Stability and Resistance of Nickel-Based Catalysts for Hydrodeoxygenation

Mortensen, Peter Mølgaard; Grunwaldt, Jan-Dierk; Jensen, Peter Arendt; Jensen, Anker Degn

Publication date: 2013

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Stability and Resistance of Nickel-Based Catalysts for Hydrodeoxygenation

Peter M. Mortensen1, Jan-Dierk Grunwaldt2, Peter A. Jensen1, Anker D. Jensen1

1A Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads 229, Kgs. Lyngby, 2800, Denmark, \texttt{aj@kt.dtu.dk}
2Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 20, Karlsruhe, D-76131, Germany

Introduction

Conversion of biomass through flash pyrolysis followed by hydrodeoxygenation (HDO) has been identified as a prospective path to engine-fuels usable in the current infrastructure [1]. A challenge in HDO, and the scope of the present work, is to obtain sufficient lifetime of the catalyst for this reaction. Aspects of carbon deposition and deactivation from impurities have to be considered. Carbon arises because many of the oxy-compounds of the bio-oil are potential carbon precursors due to their high reactivity. Impurities in the bio-oil can be sulphur, alkali, and chlorine, among others, which all constitute a potential risk to the catalyst [1].

Nickel based catalysts have in recent work been identified as prospective catalysts for HDO with high activity [2]. In the current work the stability and resistance of this type of catalyst is investigated.

Experimental

5 wt\% Ni/ZrO\textsubscript{2} was prepared through the incipient wetness method from Ni(NO\textsubscript{3})\textsubscript{2} on a high surface area ZrO\textsubscript{2}. Reduction and calcination were done in the setup prior to the experiments at 500 °C with 250 Nml/min H\textsubscript{2} and N\textsubscript{2} for 2 hours. 2.5 g of catalyst diluted in 250 µm glass beads was used in the experiments. All experiments were performed in a new high pressure continuous flow reactor setup with on-line GC-TCD analysis at 250 °C, 100 bar, a gas flow of 400 Nml/min H\textsubscript{2} and 100 Nml/min N\textsubscript{2} and a liquid flow of 0.2 ml/min 10 vol\% Guaiacol in 1-octanol; giving a WHSV of 4.1 h-1. Liquid samples were collected at intervals of two hours and analyzed with GC-MS/FID.

Results and discussion

A series of experiments were made where the catalyst was: 1) exposed to sulphur (added as octanethiyl corresponding to 0.05 wt\% S in the feed); 2) exposed to KCl (predoped to the catalyst); 3) exposed to chlorine (added as chlorooctane...
corresponding to 0.05 wt% Cl in the feed); 4) exposed to no poison as a reference case. In all experiments, Ni/ZrO₂ was found to convert the 1-octanol to heptane and initially hydrogenate the guaiacol to 2-methoxy-cyclohexanol followed by deoxygenation to cyclohexane.

The 4 experiments are summarized as degree of deoxygenation (DOD, moles of oxygen removed relative to feed) in Figure 1. The non-poisoned case maintained a constant degree of DOD throughout a period of more than 100 h. Contrary; all three types of poisons severely decreased the activity for deoxygenation. Sulfur was the most severe poison, as the activity dropped to zero in a short time frame after this was introduced in the feed. Chlorine caused a reversible deactivation as the activity could be regained by removing chlorine from the feed. KCl was found as a persistent poisoning, giving a constant low DOD through 24 h of operation.

Figure 1. DOD in the three cases with different poisons relative to the case with no poison. Catalyst: 5 wt% Ni/ZrO₂, oil: 10 vol% Guaiacol in 1-octanol, T = 250 °C, P = 100 bar, F₇H₂ = 400 Nml/min, F₇N₂ = 100 Nml/min, F₇oil = 0.2 ml/min, WHSV = 4.1 h⁻¹

Overall it can be concluded that sulphur, KCl, and chlorine, all will deactivate the catalyst, with the severity of the different phenomena aligning qualitatively as:

\[
\text{Sulphur >> KCl \approx Chlorine >> Coke}
\]

References

Acknowledgements

The present work is financed by DTU and The Catalysis for Sustainable Energy initiative (CASE), funded by the Danish Ministry of Science, Technology and Innovation.