Theory of Randomized Search Heuristics in Combinatorial Optimization

Witt, Carsten

Link to article, DOI: 10.1145/2001858.2002135

Publication date: 2011

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Most famous search heuristic: Evolutionary Algorithms (EAs)

- a bio-inspired heuristic
- paradigm: evolution in nature, “survival of the fittest”
- actually it’s only an algorithm, a randomized search heuristic (RSH)

Goal: optimization
Here: discrete search spaces, combinatorial optimization, in particular pseudo-boolean functions

Optimize \(f : \{0,1\}^n \rightarrow \mathbb{R} \)
Why Do We Consider Randomized Search Heuristics?

- Not enough resources (time, money, knowledge) for a tailored algorithm
- Black Box Scenario rules out problem-specific algorithms
- We like the simplicity, robustness, . . . of Randomized Search Heuristics
- They are surprisingly successful.

Point of view
Do not only consider RSHs empirically. We need a solid theory to understand how (and when) they work.

What RSHs Do We Consider?

Theoretically considered RSHs

- (1+1) EA
- (1+λ) EA (offspring population)
- (μ+1) EA (parent population)
- (μ+1) GA (parent population and crossover)
- GIWA (crossover)
- SEMO, DEMO, FEMO, . . . (multi-objective)
- Randomized Local Search (RLS)
- Metropolis Algorithm/Simulated Annealing (MA/SA)
- Ant Colony Optimization (ACO)
- Particle Swarm Optimization (PSO)
- . . .

First of all: define the simple ones

The Most Basic RSHs

(1+1) EA, RLS, MA and SA for maximization problems

(1+1) EA

- Choose \(x_0 \in \{0,1\}^n\) uniformly at random.
- For \(t := 0, \ldots, \infty\)
 - Create \(y\) by flipping each bit of \(x_t\) indep. with probab. \(1/n\).
 - If \(f(y) \geq f(x_t)\) set \(x_{t+1} := y\) else \(x_{t+1} := x_t\).
The Most Basic RSHs

(1+1) EA, RLS, MA and SA for maximization problems

RLS
1. Choose \(x_0 \in \{0, 1\}^n \) uniformly at random.
2. For \(t := 0, \ldots, \infty \):
 - Create \(y \) by flipping one bit of \(x_t \) uniformly.
 - If \(f(y) \geq f(x_t) \) set \(x_{t+1} := y \) else \(x_{t+1} := x_t \).

MA
1. Choose \(x_0 \in \{0, 1\}^n \) uniformly at random.
2. For \(t := 0, \ldots, \infty \):
 - Create \(y \) by flipping one bit of \(x_t \) uniformly.
 - If \(f(y) \geq f(x_t) \) set \(x_{t+1} := y \) with probability \(e^{(f(x_t) - f(y))/T} \) anyway and \(x_{t+1} := x_t \) otherwise.
 - \(T \) is fixed over all iterations.

SA
1. Choose \(x_0 \in \{0, 1\}^n \) uniformly at random.
2. For \(t := 0, \ldots, \infty \):
 - Create \(y \) by flipping one bit of \(x_t \) uniformly.
 - If \(f(y) \geq f(x_t) \) set \(x_{t+1} := y \) with probability \(e^{(f(x_t) - f(y))/T_t} \) anyway and \(x_{t+1} := x_t \) otherwise.
 - \(T_t \) is dependent on \(t \), typically decreasing.

What Kind of Theory Are We Interested in?

- **Not studied here**: convergence, local progress, models of EAs (e.g., infinite populations), ...
- Treat RSHs as randomized algorithm!
- Analyze their “runtime” (computational complexity) on selected problems
What Kind of Theory Are We Interested in?

- Not studied here: convergence, local progress, models of EAs (e.g., infinite populations), ...
- Treat RSHs as randomized algorithm!
- Analyze their “runtime” (computational complexity) on selected problems

Definition

Let RSH A optimize f. Each f-evaluation is counted as a time step. The runtime $T_{A,f}$ of A is the random first point of time such that A has sampled an optimal search point.

- Often considered: expected runtime, distribution of $T_{A,f}$
- Asymptotical results w.r.t. n

How Do We Obtain Results?

We use (rarely in their pure form):

- Coupon Collector’s Theorem
- Principle of Deferred Decisions
- Concentration inequalities:
 - Markov, Chebyshev, Chernoff, Hoeffding, ... bounds
- Markov chain theory: waiting times, first hitting times
- Rapidly Mixing Markov Chains
- Random Walks: Gambler’s Ruin, drift analysis (Wald’s equation), martingale theory, electrical networks
- Random graphs (esp. random trees)
- Identifying typical events and failure events
- Potential functions and amortized analysis
- ...

