PMWS development in pigs from affected farms in Spain and Denmark

Stockmarr, Anders

Publication date:
2013

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
PMWS development in pigs from affected farms in Spain and Denmark

Anders Stockmarr
anst@dtu.dk

Statistics Section
Dept. of Applied Mathematics and Computer Science
Technical University of Denmark

World Congress of Vaccine, Hangzhou, China
March 18, 2013
Infectious risk factors for individual postweaning multisystemic wasting syndrome (PMWS) development in pigs from affected farms in Spain and Denmark

Llorenç Grau-Roma a,b, I, Anders Stockmarr c,d, I, Charlotte S. Kristensen e, Claes Enøe d, Sergio López-Soria b, Miquel Nofrarias b, Vivi Bille-Hansen d,f, Charlotte K. Hjulsager d, Marina Sibila b, Sven E. Jorsal e, Lorenzo Fraile b,g, Poul Baekbo e, Hakan Vige d, Joaquim Segalés a,b, *, Lars E. Larsen d

a Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
b Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
c Department of Informatics and Mathematical Modelling, Technical University of Denmark, Amssens Alle, Building 305/126, DK-2800 Lyngby, Denmark
d National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, DK-1790 Copenhagen V, Denmark
e Pig Research Centre, Vinkelvej 11, DK-8620 Kjellerup, Denmark
f Dana Lab ApS, Agern Alle 3, 2970 Horsholm, Denmark
g Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain

These authors contributed equally to the authorship of this work.

 Entered project group after all experiments had been performed
Postweaning Multisystemic Wasting Syndrome (PMWS)

• Multifactorial syndrome for pigs.

• Clinical signs:
 - Weight loss;
 - Enlarged lymph nodes;
 - Respiratory distress;
 - Some times diarrhea and jaundice;
 - Death/‘wasting’.

• VERY costly (Armstrong and Bishop 2004); fattening pigs that do not put on weight or die are of course problematic.
Cause of PMWS

• In general: Unknown. Associated with Porcine Cirvovirus type 2 (PCV2), but the exact association is not clear.

• Very difficult to reproduce in controlled studies with PCV2 infections alone.

• Meta analysis (Thomás 2008) suggests that PMWS may be reproduced through infection with PCV2 and co-infections with other pathogens.

• Vaccine exists for PCV2, but PCV2 is endemic (Segales 2009);
Purpose of Study Experiments

• In the study that this analysis is based on, we looked at measures for infections with PCV2 and the following co-infectors:

 – Porcine parvovirus (PPV);

 – Swine influenza virus, strains H1N1 or H3N2;

 – *Lawsonia intracellularis*;

 – Porcine Reproductive and Respiratory Syndrome virus (PRRSV), European and American variant;

 – Aujesky’s disease virus;

 – Mycoplasma hyopneumonia;

 – Salmonella Spp.
Purpose of Study Data Analysis

• To uncover the role of a range of pathogens in the development of PMWS

Working Hypotheses:

1. The development of antibodies towards pathogens through seroconversion after infection increases the risk of developing PMWS.

2. Immunity inherited from the mother animal has a reducing effect on the risk of developing PMWS.
PMWS Diagnosis

- Presence of compatible clinical signs
- Moderate to severe lymphocyte depletion
- Granulomatous inflammation in lymphoid tissues
- Detection of moderate to high amount of PCV2 within these lesions

(Segalés et al., 2005; Sorden, 2000).

Not possible to diagnose without an autopsy.
Data Material From Study

- Antibody measurements were taken at pre-specified time points;

- Animals were selected in Denmark and Spain after clinical signs (cases) and youthanized;

- Age-matched controls were selected (fewer) and youthanized;

- However, the ‘cases’ were not diagnosed at selection, as this requires an autopsy.

- Some of the ‘cases’ turned out not to be PMWS diagnosed...

- And some of the controls could turn out to be cases, had they been allowed to live on...
Survival Analysis Framework

- PMWS status at autopsy; death/failure in survival terms is equaled to PMWS development, if no PMWS, observations are censored at autopsy. Wasting non-PMWS animals excluded but used for control.

