A retrofit strategy to achieve “Fast, Flexible, Future (F3)” pharmaceutical production processes

Singh, Ravendra; Rozada-Sanchez, Raquel; Wrate, Tim; Muller, Frans; Gernaey, Krist V.; Gani, Rafiqul; Woodley, John

Publication date: 2011

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
A retrofit strategy to achieve “Fast, Flexible, Future (F³)” pharmaceutical production processes

Ravendra Singh, a Raquel Rozada-Sanchez, b Tim Wrate, b Frans Muller, b Krist V. Gernaey, a Rafiqul Gani, a John M. Woodley a

a Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
b AstraZeneca Limited, Charter Way, Silk Road Business Park, Macclesfield, Cheshire SK10 2NA, UK

Introduction: A “Substrates Adoption Methodology (SAM)” and a generic nitro reduction process-plant template for a series of substrates with similar molecular functionality has been developed. The main idea is to combine the flexibility of batch processes with the efficiency of continuous processes.

SAM identifies changes to a process-plant template:

- Reagents (e.g. reducing agent, solvent, catalyst)
- Process equipment configuration
- Process operational conditions (e.g. T, P, F)

Substrates Adoption Methodology (SAM)

Input for SAM

- Knowledge base properties: R, P, C, X, E, experiments, mathematical models
- Knowledge base properties: R, P, C, X, E, experiments, mathematical models
- Knowledge base properties: R, P, C, X, E, experiments, mathematical models
- Knowledge base properties: R, P, C, X, E, experiments, mathematical models
- R, Standard, P, Product
- R, Reducing agent
- C, Catalyst
- S, Solvent
- C, Catalyst

Output

- Not accepted
- Accepted Final adaptation
- Evolutes
- Substrate conditions
- Process conditions and characteristics

Problem definition: Adapt a generic nitro reduction process-plant template for the adoption of 2-Nitro-4'-chlorodiphenylamine

Generic case:

R-NO₂ + Reducing agent → Catalyst → Solvent → R-NH₂ + By-product

Specific case:

R-NO₂ + Reducing agent → Catalyst → Solvent → R-NH₂ + By-product

Conclusions: A generic nitro reduction Process-Plant template and Substrates Adoption Methodology (SAM) including the supporting tools (knowledge base, model library, graphical tool (operational window), solubility prediction and solvent selection tool) has been developed to achieve a flexible and fast production process.

Acknowledgement: This work is funded by European Community’s 7th Framework Program under grant agreement n° 228867, F³ Factory.