Adapt tools from the analysis of randomized algorithms; understanding the stochastic process is often the hardest task.

Early Results

Analysis of RSHs already in the 1980s:

- Sasaki/Hajek (1988): SA and Maximum Matchings
- Sorkin (1991): SA vs. MA
- Jerrum (1992): SA and Cliques
 - ...

These were high-quality results, however, limited to SA/MA (nothing about EAs) and hard to generalize.
Early Results

Analysis of RSHs already in the 1980s:
- Sasaki/Hajek (1988): SA and Maximum Matchings
- Sorkin (1991): SA vs. MA
- Jerrum (1992): SA and Cliques

These were high-quality results, however, limited to SA/MA (nothing about EAs) and hard to generalize.

Since the early 1990s

Systematic approach for the analysis of RSHs, building up a completely new research area

This Tutorial

1. The origins: example functions and toy problems
 - A simple toy problem: OneMax for (1+1) EA

2. Combinatorial optimization problems
 - (1+1) EA and minimum spanning trees
 - (1+1) EA and Eulerian cycles
 - (1+1) EA and maximum matchings
 - (1+1) EA and the partition problem
 - SA beats MA in combinatorial optimization

3. End

How the Systematic Research Began — Toy Problems

Simple example functions (test functions)
- OneMax(x_1, \ldots, x_n) = $x_1 + \cdots + x_n$
- LeadingOnes(x_1, \ldots, x_n) = $\sum_{j=1}^{n-1} x_j$
- BinVal(x_1, \ldots, x_n) = $\sum_{i=1}^{n-1} 2^{n-i} x_i$

Goal: derive first runtime bounds and methods

Artificially designed functions
- with sometimes really horrible definitions
- but for the first time these allow rigorous statements

Goal: prove benefits and harm of RSH components, e.g., crossover, mutation strength, population size ...
Example: OneMax

Theorem (e.g., Droste/Jansen/Wegener, 1998)

The expected runtime of the RLS, (1+1) EA, (μ+1) EA, (1+λ) EA on OneMax is $\Omega(n \log n)$.

Proof by modifications of Coupon Collector’s Theorem.

Example: OneMax

Theorem (e.g., Mühlenbein, 1992)

The expected runtime of RLS and the (1+1) EA on OneMax is $O(n \log n)$.

Holds also for population-based (μ+1) EA and for (1+λ) EA with small populations.

Fitness levels: $L_i := \{x \in \{0,1\}^n | \text{OneMax}(x) = i\}$
Proof of the $O(n \log n)$ bound

- **Fitness levels**: $L_i := \{x \in \{0, 1\}^n \mid \text{OneMax}(x) = i\}$
- $(1+1)$ EA never decreases its current fitness level.

(1+1) EA never decreases its current fitness level.

From i to some higher-level set with prob. at least
\[
\frac{n-i}{en} \cdot \left(\frac{1}{n}\right) \cdot \left(1 - \frac{1}{n}\right)^{n-1} \geq \frac{n-i}{en}
\]
choose a 0-bit, flip this bit, keep the other bits

- Expected time to reach a higher-level set is at most $\frac{en}{n-i}$.
- Expected runtime is at most
\[
\sum_{i=0}^{n-1} \frac{en}{n-i} = O(n \log n).
\]

□

Later Results Using Toy Problems

- Find the theoretically optimal mutation strength (1/n for OneMax!).
- Bound the optimization time for linear functions ($O(n \log n)$).
- Optimal population size (often 1!)
- Crossover vs. no crossover → Real Royal Road Functions
- Multistarts vs. populations
- Frequent restarts vs. long runs
- Dynamic schedules
- ...
RSHs for Combinatorial Optimization

- Analysis of runtime and approximation quality on well-known combinatorial optimization problems, e.g.,
 - sorting problems (is this an optimization problem?),
 - covering problems,
 - cutting problems,
 - subsequence problems,
 - traveling salesperson problem,
 - Eulerian cycles,
 - minimum spanning trees,
 - maximum matchings,
 - scheduling problems,
 - shortest paths,
 - ...