- Covariates: Herd ID, and:

- Longitudinal measurements of antibody titres / OD% for the following pathogens on 135 pigs (DK), 120 pigs (E):
 - Porcine parvovirus (PPV);
 - Porcine cirvovirus type 2 (PCV2);
 - Svine flu H1N1 or H3N2 (SIV);
 - Lawsonia intracellularis (LAW);
 - European Porcine Reproductive and Respiratory Syndrome virus (PRRSV.E);
 - American Porcine Reproductive and Respiratory Syndrome virus (PRRSV.U).
Relations to Working Hypotheses

• No direct measure of time for seroconversion;

• No direct measure of maternal immunity.

Construction of such measures necessary
Seroconversion Times

• Pathogen antibody measurements declines with time, until an infection makes it rise again.

• The time point for seroconversion is the point in time where antibody concentration increases after the initial decline, without delay.
Seroconversion Times

- Pathogen antibody measurements declines with time, until an infection makes it rise again.

- The time point for seroconversion is the point in time where antibody concentration increases after the initial decline, without delay.

- To estimate this estimate from only a few observations, the antibody concentration progress is estimated through regression of 2nd order polynomials on the longitudinal data.

- The Seroconversion Time is estimated as the time point corresponding to the vertex of the generated parabola.

- For animals where this method could not be applied, the midpoint between the last declining and the first increasing time point was used.
Seroconversion and No Seroconversion

A PPV, Animal 432

B PCV2, Animal 432
Seroconversion and No Seroconversion

PPV, Animal 208

PCV2, Animal 208

H1N1, Animal 208

PRRS.e, Animal 208

PRRS.u, Animal 208

ie.LAW, Animal 208

Dept. of Applied Mathematics and Computer Science, Technical University of Denmark

PMWS Development in Pigs, World Congress of Vaccine 2013
Maternal immunity

• Not possible to use values for mother animals due to *cross-fostering*: Piglets are taken from one mother animal and laid at another, to maximize piglet survival.

• Maternal immunity estimated as the *maximum registered antibody measurement in the first three weeks of life.*
Survival Analysis

• \(P(\text{PMWS case in } (t:t+\Delta t) \mid \text{no case at } t) \approx \lambda(t) \Delta t \)

• Cox’ Proportional Hazards model for animal \(i \):

\[
\lambda_i(t) = \lambda_0(t) \exp(\beta_1 X_{i1}(t) + \beta_2 X_{i2}(t) + \ldots + \beta_k X_{ik}(t))
\]

• Covariates are **maternal immunity** (not time dependent), **seroconversion times** (time dependent), and **interactions** within and between these (time dependent).

• \(\lambda_0 \) is non-parametric and not modelled.

\[
P(\text{PPV seroconverted animal case in } (t:t+\Delta t) \mid \text{not case at } t)/P(\text{non-seroconverted animal case in } (t:t+\Delta t) \mid \text{not case at } t) = \exp(\beta_{\text{ppv}})
\]

if all other characteristics match;

• **Relative risks** only, because \(\lambda_0 \) is not modeled.
Exemplified Hazard Ratio Development

Diagram A:
- Birth
- PRRSV.e
- PPV
- Lawsonia
- Death/censoring

Diagram B:
- Hazard ratio
- Time (0-80)

Dept. of Applied Mathematics and Computer Science,
Technical University of Denmark
Sensitivity Analysis

• In order to contemplate the impact of the built-in impreciseness of the estimates of seroconversions, a sensitivity analysis was carried out after model reduction.

• Gaussian noise was added to the seroconversion times, considering that 95% of the new seroconversion times should be within one week of the original estimates.

• Noise addition and model reduction was performed 20 times;

• In order to be rendered truly significant a significant factor must appear in at least half of the analyses’ final models.
Results

- DK:
 - Seroconversion against **LAW**;
 - Seroconversion against **PRRSVe**;
 - Maternal immunity against **PCV2**;
 - Maternal immunity against **LAW**.

- Spain:
 - Maternal immunity against **LAW**, **PCV2**, **PPV**, **PRRSV** and **SIV**.
Results

• DK:
 • Seroconversion against LAW;
 • Seroconversion against PRRSVe; Did not pass sensitivity test
 • maternal immunity against PCV2;
 • maternal immunity against LAW.

