Review on methodology for LCIA of marine eutrophication

Larsen, Henrik Fred

Publication date:
2011

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):
Review on methodology for LCIA of marine eutrophication
Henrik Fred Larsen
Section for Quantitative Sustainability Assessment (QSA), DTU-MAN, Technical University of Denmark (DTU)

Introduction
As part of the ongoing EU FP7 project LC-Impact (www.lc-impact.eu) new life cycle impact assessment (LCIA) methods are going to be developed and tested on industry cases. Among the life cycle assessment (LCA) impact categories in focus are aquatic eutrophication. As related to especially the marine environment very few and restricted attempts have yet been done on trying to include eutrophication in LCA. The aim of LC-Impact is to develop both a global and a spatial (and temporal) differentiated model, as both central fate processes, sensitivities of receiving environments (e.g. differences in limiting nutrient and variations in this over the year) and the resulting damage can show important spatial variations. Both midpoint and endpoint (damage) modelling are included and the aim is to base the damage modelling on dose-response curves expressing the correlation between the (increase in) nutrient concentration and the potentially affected fraction of species in the marine ecosystem. This poster presents a review of the very limited existing attempts on how to include marine eutrophication in LCA and discuss alternative methodologies on how to model the environmental mechanism of this impact category.

What is marine eutrophication?
Eutrophication is quite complex as depicted in Figure 1. According to the review by Kitsiou and Karydis (2011) several definitions on eutrophication have been proposed during the last all most 100 years. Kitsiou and Karydis identify two main schools of thought, one focusing on the increase in organic matter and the other on the causal relationship between nutrients and plant biomass. As most reasonable definition “increased plant production stimulated by inorganic N and P compounds” is stated.

Existing LCIA methodology
No global LCIA model for marine eutrophication exists today. As part of ReCiPe 2008 (Struijs et al. 2009) a spatial differentiated European model has been developed but only midpoint characterization factors are available. As regards damage (endpoint) modeling only the Japanese LIME model (Itsubo et al. 2008) includes marine eutrophication and only regarding Japan.

Midpoint
In the recently published ReCiPe 2008 method the fate of N emissions to water (from waste water treatment plants, WWTPs), to soil (from agricultural land) and to air (from electricity production) are modeled by a combination of CARMEN and EUTREND (Struijs al. 2009). The resulting fractions of the amount of total N emitted that will end up in coastal water are shown in Table 1. As evident from Table 1 the fate of N in the fresh water system (e.g. retention/denitrification) after emitted from WWTPs is not taken into account (100% reaching the coast). The ReCiPe midpoint indicator is based on the N-concentration increase in the receiving marine water compartment.

Table 1 Fractions of N emitted in Europe reaching coastal areas according to ReCiPe 2008 (based on data from Struijs et al.2009))

<table>
<thead>
<tr>
<th>Emission type</th>
<th>Emission compartment</th>
<th>Average percentage reaching marine water (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manure N</td>
<td>Soil and air</td>
<td>7,9</td>
</tr>
<tr>
<td>Fertilizer N</td>
<td>Soil and air</td>
<td>7,3</td>
</tr>
<tr>
<td>N from WWTPs</td>
<td>Fresh water</td>
<td>100</td>
</tr>
<tr>
<td>NH₃</td>
<td>Air</td>
<td>11</td>
</tr>
<tr>
<td>NO₂</td>
<td>Air</td>
<td>13</td>
</tr>
</tbody>
</table>

Alternative approaches
Besides the study used in the LIME method only a few studies have been made about the correlation between the nitrogen concentration (NO₂, NH₄⁺, NH₃, tot-N) and the biodiversity in marine ecosystems. In the Gulf of Finland, part of the Baltic Sea, a paleolimnological based study on diatoms going back about 200 years has been made by Weckström et al. (2007). They found a significant correlation between increasing total dissolved nitrogen and decreasing species diversity (richness) among diatoms. At a threshold of 400-600 µg/l total dissolved nitrogen per liter the biodiversity starts decreasing. This decrease is due to disappearance of benthic species which is not fully countered by a simultaneous increase in the number of pelagic species (phytoplankton). The decrease is apparently due to the effect of eutrophication on the light climate, i.e. the inhibition of light penetration due to higher turbidity favorising planktonic taxa. A few other paleoecological studies on fossil foraminifers also indicate a correlation between N-concentration and species richness. Preliminary results of the literature review further shows that different parameters/indicators are correlated more or less with the degree of nutrient loading and hereby related to eutrophication. They include the degree of oxygen depletion, sediment TOC concentration, secchi depths (light climate) and algae biomasses.

Conclusion
No global LCIA model for marine eutrophication exists today. As part of ReCiPe (Struijs et al. 2009) a spatial differentiated European model has been developed but only midpoint characterization factors are available. Regarding damage modeling only the Japanese LIME model (Itsubo et al. 2008) includes marine eutrophication and only regarding Japan. The goal of LC-Impact is to develop a spatially differentiated global eutrophication model with both midpoint and endpoint indicators regarding emissions of total nitrogen.

References
Henrik Fred Larsen
Corresponding author: hfl@man.dtu.dk