Relationship between the force on implant screw and the corrective angle of scoliosis deformity

Salmingo, Remel A.; Fujisaki, Kazuhiro; Tadano, Shigeru; Abe, Yuichiro; Ito, Manabu

Publication date: 2013

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
<table>
<thead>
<tr>
<th>9:00 - 9:40</th>
<th>脊椎1</th>
</tr>
</thead>
</table>

110 高齢者の座位バランス能力の評価

○佐々木 誠1、巖見 武裕2、宮脇 和人3、島田 洋一4

1) 岩手大学大学院工学系研究科
2) 秋田大学大学院工学資源学研究科
3) 秋田工業高等専門学校機械工学科
4) 秋田大学大学院医学系研究科

111 Crosslink Systemの固定性に関する生力学的評価

○中上 祐希1、樋原 紀彦2、王 卓2、笠井 裕一2、吉川 高正1、加藤 貴也3、稲葉 忠司1

1) 三重大学大学院工学系研究科機械工学科
2) 三重大学大学院医学系研究科脊椎外科・医用工学
3) 三重大学社会連携センター

112 Pedicle screw and rod systemが脊椎回旋運動において固定脇栄

椎間へ及ぼす生物力学的影響

○米川 淳也1、樋原 紀彦2、王 卓2、笠井 裕一2、吉川 高正1、加藤 貴也3、稲葉 忠司1

1) 三重大学大学院工学系研究科機械工学科
2) 三重大学大学院医学系研究科脊椎外科・医用工学
3) 三重大学社会連携センター

113 Relationship between the force of implant screw and the corrective angle of scoliosis deformity

○Salmingo Remel1, Fujisaki Kazuhiro2, Tadano Shigeru2, Abe Yuichiro3, Ito Manabu2

1) Graduate School of Engineering, Hokkaido University
2) Faculty of Engineering, Hokkaido University
3) Graduate School of Medicine, Hokkaido University

114 頚椎前方移植柱の脱転因子

○石田 航1、青田 洋一1、内野 洋介1、金子 貫一郎1、河井 卓也1、東 貴行1、齋藤 知行1、
加藤 隆也2、三原 久範2、近藤 紹一2

1) 横浜市立大学整形外科
2) 横浜雨共病院整形外科
Relationship between the force of implant screw and the corrective angle of scoliosis deformity

Remel SALMINGO, Kazuhiro FUJISAKI, Shigeru TADANO
Division of Human Mechanical Systems and Design, Graduate School of Engineering,
Hokkaido University

Yuichiro ABE, Manabu ITO
Department of Orthopaedic Surgery, Graduate School of Medicine,
Hokkaido University

Background
Scoliosis is serious disease characterized as the abnormal curvature of spine in three dimensions with vertebral rotation. The degree of severity of the scoliotic deformity is clinically evaluated using the Cobb angle. Scoliosis treatment is attained when the scoliotic spine is surgically corrected into its normal shape by implant rods and screws fixed into the vertebrae. The three-dimensional forces occurred at each implant screw because the implant rod was deformed after the surgical treatment. The objective of this study is to analyze the forces from implant deformation and investigate its effect on the corrected angle of scoliosis deformity.

Methods
The forces were analyzed from implant rod deformation using Finite Element Analysis (FEA). The geometries of implant rod before and after the surgical treatment were measured three-dimensionally. The implant rod before the surgical treatment was reconstructed using an elasto-plastic finite element model. The three-dimensional forces were applied iteratively to the screws such that the rod will be deformed the same after the surgical treatment of scoliosis. The corrected angle is referred to as the difference between the maximum Cobb angle before and after surgery.

Results
The forces that deformed the rod which are acting at the implant screws of scoliosis patients were obtained. The corrected angle did not depend on the magnitude of forces after the surgical treatment of scoliosis. Correction of scoliosis deformity is a result of various mechanisms not only the forces on implant screws.