• Spain:

• Maternal immunity against LAW, PCV2, PPV, PRRSV and SIV.
Results

<table>
<thead>
<tr>
<th>Covariate</th>
<th>Estimated $\beta \pm 1.96\text{SE}$</th>
<th>p^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Law</td>
<td>10.322 ± 7.10</td>
<td>0.002</td>
</tr>
<tr>
<td>$\log(\text{mat.pcv2})$</td>
<td>-0.561 ± 0.26</td>
<td><0.0001</td>
</tr>
<tr>
<td>$\log(\text{mat.law})$</td>
<td>-4.02 ± 2.73</td>
<td>0.0005**</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Covariate</th>
<th>Estimated $\beta \pm 1.96\text{SE}$</th>
<th>p^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\log(\text{mat.law})$</td>
<td>-11.46 ± 6.49</td>
<td>0.002</td>
</tr>
<tr>
<td>$\log(\text{mat.pcv2})$</td>
<td>7.26 ± 7.22</td>
<td>0.007</td>
</tr>
<tr>
<td>$\log(\text{mat.pcv2})^2$</td>
<td>-0.72 ± 0.60</td>
<td>0.008</td>
</tr>
<tr>
<td>$\log(\text{mat.ppv})$</td>
<td>11.29 ± 6.49</td>
<td><0.0001</td>
</tr>
<tr>
<td>mat.prrsv</td>
<td>11.08 ± 5.97</td>
<td>0.0001</td>
</tr>
<tr>
<td>mat.siv</td>
<td>64.87 ± 47.39</td>
<td><0.0001</td>
</tr>
<tr>
<td>$\log(\text{mat.law}): \log(\text{mat.pcv2})$</td>
<td>0.64 ± 0.60</td>
<td>0.03</td>
</tr>
<tr>
<td>$\log(\text{mat.law}): \text{mat.prrsv}$</td>
<td>-2.64 ± 1.46</td>
<td>0.0003</td>
</tr>
<tr>
<td>$\log(\text{mat.law}): \text{mat.siv}$</td>
<td>7.94 ± 4.58</td>
<td>0.0008</td>
</tr>
<tr>
<td>$\log(\text{mat.ppv}): \text{mat.siv}$</td>
<td>-13.46 ± 6.87</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

* Tests of main effects includes removal of interaction terms.

** The effect of mat.law extends to lawsonia sero-converted animals only.
Significant Impact?

- Create an index I for animals with maternal immunity around average: Differentiate the log of the Cox PH after the covariates (in distributional sense for seroconversions), and take means of explanatory variables. For factors not interacting, the index I equals the parameter estimate.

\[(a) \ I(\text{law|Danish}) = \beta_{\text{law}} + \beta_{\text{law}:\text{mat.law}} \cdot \text{mean}(\log(\text{mat.law}))\]

\[(b) \ I(\text{mat.law|Spanish}) = \beta_{\text{mat.law}} + \beta_{\text{mat.law}:\text{mat.pcv2}} \cdot \text{mean}(\log(\text{mat.pcv2})) + \beta_{\text{mat.law}:\text{mat.prrsv}} \cdot \text{mean}(\text{mat.prrsv}) + \beta_{\text{mat.law}:\text{mat.siv}} \cdot \text{mean}(\text{mat.siv})\]

\[(c) \ I(\text{mat.pcv2|Spanish}) = \beta_{\text{mat.pcv2}} + 2\beta_{\text{mat.pcv2}:\text{mat.siv}} \cdot \text{mean}(\log(\text{mat.pcv2})) + \beta_{\text{mat.pcv2}:\text{mat.siv}} \cdot \text{mean}(\text{mat.siv})\]

\[(d) \ I(\text{mat.ppv|Spanish}) = \beta_{\text{mat.ppv}} + \beta_{\text{mat.ppv}:\text{mat.siv}} \cdot \text{mean}(\text{mat.siv})\]

\[(e) \ I(\text{mat.prrsv|Spanish}) = \beta_{\text{mat.prrsv}} + \beta_{\text{mat.prrsv}:\text{mat.siv}} \cdot \text{mean}(\text{mat.siv})\]

\[(f) \ I(\text{mat.siv|Spanish}) = \beta_{\text{mat.siv}} + \beta_{\text{mat.pcv2}:\text{mat.siv}} \cdot \text{mean}(\log(\text{mat.pcv2}))\]
Indexes; Values and Significances

