Degradability of aged aquatic suspensions of C60 nanoparticles

Hartmann, Nanna B.; Buendia, Inmaculada M.; Bak, Jimmy; Baun, Anders

Published in:
Environmental Pollution

Link to article, DOI:
10.1016/j.envpol.2011.05.022

Publication date:
2011

Citation (APA):
Hartmann, N. I. B., Buendia, I. M., Bak, J., & Baun, A. (2011). Degradability of aged aquatic suspensions of C60 nanoparticles. Environmental Pollution, 159(10), 3134-3137. DOI: 10.1016/j.envpol.2011.05.022
Degradability of aged aquatic suspensions of C₆₀ nanoparticles

Nanna B. Hartmann*, Inmaculada M. Buendia, Anders Baun

*Department of Environmental Engineering, Technical University of Denmark
Building 113, Kgs. Lyngby, Denmark

* Corresponding author. Postal address: Department of Environmental Engineering, Technical University of Denmark, Miljoavej, Building 113, DK-2800 Kgs. Lyngby, Denmark. E-mail: nibh@env.dtu.dk. Tel.: (+45) 4525 2164. Fax.: (+45) 4593 2850.
ABSTRACT

In this study, aged aqueous suspensions of C_{60} (nC_{60}) were investigated in the respirometric OECD test for ready biodegradability. Two suspensions of nC_{60} were prepared by stirring and aged under indirect exposure to sunlight for 36 months. The suspensions consisted of particle aggregates with a mean size around 150 nm, but also contained smaller aggregates. Samples of the nC_{60} suspensions (20 mg/l) were inoculated with activated sludge (30 mgTSS/L) and incubated in a mineral medium under aerobic conditions. Since no mineralization of nC_{60} was observed after 28 days of incubation, 5 mg/l sodium acetate was added to the media. After additional 20 days, no mineralization of nC_{60} was observed. However, within a few days sodium acetate was completely mineralized, showing that the biomass was not inhibited by the presence of nC_{60}. Based on these results, aged nC_{60} can be classified as not ready biodegradable according to the OECD test procedure.

Capsule:

Aged suspensions of nC_{60} were found not to be ready biodegradable according to the OECD test procedure. The biomass was not inhibited by the presence of nC_{60}.
INTRODUCTION

While studies of the potential human and environmental effects of C$_{60}$ and its derivatives are emerging in the scientific literature, the environmental fate of C$_{60}$ is still largely unknown (Hou & Jafvert, 2008; Baun et al., 2009). C$_{60}$ has many and diverse potential applications, but very low water solubility hampers the use of C$_{60}$ especially in biological applications. However, stable aqueous suspensions of C$_{60}$ (referred to as nC$_{60}$) can be prepared with or without the addition of solvents. Suspensions of nC60 may be prepared using different techniques such as: solvent exchange method (Deguchi et al. 2001; Fortner et al. 2005), ultrasonication (Lee et al., 2009, Henry et al., 2007) and prolonged stirring in water (Chen and Elimelech, 2009. Oberdörster et al., 2006).

In its pristine form, C$_{60}$ is considered to be recalcitrant to microbial degradation due to its stable closed-cage structure. However, when transformed into more water soluble forms by abiotic processes (Hou & Jafvert 2008; Lee et al., 2009), the carbon cage structure can become more susceptible to biological degradation. For instance, a recent study has shown that fullerol (C$_{60}$(OH)$_{19-27}$) can be oxidized by white rot basidiomycete fungi to CO$_2$ (Schreiner et al., 2009) and uptake of the 13C from labelled fullerols into biomass was observed.

Although the abiotic transformation processes of C$_{60}$ in aqueous suspensions is an area of great importance in environmental chemistry, data on the total mineralization of carbon-containing substances are needed for hazard identification and labelling, e.g. in the global harmonized system of Classification and Labelling of Chemicals (EU, 2008).
OECD test strategy (OECD, 1992) is the internationally accepted procedure to generate data on mineralization of chemicals in water. However, to the best of our knowledge, no experiments on biodegradability of nC₆₀ in OECD tests exists at present. The aim of this study is therefore to provide the first data on the biodegradability of aged nC₆₀ in a test following one of the OECD guidelines for ready biodegradability, i.e. the first level in the OECD test strategy for biodegradability.

