Considerations and Recommendations to Standard Testing with Daphnia magna

Cupi, Denisa; Baun, Anders

Publication date: 2013

Considerations and Recommendations to Standard Testing with *Daphnia magna*

Denisa Cupi and Anders Baun
denc@env.dtu.dk

Introduction and Aim

OECD standard tests are useful tools for testing and ranking chemicals. As part of FP7 Project MARINA (Managing Risks of Nanomaterials), this research aimed at developing and harmonizing specific reference methods for testing engineered nanoparticles accounting for their novel characteristics.

OECD reference nanoparticles TiO\(_2\) (NM-104), TiO\(_2\) (NM-105), Ag (NM-300K), CeO\(_2\) (NM-212), ZnO (NM-110), ZnO (NM-111), SiO\(_2\) (NM-200) were employed to test acute toxicity on freshwater crustacean *Daphnia magna* using OECD 202 guideline.

Due to challenges encountered during this testing and taking into consideration environmental relevance, we used three NPs TiO\(_2\) (NM-104), Ag (NM-300K), ZnO (NM-110), to investigate:
- The procedure for addition of SR-NOM
- If SR-NOM can stabilize stock suspensions
- The effect that SR-NOM has on toxicity and size distribution of NPs
- The effect that “aging” (for 24 and 48 hours) of test concentrations has on agglomeration and toxicity of NPs.

Experimental Setup and Methods

- Samples were sonicated for 20 minutes using Digital Sonifier Model 250 by Branson
- NPs size and charge were measured by DLS (Zeta Sizer Nano)
- NTAs (Nanosight) measurements were attempted
- Juvenile daphnids were exposed to different concentrations according to OECD 202 guideline
- ToxCalc was used to generate concentration-response curves and graphs

Results

- **ZnO freshly prepared**: Toxicity decreases in the presence of SR-NOM No concentration-response relationship in SR-NOM presence
- **ZnO “aged” 24 hours**: Low toxicity for all conditions Similar toxicity
- **ZnO “aged” 48 hours**: Lower toxicity for SR-NOM in stock solution media
- **Ag NPs**: Slightly higher toxicity in the presence of SR-NOM media

DLS + NTA

<table>
<thead>
<tr>
<th>Stock solutions and test concentrations measured before and after aging</th>
<th>ZnO (NM-110)</th>
<th>Ag (NM-300K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size range (nm)</td>
<td>30-40</td>
<td>30-40</td>
</tr>
<tr>
<td>Charge range (mV)</td>
<td>+18</td>
<td>+12</td>
</tr>
<tr>
<td>Test concentrations in SR-NOM stock + M7 media</td>
<td>1.56 (\times) 10(^{-5})</td>
<td>1.56 (\times) 10(^{-5})</td>
</tr>
<tr>
<td>Test concentrations in M7 media</td>
<td>5 (\times) 10(^{-5})</td>
<td>5 (\times) 10(^{-5})</td>
</tr>
</tbody>
</table>

Conclusion

The toxicity of nanoparticles to *Daphnia magna* ranked in the following order:
Ag > ZnO (NM-110) > ZnO (NM-111) > CeO\(_2\) > TiO\(_2\) > SiO\(_2\).

Addition of 20 mg/L SR-NOM in the stock and the SR-NOM media:
- **Lead to an imbalanced system at “0 hr and 24 hr aging” of ZnO NPs**.
- **Decreased toxicity of Ag NPs in all exposure conditions and therefore is recommended to not be used while testing these nanoparticles for toxicity**.
- **Aided in the stability of the test concentrations of both nanoparticles leading to a smaller size and less sedimentation compared to those in M7 media**.

“Aging” of test concentrations caused:
- **More stable system and an increase in toxicity for ZnO NPs at “48 hr aging”**.
- **No significant difference in toxicity for Ag NPs as they seem to exhibit most effect within the first 24 hours of exposure**.
- **Increase in size and sedimentation for ZnO, Ag and more markedly for TiO\(_2\) NPs**.