、吉川高正1）、加藤貴也3）、稲葉忠司1）
1）三重大学大学院工学研究科機械工学科
2）三重大学大学院医学系研究科脊椎外科・医用工学
3）三重大学社会連携センター

113 Relationship between the force of implant screw and the
corrective angle of scoliosis deformity
.. 129
○Salmingo Remel1）、Fujisaki Kazuhiro2）、Tadano Shigeru2）、Abe Yuichiro3）、
Ito Manabu3）
1）Graduate School of Engineering, Hokkaido University
2）Faculty of Engineering, Hokkaido University
3）Graduate School of Medicine, Hokkaido University

114 頚椎前方移植柱の脱転因子
.. 130
○石田航1）、青田洋一1）、内野洋介1）、金子貫一郎1）、河井卓也1）、東貴行1）、齋藤知行1）、
加藤慎也2）、三原久範2）、近藤総一2）
1）横浜市立大学整形外科
2）横浜雨共病院整形外科
Relationship between the force of implant screw and the corrective angle of scoliosis deformity

Remel SALMINGO, Kazuhiro FUJISAKI, Shigeru TADANO
Division of Human Mechanical Systems and Design, Graduate School of Engineering, Hokkaido University

Yuichiro ABE, Manabu ITO
Department of Orthopaedic Surgery, Graduate School of Medicine, Hokkaido University

Background

Scoliosis is serious disease characterized as the abnormal curvature of spine in three dimensions with vertebral rotation. The degree of severity of the scoliotic deformity is clinically evaluated using the Cobb angle. Scoliosis treatment is attained when the scoliotic spine is surgically corrected into its normal shape by implant rods and screws fixed into the vertebrae. The three-dimensional forces occurred at each implant screw because the implant rod was deformed after the surgical treatment. The objective of this study is to analyze the forces from implant deformation and investigate its effect on the corrected angle of scoliosis deformity.

Methods

The forces were analyzed from implant rod deformation using Finite Element Analysis (FEA). The geometries of implant rod before and after the surgical treatment were measured three-dimensionally. The implant rod before the surgical treatment was reconstructed using an elasto-plastic finite element model. The three-dimensional forces were applied iteratively to the screws such that the rod will be deformed the same after the surgical treatment of scoliosis. The corrected angle is referred to as the difference between the maximum Cobb angle before and after surgery.

Results

The forces that deformed the rod which are acting at the implant screws of scoliosis patients were obtained. The corrected angle did not depend on the magnitude of forces after the surgical treatment of scoliosis. Correction of scoliosis deformity is a result of various mechanisms not only the forces on implant screws.