- What we do not hope: to be better than the best problem-specific algorithms

Agenda

1. The origins: example functions and toy problems
 - A simple toy problem: OneMax for (1+1) EA
2. Combinatorial optimization problems
 - (1+1) EA and minimum spanning trees
 - (1+1) EA and Eulerian cycles
 - (1+1) EA and maximum matchings
 - (1+1) EA and the partition problem
 - SA beats MA in combinatorial optimization
3. End

Minimum Spanning Trees

Problem

Given: Undirected connected graph $G = (V, E)$ with n vertices and m edges with positive integer weights.
Find: Edge set $E' \subseteq E$ with minimal weight connecting all vertices.
Minimum Spanning Trees

Problem
Given: Undirected connected graph $G = (V, E)$ with n vertices and m edges with positive integer weights.
Find: Edge set $E' \subseteq E$ with minimal weight connecting all vertices.

Fitness function
Decrease number of connected components, find minimum spanning tree:
$$f(s) := (c(s), w(s)).$$
Minimization of f with respect to the lexicographic order.

Combinatorial Argument to Approach MSTs
From arbitrary spanning tree T to MST T^* (Mayr/Plaxton, 1992):

- $k := |E(T^*) \setminus E(T)|$
- Bijection $\alpha : E(T^*) \setminus E(T) \rightarrow E(T) \setminus E(T^*)$
- $\alpha(e_i)$ on the cycle of $E(T) \cup \{e_i\}$
- $w(e_i) \leq w(\alpha(e_i))$

Connected graph
- Connected graph in expected time $O(m \log n)$
 (fitness level arguments)

From arbitrary spanning tree T to MST T^* (Mayr/Plaxton, 1992):

- $k := |E(T^*) \setminus E(T)|$
- Bijection $\alpha : E(T^*) \setminus E(T) \rightarrow E(T) \setminus E(T^*)$
- $\alpha(e_i)$ on the cycle of $E(T) \cup \{e_i\}$
- $w(e_i) \leq w(\alpha(e_i))$

$\implies k$ accepted 2-bit flips that turn T into T^*
Upper Bound

Theorem (Neumann/Wegener, 2007)

The expected time until (1+1) EA constructs a minimum spanning tree is bounded by $O(m^2(\log n + \log w_{\text{max}}))$.

Sketch of proof:
- $w(s)$ weight current solution s; assume to be tree
- w_{opt} weight minimum spanning tree T^*

Concentrate on 2-bit flips:
- Expected weight decrease by a factor $1 - 1/n$ (or better)
- Probability $\Theta(n/m^2)$ for a good 2-bit flip
- Expected time until r 2-steps $O(rm^2/n)$

Concentrate on 2-bit flips:
- Expected weight decrease by a factor $1 - 1/n$ (or better)
- Probability $\Theta(n/m^2)$ for a good 2-bit flip
- Expected time until r 2-steps $O(rm^2/n)$

Method expected multiplicative distance decrease:
- Have to bridge distance at most $D := w(s) - w_{\text{opt}} \leq m \cdot w_{\text{max}}$.
- Distance after N steps: $\leq (1 - 1/n)^N \cdot D$.
- Find N such that $(1 - 1/n)^N \leq 1/(2D)$
 \Rightarrow choose $N := \lceil n \cdot (\ln D + 1) \rceil$.
- In expectation $2N = O(n(\log n + \log w_{\text{max}}))$ 2-steps enough
- Expected time: $O(Nm^2/n) = O(m^2(\log n + \log w_{\text{max}}))$
Further Results

Lower Bound $\Omega(n^4 \log n)$

Related Results
- Experimental investigations (Briest et al., 2004)
- Biased mutation operators (Raidl/Koller/Julstrom, 2006)
- $O(mn^2)$ for a multi-objective approach (Neumann/Wegener, 2006)
- Approximations for multi-objective minimum spanning trees (Neumann, 2007)
- SA/MA and minimum spanning trees (Later!)

Agenda

1. The origins: example functions and toy problems
 - A simple toy problem: OneMax for (1+1) EA

2. Combinatorial optimization problems
 - (1+1) EA and minimum spanning trees
 - (1+1) EA and Eulerian cycles
 - (1+1) EA and maximum matchings
 - (1+1) EA and the partition problem
 - SA beats MA in combinatorial optimization

3. End

Eulerian Cycle Problem

Given: undirected connected Eulerian (degree of each vertex is even) graph $G = (V, E)$ with n vertices and m edges

Find: a cycle (permutation of the edges) such that each edge is used exactly once.
Eulerian Cycle Problem

Given: undirected connected Eulerian (degree of each vertex is even) graph \(G = (V, E) \) with \(n \) vertices and \(m \) edges

Find: a cycle (permutation of the edges) such that each edge is used exactly once.

