Impact of Model Detail of Synchronous Machines on Real-time Transient Stability Assessment

Weckesser, Johannes Tilman Gabriel; Jóhannsson, Hjörtur; Østergaard, Jacob

Published in:
Proceedings of 2013 IREP Symposium

Link to article, DOI:
10.1109/IREP.2013.6629364

Publication date:
2013

Document Version
Publisher’s PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Impact of Model Detail of Synchronous Machines on Real-time Transient Stability Assessment

Tilman Weckesser, Hjörtur Jóhannsson and Jacob Østergaard
Centre for Electric Power and Energy, Department of Electrical Engineering, Technical University of Denmark, 2800 Lyngby

Abstract

In this paper, it is investigated how detailed the model of a synchronous machine needs to be in order to assess transient stability using a Single Machine Equivalent (SIME). The results will show how the stability mechanism and the stability assessment are affected by the model detail. In order to identify the transient stability mechanism, a simulation with a high-order model was used as reference. The Western System Coordinating Council System (WSCC) and the New England & New York system are considered and simulations of an unstable and a stable scenario are carried out, where the detail of the machine models is varied. Analyses of the results suggest that a 4th-order model may be sufficient to represent synchronous machines in transient stability studies.

Introduction

Today’s society is highly dependent on a stable and secure supply of electric power. In the future, this is not expected to change. The shift from fossil energy sources to renewable energy sources, which can be observed in many countries around the world and the aim of reaching a Danish society with minimal dependency on fossil fuels [1], represents a great challenge for the power system. These ambitious plans can only be achieved, when a large share of the electric power generation uses renewable energy sources, whose energy sources are non-controllable sources such as wind and solar radiation [1].

Transient Stability Assessment

Transient stability assessment (TSA) analyzes the system’s ability to sustain large transient disturbances such as loss of generation or failure on transmission facilities [13]. These disturbances lead to large excursion of the machines rotor angle, which are described by the strongly non-linear relations governing the dynamics in power systems. Consequently, transient stability cannot be assessed through linearization of the system equations.

Direct methods

In order to allow fast transient stability assessment, direct TSA methods were developed. These methods try to avoid explicitly solving the system differential equations. One of the main approaches is based on Lyapunov’s method [14] and a second main approach is applying the equal area criterion [15].

Lyapunov’s method. In order to apply Lyapunov’s method the system is described by a transient energy function, which allows determining transient stability after identification of the stable and unstable equilibrium point (UEP) of the post-fault system [14]. However, since the system is described by one single transient energy
function, it is difficult to determine the origin of the instability. One of the most recent developments applying this approach is the so-called BCU method [16].

Equal Area Criterion. The equal area criterion (EAC) allows assessing transient stability of one-machine infinite bus (OMIB) systems without explicitly solving the swing equation [13]. The criterion essentially states that the system needs to be capable of absorbing the kinetic energy of the generator gained during the fault. The gained kinetic energy and the energy absorbing capability are represented by areas defined by the mechanical power and the $P - \delta$-curve, which describes the non-linear relation of the electric power injection and the rotor angle. Hence, with certain assumptions and simplifications the stability criteria can be formulated as an integral. This approach was further developed with the extended equal area criterion [17] and most recently with the hybrid method SIME [15].

An analysis of the computational burden of the two mentioned methods with respect to real-time implementation was carried out in [11]. The results suggest that methods based on the EAC are faster than methods using Lyapunov’s method. Hence, in the following SIME is considered for the fast screening method.

Single Machine Equivalent (SIME) Method

Transient stability assessment with a Single Machine Equivalent (SIME) is based on the Equal Area Criterion and considered to be a hybrid method, since it combines the advantages of a direct method and time-domain simulation. A detailed description of the method can be found in [15].