MATERIALS AND METHODS

Preparation of aqueous C₆₀ suspensions

Two aqueous suspensions of nC₆₀ were prepared by adding 100 mg C₆₀ (purity 98%, Sigma) to 1 L of MilliQ water followed by constant stirring in the laboratory and exposed indirectly to natural sunlight for 36 months (N55.79, E12.53). Prior to the degradability experiments, the suspensions were left to sediment for 24 hours and the two supernatants (termed A & B) were decanted. The stability of the supernatants was investigated by following the change in absorbance (Varian Cary 50 Bio UV-Vis) at 350 nm over a period of 72 hours and was found to be stable after initial settling of larger aggregates (See supporting info).

Test for ready biodegradability

The test for ready biodegradability was carried out according to the OECD 301F standard procedure (OECD, 1992) using the OxiTop® instrumentation. The two suspensions (A and B) of nC₆₀ were added to separate test bottles in a concentration of approximately 20 mg/L in the OECD mineral medium (OECD, 1992). These were
inoculated with activated sludge (30 mgTSS/L) and incubated for 28 days in the dark
under aerobic conditions with constant stirring for 28 days. The activated sludge was
sampled at the Lundtofte wastewater treatment plant (Kgs. Lyngby, Denmark).

Determination of total suspended solids (TSS) in the activated sludge was performed
according to Standard Methods (Standard Methods, 1998). Two bottles without
substrate were prepared in order to assess the background O₂ consumption of the
biomass. Additionally, two bottles with 10 mgC/L sodium acetate (NaAc) were
included in the experiment as positive controls for ready biodegradability. After 28
days of incubation, 5 mgC/L NaAc were added to the bottles containing C₆₀, as well as
to the reference bottles, leaving them for incubation for 20 days more.

Chemical analyses & characterisation

Concentrations of nC₆₀ (pristine C₆₀ and transformation products in suspension) in the
two suspensions, were estimated from several different measurements. COD
measurements were performed according to Standard Methods using K₂Cr₂O₇ as
oxidizing agent (Standard Methods, 1998). Oxidation of C₆₀ by K₂Cr₂O₇ has previously
been observed by Ko & Baek (2002) and Chibante et al (1994). The applicability of the
method was investigated by applying the technique to samples of pure C₆₀ powder and to
aged nC₆₀ suspensions. These tests showed that complete oxidation did not occur for C₆₀
in powder form (≈ 5-15% recovery). However, for nC₆₀ suspensions, no precipitate was
seen and 75-106% recovery of the added C₆₀ was found (data not shown). Total-carbon
concentrations (TOC) were measured using Shimadzu TOC-Vwp equipment with ASI-V
auto sampler. The concentration of C₆₀ in the solutions was also determined as described
Submitted to Environmental Pollution

by Fortner et al. (2005) and Baun et al. (2008). Briefly, the method includes a two-step destabilization-extraction procedure using Mg(ClO$_4$)$_2$ for oxidation and toluene for extracting. Absorbance was measured at a wavelength of 336 nm and nC$_{60}$ concentrations calculated based on a standard curve of C$_{60}$ dissolved in toluene.

Additional characterization of the nC$_{60}$ suspensions were done by measuring the absorbance spectra at 350 nm without any sample preparation (Supporting Info). Also the nC$_{60}$ suspensions were dried on square mesh copper grids with holey carbon support films and characterised by TEM (Tecnai T20 G2 TEM from FEI (Oregon, USA) operated at 200 kV). Size distributions were investigated by means of Nanoparticle Tracking Analysis (Nanosight LM10, NTA 2.1. software).
RESULTS & DISCUSSION

Ready biodegradability test

Figure 1 shows the biological oxygen demand (BOD) as percentage of the theoretical oxygen demand (ThOD) for the bottles containing C₆₀ (A & B) and NaAc with the BOD of blank experiments substracted. No lag-phase was observed for NaAc mineralization, reaching more than 60% ThOD after 5 days of incubation (Figure 1). The samples containing nC₆₀ showed no sign of mineralization during the 28-days period. 5 mg/l sodium acetate was then added and after additional 20 days, no mineralization of nC₆₀ was observed. However, within a few days sodium acetate was completely mineralized, showing that the biomass was not inhibited by the presence of nC₆₀.