Eulerian Cycle (Hierholzer)

Idea: “glue” small cycles together

1. Find a cycle \(C \) in \(G \).
2. Delete the edges of \(C \) from \(G \).
3. If \(G \) is not empty go to step 1; starting from a vertex on \(C \).
4. Construct the Eulerian cycle by running through the cycles produced in Step 1 in the order of construction.

Fitness Function

Representation: permutation of edges

Fitness function

Consider the edges of the permutation after another and build up a path \(p \) of length \(l \).

\[
\text{path}(\pi) := \text{length of the path } p \text{ implied by } \pi
\]

Example: \(\pi = (\{2, 3\}, \{1, 2\}, \{1, 5\}, \{3, 4\}, \{4, 5\}) \) \(\implies |p| = 3 \)

The (1+1) EA for the Euler Cycle Problem

(1+1) EA

Choose \(\pi \in S_m \) uniform at random.

Choose \(s \) from a Poisson distribution with parameter 1. Perform sequentially \(s + 1 \) jump operations to produce \(\pi' \) from \(\pi \).
The (1+1) EA for the Euler Cycle Problem

(1+1) EA

1. Choose $\pi \in S_m$ uniform at random.
2. Choose s from a Poisson distribution with parameter 1. Perform sequentially $s + 1$ jump operations to produce π' from π.

Example: $\text{jump}(2,4)$ applied to $((2,3),\{1,2\},\{3,4\},\{1,5\},\{4,5\})$ produces $((2,3),\{3,4\},\{1,5\},\{1,2\},\{4,5\})$

3. Replace π by π' if path(π') \geq path(π).
4. Repeat Steps 2 and 3 forever.

Upper Bound, (1+1) EA

Theorem (Neumann, 2007)
The expected time until (1+1) EA working on the fitness function path constructs an Eulerian cycle is bounded by $O(m^5)$.

Proof idea:
- p is not a cycle:
 1 improving jump \Rightarrow expected time for improvement $O(m^2)$
- p is a cycle (with less than m edges):
 Show: expected time for an improvement $O(m^4)$
- $O(m)$ improvements \Rightarrow theorem

Proof Idea: How to Analyze Improvements

Typical run:
- k-step (accepted mutation with k-jumps that change p)
- Only 1-steps: $O(m^4)$ steps for an improvement
- No k-step, $k \geq 4$, in $O(m^4)$ steps with prob. $1 - o(1)$
- $O(1)$ 2- or 3-steps in $O(m^4)$ steps with prob. $1 - o(1)$
Proof Idea: How to Shift a Cycle

- Time $O(m^2)$ to move black vertex
- Black vertex performs random walk
- Length of cycle at most m
- Fair random walk
 $\rightarrow O(m^2)$ movements are enough to reach red vertex
- Expected time for an improvement $O(m^4)$

Further Results

- Lower bound $\Omega(m^4)$
- Restricted jumps (always jump to position 1)
 - No random walk, but directed walk
 - Upper bound $O(m^3)$ (Doerr/Hebbinghaus/Neumann, 2007)
Further Results

- Lower bound $\Omega(m^4)$
- Restricted jumps (always jump to position 1)
 - No random walk, but directed walk
 - Upper bound $O(m^3)$ (Doerr/Hebbinghaus/Neumann, 2007)
- Use of more sophisticated representations and mutation operators:
 - $O(m^2 \log m)$ (Doerr/Klein/Storch, 2007)
 - $O(m \log m)$ (Doerr/Johannsen, 2007)

Agenda

1. The origins: example functions and toy problems
 - A simple toy problem: OneMax for (1+1) EA

2. Combinatorial optimization problems
 - (1+1) EA and minimum spanning trees
 - (1+1) EA and Eulerian cycles
 - (1+1) EA and maximum matchings
 - (1+1) EA and the partition problem
 - SA beats MA in combinatorial optimization

3. End

(1+1) EA for the Maximum Matching Problem
The Behavior on Paths

A matching in a graph is a subset of pairwise disjoint edges.

Path: $n + 1$ nodes, n edges: bit string from $\{0, 1\}^n$ selects edges
Fitness function: size of matching/negative for non-matchings

Theorem (Giel/Wegener, 2003)
The expected time until the (1+1) EA finds a maximum matching on a path of n edges is $O(n^4)$.
Proof idea:
- Consider a second-best matching.
- Is there a free edge? Flip one bit! → probability $\Theta(1/n)$.
- Else 2-bit flips → probability $\Theta(1/n^2)$.

