Numerical demonstration of 3-12µm supercontinuum generation in large-core step-index chalcogenide fibers pumped at 4.5µm

Agger, Christian; Kubat, Irnis; Møller, Uffe Visbech; Bang, Ole; Moselund, Peter M.; Petersen, Christian; Napier, Bruce; Seddon, Angela; Sujek, Slawomir; Benson, Trevor; Farries, Mark; Ward, Jon; Lamrini, Samir; Scholle, Karsten; Fuhrberg, Peter

Published in:
Nonlinear Optics Technical Digest

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Numerical demonstration of 3-12µm supercontinuum generation in large-core step-index chalcogenide fibers pumped at 4.5µm

Christian Agger, Irnis Kubat, Uffe Møller, Ole Bang
DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
obar@fotonik.dtu.dk

Peter M. Moselund, Christian Petersen
NKT Photonics A/S, Blokken 84, 3460 Birkerød, Denmark

Bruce Napier
Vivid Components Ltd., Dr.ibriq-Damm 22, 33102 Paderborn, Germany

Angela Seddon, Slawomir Sujecki, Trevor Benson
George Green Institute for Electromagnetics Research, Faculty of Engineering, University Park, University of Nottingham, Nottingham NG7 2RD, UK

Mark Farries
Gooch & Housego (Torquay) Ltd., Broomhill Way Torquay, Devon, TQ2 7QL, UK

Jon Ward
Gooch & Housego (UK) Ltd., Dowlish Ford, Ilminster, Somerset, TA19 OPF, UK

Samir Lamrini, Karsten Scholle, Peter Fuhrberg
LISA laser products OHG, Fuhrberg & Teichmann, Max-Planck-Str.1, 37191 Katlenburg-Lindau, Germany

Abstract: We numerically demonstrate the generation of a 3-12µm mid-infrared supercontinuum in a large-core (20µm diameter) step-index fiber made from highly nonlinear chalcogenide (As₂Se₃) pumped at 4.5µm with 40ps, 1kW peak power pulses.

OCIS codes: (190.4370) Nonlinear optics, Fibers; (190.5530) Pulse propagation and temporal solitons

1. Introduction

Mid-infrared (IR) supercontinuum (SC) sources have great potential for improving spectral analysis tools, because of their spatial coherence and high power density over a broad bandwidth. A 1-4.5µm SC source was for example recently used in hyperspectral IR microscopy to demonstrate simultaneous analysis at multiple wavelengths [1]. In the food and pharmaceutical industry, analysis methods, such as Fourier Transform IR (FTIR) spectroscopy, can significantly be improved by using a broadband high-power SC source [2], and mid-IR SC sources are also ideal for stand-off ranged detection, where high power density over a broad spectral range is necessary to acquire as much information as possible about an ensemble of potentially hazardous substances from a safe distance [3]. Current state-of-the-art mid-IR SC sources cover 1-4.5µm using ZBLAN step-index fibers (SIFs) [4].

![Output spectrum from a 3m long chalcogenide SIF with d=20µm and NA =0.5 pumped at 4.5µm with a 10ps (solid), 20ps (dotted), and 40ps (dashed) pulse with 1kW peak power. Solid (dashed) red vertical line marks the pump and λZD respectively.](image)

Fig. 1. Output spectrum from a 3m long chalcogenide SIF with d=20µm and NA =0.5 pumped at 4.5µm with a 10ps (solid), 20ps (dotted), and 40ps (dashed) pulse with 1kW peak power. Solid (dashed) red vertical line marks the pump and λZD respectively.

With an aim to allow for early cancer detection with mid-IR SC sources we here consider the use of large-core (20µm diameter) chalcogenide SIFs pumped with a mode-locked Pr-doped chalcogenide fiber laser giving 40ps pulses at 4.5µm to generate a 3-12µm SC. This would cover the absorption bands of key biological compounds, such as proteins, lipids, carbohydrates, and nucleotides [5]. The use of large-core SIFs would increase the power...
handling capability and the robustness of the SC source. The numerically obtained SC spectra shown in Fig. 1 (see details below) demonstrate that such a 3-12 µm SC source is feasible using current chalcogenide fiber technology.

2. Numerical results

We consider As₂Se₃ chalcogenide SIFs and material data summarized in [6]. Thus, the refractive index is given by the Sellmeier equation \(n^2 = 1 + \frac{\lambda^2}{\lambda^2 - \lambda_{0}^2} + \frac{\lambda^2}{\lambda^2 - \lambda_{1}^2} \), where \(\lambda_0 = 2.234921 \), \(\lambda_1 = 1.308575 \), \(a_0 = 0.24164 \), \(a_1 = 19 \), with \(\lambda \) given in microns [6]. The nonlinear coefficient is \(n_2 = 2.4x10^{-17} \text{m}^2/\text{W} \) and the total nonlinear response is \(R(t) = (1-f_R) \delta(t)+f_R h_R(t) \), where the fractional Raman contribution is \(f_R = 0.115 \) and the delayed Raman response function is \(h_R(t) = [(a_1^2+a_2^2)/(a_1 a_2)] \exp(-t/\tau_2) \sin(t/\tau_1) \), with \(\tau_1 = 23.1\text{fs} \) and \(\tau_2 = 195\text{fs} \). In Fig. 2 we summarize our calculated fiber dispersion and loss properties using a Numerical Aperture (NA) assumed to be frequency constant. Here the total loss is defined as a constant material loss of 1dB/m plus confinement loss. Material losses of As₂Se₃ chalcogenide much less than 1dB/m have been demonstrated by several groups [6,7].

Figure 2 shows that if we want to use a 20 µm (10 µm) core diameter and generate an SC extending to 12 µm then we need an NA of at least 0.3 (0.45) in order to overcome confinement loss. We also see that a 5 µm core gives too high a loss. Looking at the dispersion we see that our 4.5 µm pump will always be in the normal dispersion regime. We therefore need to bring the zero-dispersion wavelength (\(\lambda_{ZD} \)) as close as possible to the pump to minimize the number of Raman Stokes orders necessary to transfer light across the \(\lambda_{ZD} \) into the anomalous dispersion regime and generate solitons that can further extend the SC to 12 µm. For NA>0.3 the 10 µm core fiber has too long a \(\lambda_{ZD} \) to be of use, except for very high NA above 0.7. Thus, focusing on the 20 µm core diameter fiber, we see that \(\lambda_{ZD} \) and the absolute value of the dispersion at the pump both decrease with NA. At a reasonable NA value of 0.5, achievable with today’s chalcogenide fiber technology, \(\lambda_{ZD} = 6.74 \mu m \). We have modeled SC generation in 3 m of such a fiber using the generalized nonlinear Schrödinger equation as detailed in [8]. For a fixed feasible peak power of 1 kW the results shown in Fig. 1 clearly demonstrate that a 3-12 µm SC can be generated with a pulse length of 40 ps or longer.

This work is part of the integrated project MINERVA (www.minerva-project.eu) supported through the EC Seventh Framework Programme (FP7).

3. References