Closed-Loop and Semi Closed-Loop Strategies for Control of Blood Glucose in People with Type 1 Diabetes

Boiroux, Dimitri; Finan, Daniel Aaron; Jørgensen, John Bagterp; Poulsen, Niels Kjølstad; Madsen, Henrik

Publication date:
2011

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):
Closed-Loop and Semi Closed-Loop Strategies for Control of Blood Glucose in People with Type 1 Diabetes

Dimitri Boiroux*, Daniel A. Finan*, John B. Jørgensen*, Niels K. Poulsen* and Henrik Madsen*

* DTU Informatics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

Abstract

Comparison between 4 insulin administration strategies
- Nonlinear model predictive control (NMPC) without meal announcement.
- NMPC with meal announcement in advance.
- NMPC with meal announcement at mealtime.
- Feedforward-feedback controller.

Nonlinear Model Predictive Control (NMPC)

Principle of model predictive control and receding horizon

Feedforward-feedback controller

- A time-varying reference signal based on meal announcement reduces the risk of hypo-glycemia
- Feedback from a glucose sensor
- Differentiate between basal insulin and boluses
 - Basal insulin compensates for small mismatches
 - Boluses are given at mealtimes

Numerical simulations of the feedforward-feedback controller

Scenarios
- A decrease by 50% in insulin sensitivity while fasting
- A 75g CHO meal with sensor noise
 - right meal announcement
 - meal size underestimated by 50%
 - meal size overestimated by 50%

Simulations

Numerical simulations of NMPC

Scenario
- Meal sizes and times
 - Breakfast 62g CHO at 6AM
 - Lunch 55g CHO at 12PM
 - Dinner 50g CHO at 6PM

Simulations
- Insulin administration strategies
 - Meals are not announced.
 - Meals are announced in advance.
 - Meals are announced at mealtimes only.

Conclusion
- NMPC simulations give an upper-bound on the maximal achievable performance for different meal announcement strategies.
- Utilization of the bolus-like nature of the optimal insulin profile to design a feedforward-feedback controller based on linear MPC.
- Demonstration of the robustness of the feedforward-feedback controller wrt. changes in insulin sensitivity and mismatches in meal announcement in the case where an accurate enough model of the patient is available.

ATTD-4 conference, February 17-19 2011
Contact: jbj@imm.dtu.dk