Shorten augmenting path
Proof idea:
- Consider a second-best matching.
- Is there a free edge? Flip one bit! → probability $\Theta(1/n)$.
- Else 2-bit flips → probability $\Theta(1/n^2)$.
- Shorten augmenting path

Then flip the free edge!
Proof idea:
- Consider a second-best matching.
- Is there a free edge? Flip one bit! → probability $\Theta(1/n)$.
- Else 2-bit flips → probability $\Theta(1/n^2)$.
- Shorten augmenting path
- Then flip the free edge!

(1+1) EA follows the concept of an augmenting path!
Augmenting path can get shorter but is more likely to get longer.

Theorem

For $h \geq 3$, the (1+1) EA has exponential expected runtime $2^{\Omega(\ell)}$ on $G_{h,\ell}$.

Proof by drift analysis
(1+1) EA for the Maximum Matching Problem

(1+1) EA is a PRAS

Insight: do not hope for exact solutions but for approximations

Theorem (Giel/Wegener, 2003)

For $\varepsilon > 0$, the (1+1) EA finds a $(1 + \varepsilon)$-approximation of a maximum matching in expected time $O(m^2/\varepsilon)$ and is a polynomial-time randomized approximation scheme (PRAS).

Proof idea:

- Look into the analysis of the Hopcroft/Karp algorithm.
- Current solution worse than $(1 + \varepsilon)$-approximate \rightarrow many augmenting paths, in partic. a short one of length $\leq 2\lceil \varepsilon^{-1} \rceil$
- Wait for the (1+1) EA to optimize this short path.

Agenda

1. The origins: example functions and toy problems
 - A simple toy problem: OneMax for (1+1) EA

2. Combinatorial optimization problems
 - (1+1) EA and minimum spanning trees
 - (1+1) EA and Eulerian cycles
 - (1+1) EA and maximum matchings
 - (1+1) EA and the partition problem
 - SA beats MA in combinatorial optimization

3. End

(1+1) EA and the Partition Problem

What about NP-hard problems? \rightarrow Study approximation quality

Carsten Witt | Theory of RSH in Combinatorial Optimization

35/48

Carsten Witt | Theory of RSH in Combinatorial Optimization

36/48
What about NP-hard problems? → Study approximation quality

For \(w_1, \ldots, w_n\), find \(I \subseteq \{1, \ldots, n\}\) minimizing

\[
\max \left\{ \sum_{i \in I} w_i, \sum_{i \notin I} w_i \right\}.
\]

This is an “easy” NP-hard problem:

- not strongly NP-hard,
- FPTAS exist,
- ...

Theorem (Witt, 2005)

On any instance for the partition problem, the \((1+1)\) EA reaches a solution with approximation ratio \(4/3\) in expected time \(O(n^2)\).

Theorem

There is an instance such that the \((1+1)\) EA needs with prob. \(\Omega(1)\) at least \(n^{\Omega(n)}\) steps to find a solution with a better ratio than \(4/3 - \varepsilon\).

Proof ideas: study effect of local steps and local optima
Theorem

On any instance, the (1+1) EA with prob. $\geq 2^{-c[1/\varepsilon] \ln(1/\varepsilon)}$ finds a $(1 + \varepsilon)$-approximation within $O(n \ln(1/\varepsilon))$ steps.

Parallel runs form a PRAS!

Set $s := \left\lceil \frac{2}{\varepsilon} \right\rceil$ and $w := \sum_{i=1}^{n} w_i$.
Assuming $w_1 \geq \cdots \geq w_n$, we have $w_i \leq \varepsilon \frac{w}{2}$ for $i \geq s$.

Analyze probability of distributing
- large objects in an optimal way,
- small objects greedily \Rightarrow additive error $\leq \varepsilon w/2$.
This is the algorithmic idea by Graham (1969).
(1+1) EA for the Partition Problem
Average-Case Analyses

Models: each weight drawn independently at random, namely
- uniformly from the interval \([0, 1]\),
- exponentially distributed with parameter 1 (i.e., \(\text{Prob}(X \geq t) = e^{-t} \text{ for } t \geq 0)\).

Approximation ratio no longer meaningful, we investigate: discrepancy = absolute difference between weights of bins.

How close to discrepancy 0 do we come?