<table>
<thead>
<tr>
<th>Pathogen type</th>
<th>Covariate type</th>
<th>Calculated index ± 1.96SE</th>
<th>Hazard ratio(^*) (CI)</th>
<th>(p) (Chisq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I (law</td>
<td>Danish)</td>
<td>Seroconversion</td>
<td>−1.45 ± 1.44</td>
<td>0.23 (0.06;0.99)</td>
</tr>
<tr>
<td>I (mat.law</td>
<td>Spanish)</td>
<td>Maternal immunity</td>
<td>−0.29 ± 0.64</td>
<td>0.75 (0.39;1.42)</td>
</tr>
<tr>
<td>I (mat.PCV2</td>
<td>Spanish)</td>
<td>Maternal immunity</td>
<td>−2.75 ± 1.05</td>
<td>0.06 (0.02;0.18)</td>
</tr>
<tr>
<td>I (mat.PPV</td>
<td>Spanish)</td>
<td>Maternal immunity</td>
<td>−3.35 ± 1.80</td>
<td>0.04 (0.01;0.21)</td>
</tr>
<tr>
<td>I (mat.PRRSV</td>
<td>Spanish)</td>
<td>Maternal immunity</td>
<td>2.32 ± 1.23</td>
<td>10.18 (2.97;34.81)</td>
</tr>
<tr>
<td>I (mat.SIV</td>
<td>Spanish)</td>
<td>Maternal immunity</td>
<td>−4.15 ± 4.14</td>
<td>0.02 (0.00;0.99)</td>
</tr>
</tbody>
</table>

\(^*\) For continuous covariates, the hazard ratio is per increase of 1.
Impact based on Index I

<table>
<thead>
<tr>
<th>Covariate</th>
<th>Survival analysis</th>
<th>Single-term analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seroconversion law</td>
<td>Protecting</td>
<td>Not significant</td>
</tr>
<tr>
<td>Seroconversion PCV2</td>
<td>Not significant</td>
<td>Not significant</td>
</tr>
<tr>
<td>Seroconversion PPV</td>
<td>Not significant</td>
<td>Not significant</td>
</tr>
<tr>
<td>Seroconversion SIV</td>
<td>Not significant</td>
<td>Not significant</td>
</tr>
<tr>
<td>Seroconversion PRRSVe</td>
<td>Not significant</td>
<td>Not significant</td>
</tr>
<tr>
<td>Seroconversion PRRSVu</td>
<td>Not significant</td>
<td>Not significant</td>
</tr>
<tr>
<td>Maternal law</td>
<td>Protecting*</td>
<td>Not significant</td>
</tr>
<tr>
<td>Maternal PCV2</td>
<td>Protecting</td>
<td>Protecting</td>
</tr>
<tr>
<td>Maternal PPV</td>
<td>Not significant</td>
<td>Not significant</td>
</tr>
<tr>
<td>Maternal SIV</td>
<td>Not significant</td>
<td>Aggravating</td>
</tr>
<tr>
<td>Maternal PRRSVe</td>
<td>Not significant</td>
<td>Not significant</td>
</tr>
<tr>
<td>Maternal PRRSVu</td>
<td>Not significant</td>
<td>Not significant</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Covariate</th>
<th>Survival analysis</th>
<th>Marginal model</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seroconversion PCV2</td>
<td>Not significant</td>
<td>Not significant</td>
</tr>
<tr>
<td>Seroconversion PPV</td>
<td>Not significant</td>
<td>Not significant</td>
</tr>
<tr>
<td>Seroconversion SIV</td>
<td>Not significant</td>
<td>Not significant</td>
</tr>
<tr>
<td>Seroconversion PRRSV</td>
<td>Not significant</td>
<td>Not significant</td>
</tr>
<tr>
<td>Seroconversion Salmonella</td>
<td>Not significant</td>
<td>Not significant</td>
</tr>
<tr>
<td>Maternal law</td>
<td>Not significant</td>
<td>Not significant</td>
</tr>
<tr>
<td>Maternal PCV2</td>
<td>Protecting</td>
<td>Not significant</td>
</tr>
<tr>
<td>Maternal PPV</td>
<td>Protecting</td>
<td>Not significant</td>
</tr>
<tr>
<td>Maternal PRRSV</td>
<td>Aggravating</td>
<td>Aggravating</td>
</tr>
<tr>
<td>Maternal SIV</td>
<td>Protecting</td>
<td>Not significant</td>
</tr>
</tbody>
</table>