Concept. The SIME method determines in each simulation step parameters of a candidate one-machine infinite bus (OMIB) system, which describes the dynamics of a critical generator group and a group of remaining (non-critical) generators. The machines in the system are split up into the critical and the non-critical group corresponding to their rotor angles. The machines in each group are aggregated and the parameters of the OMIB system are determined. After aggregation of the machines the transient stability of the resulting OMIB can be assessed using the equal area criterion.

Transient stability margin. The stability margin of such a system can be calculated as follows [15].

\[
\eta = - \int_{\delta_0}^{\delta_u} P_a \, d\delta - 1/2 \, M \, \omega_l^2 \quad (1)
\]

- M: Inertia coefficient of candidate OMIB [s²/rad]
- P_a: Accelerating power of candidate OMIB [pu]
- δ_0: Current rotor angle of candidate OMIB [rad]
- δ_u: Rotor angle at UEP of candidate OMIB [rad]
- η: Transient stability margin in [rad]
- ω_l: Current rotor speed of candidate OMIB [rad/s]

Here a negative margin represents an unstable case and a positive margin a stable case [15]. The unit of the stability margin computed with eq. (7) is radians. Often the margin is normalized with respect to the inertia coefficient of the OMIB, which results in a normalized stability margin with unit (rad/s)².

Implementation. In this case the implementation of SIME is used to carry out a fast screening of the current system condition with respect to N-1-contingencies and first swing transient stability. The implementation is derived from E-SIME, e.g. described in [15], [18]. E-SIME uses measurements of the post-fault system, which are acquired in real-time. These measurements are replaced in this implementation by data received from the time-domain simulation software RAMSES. This implementation of SIME is called preventive SIME [15]. With the application of SIME the aim is to get an early stop criterion for the simulation, which declares a contingency to be definitely stable or unstable.

In order to determine first swing stability of the particular contingency scenario, a time-domain simulation is run until at least three data sets of the post-fault system are available. Then the predictive SIME method is executed the first time and, subsequently, the stability assessment is updated with data sets acquired in each successive simulation step.

In the following the procedure of preventive SIME is described in more detail (see also [11] and [15]).

Step 1: Consider the first three data sets received from the time-domain simulation in the post-fault configuration.

Step 2: Predict the rotor angle of each individual generator some time ahead (~100ms) using Taylor series expansion truncated after the quadratic term. **Step 3:** Rank generators according to the predicted rotor angles and identify the critical machine candidates looking for the maximum angular deviation of two successive machines. The machines above this gap form the candidate critical machines and the ones below the candidate the non-critical machines. The machines are then aggregated accordingly and the candidate OMIB is determined.

Step 4: Subsequently, the parameter of the candidate OMIB can be computed and, utilizing the accelerating power and the rotor angle from at least three successive data sets, the $P_a - \delta$ curve can be estimated as follows.

\[
P_a(\delta) = a \, \delta^2 + b \, \delta + c \quad (2)
\]

Note: First, the parameters a, b and c can be determined using the three acquired data sets and, in the following, with additional acquired data the prediction can be refined using a weighted least square technique. **Step 5:** The angle δ_u at the unstable equilibrium point is determined by solving $P_a(\delta_u) = 0$ and by checking if the instability conditions of eq. (3) are met.

\[
P_a(\delta_u) = 0; \quad \dot{P}_a(\delta_u) > 0 \quad (3)
\]

If the instability conditions (3) are not met, then a new set of data is acquired and the procedure is repeated from **Step 2.** If the conditions are met the stability margin is computed utilizing eq. (1), then a new set of data is
acquired and the Steps 2 to 5 are repeated to refine the computed \(\delta_u \) and the estimated stability margin \(\eta \). The procedure is terminated when the stability margin converged to a constant value or the angle of maximum excursion \(\delta_e \) is reached where the following conditions are met.

\[
P_u(\delta_e) < 0; \quad \omega_e = 0 \quad (4)
\]

Since the method to determine transient stability requires time-domain simulation a speed up of the assessment can be achieved, when the model detail of the power system components, used in the simulation, can be reduced. Hence, in the following the method is tested with reduced order synchronous machine models.