(1+1) EA for the Partition Problem
Partition Problem - Known Average-Case Results

Deterministic, problem-specific heuristic LPT
Sort weights decreasingly, put every object into currently emptier bin.

Analysis in both random models:
After LPT has been run, additive error is \(O((\log n)/n)\) (Frenk/Rinnooy Kan, 1986).

Can RLS or the (1+1) EA reach a discrepancy of \(o(1)\)?
Theorem
In both models, the (1+1) EA reaches discrepancy $O((\log n)/n)$ after $O(n^{c+4} \log^2 n)$ steps with probability $1 - O(1/n^c)$.

Almost the same result as for LPT!

Proof exploits order statistics:
W. h. p. $X(i) - X(i+1) = O((\log n)/n)$ for $i = \Omega(n)$.

Agenda
1. The origins: example functions and toy problems
 - A simple toy problem: OneMax for (1+1) EA
2. Combinatorial optimization problems
 - (1+1) EA and minimum spanning trees
 - (1+1) EA and Eulerian cycles
 - (1+1) EA and maximum matchings
 - (1+1) EA and the partition problem
 - SA beats MA in combinatorial optimization
3. End

Simulated Annealing Beats Metropolis in Combinatorial Optimization

Jerrum/Sinclair (1996)
"It remains an outstanding open problem to exhibit a natural example in which simulated annealing with any non-trivial cooling schedule provably outperforms the Metropolis algorithm at a carefully chosen fixed value" of the temperature.
Simulated Annealing Beats Metropolis in Combinatorial Optimization

Jerrum/Sinclair (1996)

"It remains an outstanding open problem to exhibit a natural example in which simulated annealing with any non-trivial cooling schedule provably outperforms the Metropolis algorithm at a carefully chosen fixed value" of the temperature.

Solution (Wegener, 2005): MSTs are such an example.

A bad instance for MA

\[
\begin{array}{cccc}
\text{n} & \text{n} & \text{n} & \text{n} \\
1 & 1 & 1 & 1 \\
1 & n & n & n \\
1 & 1 & 1 & 1 \\
n & n & n & n \\
\end{array}
\]

Theorem (Wegener, 2005)

The MA with arbitrary temperature computes the MST for this instance only with probability \(e^{-\Omega(n)}\) in polynomial time. SA with temperature \(T_t := n^3(1 - \Theta(1/n))^t\) computes the MST in \(O(n \log n)\) steps with probability \(1 - O(1/poly(n))\).

Proof idea: need different temperatures to optimize all triangles.

Simulated Annealing Beats Metropolis in Combinatorial Optimization

Results

Concentrate on wrong triangles: one heavy, one light edge chosen

Theorem (Wegener, 2005)

The MA with arbitrary temperature computes the MST for this instance only with probability \(e^{-\Omega(n)}\) in polynomial time. SA with temperature \(T_t := n^3(1 - \Theta(1/n))^t\) computes the MST in \(O(n \log n)\) steps with probability \(1 - O(1/poly(n))\).
Simulated Annealing Beats Metropolis
in Combinatorial Optimization
Proof Idea

Concentrate on **wrong** triangles:
one heavy, one light edge chosen

- Soon after initialization \(\Omega(n) \) wrong triangles,
 both in heavy and light part of the graph
- To correct such triangle, light edge must be flipped in.

Light edges of heavy triangles still much heavier than heavy edges of light triangles → at temperature \(T^* \) almost random search on light triangles → many light triangles remain wrong.

Simulated Annealing Beats Metropolis
in Combinatorial Optimization
Proof Idea

Concentrate on **wrong** triangles:
one heavy, one light edge chosen

- Soon after initialization \(\Omega(n) \) wrong triangles,
 both in heavy and light part of the graph
- To correct such triangle, light edge must be flipped in.
- Such flip leads to a worse spanning tree
 \(\rightarrow \) need high temperature \(T^* \) to correct wrong heavy triangles.
- SA first corrects heavy triangles at temperature \(T^* \).
- After temperature has dropped, SA corrects light triangles, without destroying heavy ones.
Summary and Conclusions

- Analysis of RSHs in combinatorial optimization
- Starting from toy problems to real problems
- Surprising results
- Interesting techniques
- Analysis of new approaches

→ Altogether, an exciting research direction.

Suggested Reading

Books
Anne Auger, Benjamin Doerr:

Frank Neumann, Carsten Witt:

Book homepage: www.bioinspiredcomputation.com

Thank you!