Chemical analysis and characterisation of nC₆₀

By comparing initial and final C₆₀ concentrations (Table 1) it is evident that the overall concentration of carbon is not considerably reduced during the test period. It should be noted that final COD values comprise oxygen demand from both nC₆₀ and biomass. Therefore, the initial biomass (calculated as 30 mgTSS/L*1.065mgCOD/mgTSS = 32mgCOD/L (Henze et al., 2008)), was substracted from final COD. Due to microbial growth as a result of the mineralization of NaAc, this may underestimate the actual biomass contribution to COD at the end of the test, which can explain the higher COD compared to test start.
Comparing nC₆₀ concentrations, estimated from COD, with results from TOC analysis

(C_initial: 3.1 mgC/L, C_final: 4.3 mgC/L), TOC measurements are much lower. This might be explained by incomplete oxidation of the samples and/or sedimentation of the nC₆₀ during TOC analysis. However, the results give a qualitative verification of the fact that nC₆₀ concentrations do not decrease during the test.

The presence of aggregates of nC₆₀ in the two solutions is illustrated in the TEM images shown in Figure 2. From inspection of TEM images (Figure 2) many aggregates were found to be <100 nm in size but also larger aggregates were found. By particle tracking analysis the mean aggregate sizes were found to be 156 nm (SD = 54 nm) for suspension A and 139 nm (SD=49 nm) for suspension B.

Recent studies have demonstrated that nC₆₀ clusters can be transformed into smaller clusters or water soluble products in the presence of either UV light or sunlight. Pristine nC₆₀ has been found to transform into products with mono- and dioxygenated functionalities and disaggregate into smaller clusters as a result of UV radiation (Lee et al., 2009). Furthermore, nC₆₀, prepared through an intermediate dissolution in either THF or toluene, were found to undergo photochemical transformation in sunlight (Hou & Jafvert 2008). During the irradiation period, the concentration of nC₆₀, as well as cluster size, decreased and the suspensions changed colour from brown/orange to almost transparent. nC₆₀ suspensions is known to show characteristic molecular absorption peaks at 260 and 350 nm (Lee et al 2009) and absorbance scans of suspensions used in this study showed such peaks, which confirms the presence of C₆₀ (Supporting Info). By
visual inspection, \(\text{C}_{60} \) was not extracted into a toluene phase after oxidation with
\(\text{Mg(ClO}_4)_2 \), and was instead present in the water phase and on the interface between the
two phases. The absence of \(\text{C}_{60} \) in the toluene phase was confirmed by UV-VIS
measurements (Supporting Info). These results show that the \(\text{nC}_{60} \) is no longer present as
pristine particles, and that this method cannot be used to quantify total concentrations
\(\text{nC}_{60} \) transformation products.
CONCLUSION

While identifying and investigating abiotic transformation processes of C₆₀ in aqueous suspensions is of great importance to understand its environmental fate, data on total mineralization will be of key importance for hazard identification and labelling. Aged suspensions of nC₆₀ were found not to be ready biodegradable when tested according to the 301F OECD test procedure. Addition of NaAc did not stimulate degradation of nC₆₀. The lack of degradation was not caused by an inhibitory effect of nC₆₀ on microorganisms. The low recovery of organic carbon in the TOC analysis would present a problem if the OECD 301A test (DOC Die-Away test) were to be performed with nC₆₀.

ACKNOWLEDGEMENTS

The authors would like to thank Sinh Nguyen and Morten Andreasen (DTU Environment) for carrying out TOC and COD analysis. Also thanks to Christian Engelbrekt (DTU Chemistry) for TEM imaging and assistance with NTA.

FIGURE LEGENDS

Figure 1. Development in biological oxygen demand (BOD) expressed in percent of the theoretical oxygen demand tested in OECD 301F tests. I) 10 mgC/L (as NaAc) or 20 mgC/L (as nC$_{60}$); II) 5 mgC/L (as NaAc) and 20 mgC/L (as nC$_{60}$). After 28 days NaAc (5 mgC/L) was added to flasks containing nC$_{60}$.

Figure 2. TEM images of nC$_{60}$ suspensions dried on mesh copper grids with holey carbon support films.