Synchronous machine models

In the following section the described synchronous machine (SM) models were adopted from [19]. The 6th- and 4th-order model are readily integrated in RAMSES. The 3rd-order and 2nd-order model were realized through appropriate selection of the time constants in the 4th-order model.

Four winding model (6th-order)

In the 6th-order model, four windings are considered, two on the q-axis and two on the d-axis. However, the network and stator transients are neglected. According to [13] the dynamics introduced by these transients may be neglected and this will lead to slightly conservative results, which is preferable in stability studies and in particular for fast screening where all critical and unstable scenarios should be identified.

In dynamic analysis, when using the 6th-order model, the synchronous machine is described by the following six equations [19].

\[
\begin{align*}
2H \frac{d\omega}{\omega_s} &= -T_M - \left(X''_q - X_{ls} \right) E'_q I_q \\
&\quad+ (X'_q - X_{ls}) I_d \\
&\quad- \left(\frac{X'_q - X''_q}{X'_q - X_{ls}} \right) \psi_{2q} I_d \\
&\quad- \left(\frac{X'_q - X_{ls}}{X'_q - X_{ls}} \right) \psi_{1d} I_a \\
&\quad+ \left(\frac{X'_q - X_{ls}}{X'_q - X_{ls}} \right) I_d \\
&\quad- \left(X'_q - X_{ls} \right) I_a - T_{FW}
\end{align*}
\]

Equation (5) and (6) describe the dynamics in the d-axis, while equation (7) and (8) describe the dynamics in the q-axis. Equation (9) and (10) represents the well-known swing equation.

In all models additional damping may be added through the optional torque component \(T_{FW} \), which introduces a damping torque proportional to the rotational speed.

Two-axis model (4th-order)

In the 4th-order two axis model, the damper winding dynamics \(\psi_{1d} \) and \(\psi_{2q} \) are neglected. As described in [19], this is achieved by setting \(T_{1d}'' \) and \(T_{2d}'' \) equal to zero, which leads to the following mathematical description of the synchronous machine.

\[
\begin{align*}
T_{do} \frac{dE'_q}{dt} &= -X'_q + \left(X'_d - X'_{ls} \right) I_d + E_{fd} \\
&\quad+ \left(X'_q - X_{ls} \right) I_d + E'_q \\
T_{do} \frac{d\psi_{1d}}{dt} &= -\psi_{1d} + \psi_{2q} - \left(X'_d - X_{ls} \right) I_d \\
T_{do} \frac{dE'_d}{dt} &= -E'_d - \left(X'_d - X'_{ls} \right) I_d \\
&\quad+ \left(X'_d - X_{ls} \right) I_d + E'_d \\
T_{do} \frac{d\psi_{2d}}{dt} &= -\psi_{2d} + E'_d - \left(X'_q - X_{ls} \right) I_d \\
\end{align*}
\]

\[
\begin{align*}
T_{d} \frac{d\delta}{dt} &= \omega - \omega_s \\
T_{qo} \frac{dE'_q}{dt} &= -E'_q - \left(X'_d - X'_{ls} \right) I_d \\
&\quad+ \left(X'_q - X_{ls} \right) I_d + E'_q \\
T_{qo} \frac{d\psi_{2q}}{dt} &= -\psi_{2q} + E'_d - \left(X'_q - X_{ls} \right) I_d \\
2H \frac{d\omega}{\omega_s} &= T_M - E'_q I_q - E'_d I_d - \left(X'_q - X'_{ls} \right) I_d I_q - T_{FW}
\end{align*}
\]
One-axis model (3rd-order)

In the one-axis model, the representation of the synchronous machine is reduced by another degree. Therefore, the damper windings dynamics E_d' are eliminated. This reduction is achieved by setting T_{d0}' equal to zero and results in the following equations [19].