* Applied to *Lawsonia intracellularis* seroconverted animals only.
Working Hypotheses

1. The development of antibodies towards pathogens through seroconversion after infection increases the risk of developing PMWS.

 In CONTRAST to results for LAW

2. Immunity inherited from the mother animal has a reducing effect on the risk of developing PMWS.

 CONFIRMED for
 » PCV2, LAW in Denmark,
 » PCV2, PPV and SIV in Spain.

 CONTRASTED for
 » PRRSV in Spain.
Possible Explanations

• Seroconversion towards LAW:

 – We DON’T observe *infections*; but merely *seroconversions*;
 – Animals may be infected but unable to seroconvert, due to a progressing immune deficiency;
 – That animals seroconvert may indicate a functioning immune system, which overshadows the weakening effect of infection with *Lawsonia intracellularis*.

• Lack of seroconversion effects for Spanish data:
 – Strongly heterogeneous population.

• Maternal immunity in Spanish data:
 – Consistent with litterature for PCV2, PPV, SIV (refs in paper).
 – PRRSV results may be explained by the heterogeneous population; thus maternal immunity may indicate high presence of PRRSV which is known from the litterature as a possible PMWS trigger.
Spanish Data and Seroconversions

- Difficult to identify effects from such distributions of seroconversions.

- But the lack of time-dependent covariates means that it is sensible to compare risks and PMWS frequencies through grouping of maternal immunity. They agree...

<table>
<thead>
<tr>
<th>PPV</th>
<th>sero-converted</th>
<th>not sero-converted</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>case</td>
<td>2</td>
<td>45</td>
<td>47</td>
</tr>
<tr>
<td>not case</td>
<td>6</td>
<td>66</td>
<td>72</td>
</tr>
<tr>
<td>sum</td>
<td>8</td>
<td>111</td>
<td>119</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PCV2</th>
<th>sero-converted</th>
<th>not sero-converted</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>case</td>
<td>40</td>
<td>7</td>
<td>47</td>
</tr>
<tr>
<td>not case</td>
<td>68</td>
<td>4</td>
<td>72</td>
</tr>
<tr>
<td>sum</td>
<td>108</td>
<td>11</td>
<td>119</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRRSV</th>
<th>sero-converted</th>
<th>not sero-converted</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>case</td>
<td>2</td>
<td>45</td>
<td>47</td>
</tr>
<tr>
<td>not case</td>
<td>12</td>
<td>60</td>
<td>72</td>
</tr>
<tr>
<td>sum</td>
<td>14</td>
<td>105</td>
<td>119</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIV</th>
<th>sero-converted</th>
<th>not sero-converted</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>case</td>
<td>28</td>
<td>19</td>
<td>47</td>
</tr>
<tr>
<td>not case</td>
<td>59</td>
<td>13</td>
<td>72</td>
</tr>
<tr>
<td>sum</td>
<td>87</td>
<td>32</td>
<td>119</td>
</tr>
</tbody>
</table>
Conclusion

- **Protective effect** of seroconversion against law (DK).

- **Protective effects** of high maternal immunity against PCV2 (DK,E), PPV (E) and SIV (E).

- Results on law is not contained in current knowledge; ie the disease triggers PMWS unless maternal immunity is high. First report on this.

- Other detected effects compatible with present knowledge.

- Care should be taken when generalizing spanish results due to population heterogeneity.

- Further work should include PCR data to counter indirect detection of infections.
Thank You for Your Attention