Effects of future climate on physiology and egg production in Baltic Sea sprat

Frisk, Christina; Temming, Axel; Herrmann, Jens-Peter; Madsen, Kristine Skovgaard; Andersen, Ken Haste

Publication date:
2011

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Effects of future climate on physiology and egg production in Baltic Sea sprat

Christina Frisk¹ (cfr@aquadtu.dk), Axel Temming², Jens-Peter Herrmann², Kristine Skovgaard Madsen³ & Ken Haste Andersen¹

¹ DTU Aqua, Charlottenlund Slot, Jægersborg Allé 1, 2920 Charlottenlund, Denmark.
² University of Hamburg, Institute for Hydrobiology and Fisheries Science, Olbersweg 24, 22767 Hamburg, Germany.
³ DMI, Centre for Ocean and Ice, Lyngbyvej 100, 2100 Copenhagen Ø, Denmark.

BACKGROUND:
Sprat (Sprattus sprattus), a key species in Baltic Sea, has strong and seemingly unpredictable year-to-year variations in recruitment. These variations have been linked to the physical environment as a response to atmospheric forcing and longer term climate trends. Focus has been on the egg and larval stages but there may be an additional source of variation in how the egg production of the adults depends on the climate. Therefore, we aim at quantifying the temperature effects on growth and reproduction in Baltic Sea sprat under a future climate scenario.

METHOD:
The model setup includes three structure pools (Fig. 1, squares):
- Somatic tissue, reserves and gonads. Growth in the structure pools are determined by the fluxes: Intake and metabolism (Fig. 1, circles) as well as the spawning period. Here we only focus on temperature effects, thus food availability is kept constant in both scenario runs.

We drive the model with temperature described by a cosine function. The function is based on position of sprat in the water column over the day and year, and temperature information based on hydrodynamic model simulations for the top layer (Fig. 2 diamonds) and bottom layer (Fig. 2 circles). We use a recent temperature scenario from 1960-1990 and a future scenario from 2070-2100.

RESULTS:
The model is able to reproduce the general pattern of growth and reserve dynamics of sprat (Fig. 3, full lines) compared to data (Fig. 3, circles). The individual has reduced size with age under future climate, which is due to reductions in the somatic tissue (Fig. 3 dotted lines). Reserve pools are depleted faster under future climate compared to the recent climate due to higher winter temperatures.

CONCLUSIONS:
We see that raised bioenergetic costs during warmer future climate will reduce the size and reproductive outcome in Baltic sprat. Further we see a reduction in the expected lifetime reproductive output when assuming that there are no changes in mortalities with the higher temperatures in 2070-2100.