\[
T_{d0}' \frac{dE_d'}{dt} = -E_d' - (X_d - X_d')I_d + E_f \tag{15}
\]

\[
\frac{d\delta}{dt} = \omega - \omega_s \tag{16}
\]

\[
2H \frac{d\omega}{\omega_s} = T_M - E_d'I_q - (X_q - X_q')I_dI_q - T_{FW} \tag{17}
\]

Classical model (2nd-order)

The last synchronous machine model, which is considered in this analysis, is the classical model. In this model the voltage behind the transient reactance is assumed to be constant. For such a representation only the swing equation is needed to describe the dynamics of a synchronous machine.

\[
\frac{d\delta}{dt} = \omega - \omega_s \tag{18}
\]

\[
2H \frac{d\omega}{\omega_s} = T_M - \frac{E'V_T}{X_d'}\sin(\delta - \theta_T) - T_{FW} \tag{19}
\]

E' Internal voltage behind transient reactance

V_T Terminal voltage

Test systems and scenarios

Two test systems, namely the Western System Coordinating Council system as well as the New England & New York system, were considered for the analysis. For each of the test systems a transient stable and a transient unstable test scenario were considered.

Western System Coordinating Council (WSCC)

The WSCC system is a 9-bus system with 3 generators. The load flow and the dynamic data were adopted from [19]. However, in order to further stress the system, the system loading was increased by approximately 50%. The power generation of the generators was increased correspondingly.

The parameters of the synchronous machine models can be seen in Table 1. In the original WSCC system the generators are solely described by a 4th-order model. Consequently, for the 6th-order model standard parameter were added, which were taken from [13]. In order to allow assessment of solely the influence of the generator model, the excitation systems were removed from the model and the excitation was assumed to be manually. Furthermore, no governor model was implemented.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>GEN-1</th>
<th>GEN-2</th>
<th>GEN-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVA base</td>
<td>500.0</td>
<td>300.0</td>
<td>300.0</td>
</tr>
<tr>
<td>H [s]</td>
<td>4.728</td>
<td>2.133</td>
<td>1.003</td>
</tr>
<tr>
<td>X_d [pu]</td>
<td>0.7300</td>
<td>2.6874</td>
<td>3.9375</td>
</tr>
<tr>
<td>X_d' [pu]</td>
<td>0.3040</td>
<td>0.3594</td>
<td>0.5439</td>
</tr>
<tr>
<td>X_q [pu]</td>
<td>0.2500</td>
<td>0.2500</td>
<td>0.3000</td>
</tr>
<tr>
<td>X_q' [pu]</td>
<td>0.4845</td>
<td>2.5935</td>
<td>3.7734</td>
</tr>
<tr>
<td>T_{d0} [s]</td>
<td>8.690</td>
<td>6.000</td>
<td>5.890</td>
</tr>
<tr>
<td>T_{d0}' [s]</td>
<td>0.030</td>
<td>0.045</td>
<td>0.030</td>
</tr>
<tr>
<td>T_{d0}' [s]</td>
<td>0.310</td>
<td>0.535</td>
<td>0.600</td>
</tr>
<tr>
<td>T_{q0}' [s]</td>
<td>0.040</td>
<td>0.035</td>
<td>0.040</td>
</tr>
</tbody>
</table>

In order to assess how detailed the synchronous machine model needs to be to depict the instability mechanism of the first swing accurately and to allow correct stability assessment using SIME, two test scenarios are considered, an unstable and a stable case.

In [20] it is stated that it is sufficient to represent turbogenerators by their 6th-order model in stability analysis. Therefore, the simulations using the 6th-order generator model serve as a reference case and it is assumed to reflect reality sufficiently.

Unstable case. In the unstable case, the stressed system is driven to instability through the loss of the heavily loaded line connecting bus 7 and 8 100 ms after simulation begin. In this case, it is assumed that the line is tripped due to overloading and it is not reconnected.

![Fig. 1: Unstable response of the rotor angles of the generators to the transient disturbance](image)

Figure 1 shows that the loss of the heavily loaded transmission line triggers a first swing instability and causes generator 2 to lose synchronism.

Stable case. In the stable case the same fault as in the unstable case is considered, but the transmission line is reconnected after 150ms. This reconnection leads to a relative deceleration of the affected generators and
eventually the system reaches a new steady state operating point. Figure 2 displays the rotor angle response of all three generators.

Fig. 2: Stable response of the rotor angles of the generators to the transient disturbance

New England and New York

The second test system represents the New England and New York system. The system was adopted from Graham Rogers [21] and consists of sixteen generators and 68 buses. The synchronous generators are modeled using a 6th-order model, thermal turbine/governor model and static exciters. All generators but generator 7 and 14 are equipped with a PSS. The parameters and a detailed model description can be found in [21]. In the following two transient stability scenarios are considered.

Stable case. The stable case is adopted from chapter 5 in [21]. The considered fault is a three phase short circuit very close to bus 21 applied 1s after simulation begin. The fault is cleared after 150ms by opening the breakers at both ends of the transmission line connecting bus 16 and bus 21. The case represents a marginal stable scenario, which is apparent due to the large angular excursion of the rotor angles of the generators 6 and 7. Figure 3 shows the rotor angles over time, when the synchronous machines are represented by a 6th-order model. Like before this simulation will serve as reference for the TSA when using SIME.

Unstable case. In order to obtain an unstable case, the power flow of the marginal stable case was modified. To further stress the system, the power generation of the critical generators was increased. Therefore, the power generation of generator 4 was decreased by 10MW and at the same time the power output of generator 6 was increased by the same amount. This accounts to a change in power generation of approx. 1.5% at both generators. This modification of the power flow and the same fault as in the stable case triggered a transient first swing instability and the loss of synchronism of generators 6 and 7. The reference unstable case using 6th-order synchronous machine models and the rotor angles over time of all 16 generators can be seen in Figure 4.

Simulation results

In the following section, the simulation results using the various generator models are discussed with respect to representation of the stability mechanism and possibility to assess transient stability using preventive SIME.

Representation of the stability mechanism

In order to detect instability correctly, the stability mechanism has to be depicted accurately. For the case of transient stability, the rotor angles of the machines allow to detect loss of synchronism and the origin of the stability problem. Hence, a comparison of the rotor angles may give an indication on the needed model detail. In the following, the rotor angle responses of the critical machines are compared when using varying SM models.

WSCC unstable and stable case. In the two cases generator 2 was identified as the critical machine. A comparison of the unstable rotor angle responses of generator 2 using the four different machine models is shown in Figure 5.

It can be seen that approximately for the first 400 ms after the fault, the development of the rotor angles of generator 2 over time are differing only slightly. However, thereafter the development begins to diverge. The generator appears to be first swing stable, when using low order generator models such as the 2nd- and 3rd-order
model. The simulation using a 4th-order model shows the same instability mechanism as the reference case using the 6th-order model. It even seems to be slightly pessimistic since the rotor angle is increasing faster than in the reference case.

A comparison of the rotor angle trajectories of the stable case lead to a similar conclusion. Figure 6 shows that the rotor angle trajectories are similar for the first 200 ms after the disturbance, but begin to deviate subsequently. The deviations for 2nd- and 3rd-order models are larger than for the 4th-order model. However, the first swing characteristic is the same for all four models, where the 4th-order model is, with respect to the maximum angle excursion, slightly more pessimistic and the 3rd-order model slightly more optimistic.

New England and New York. For the two scenarios of the second test system the generators 6 and 7 were identified as critical. Subsequently, the rotor angle trajectories of one of the critical generators (generator 6) are compared for the stable and unstable case. The different rotor angle curves are obtained from varying the SM model.

Figure 7 shows the rotor angle responses for the stable case and it can be seen that only the simulation using the second order model fails to represent the correct stability mechanism; meaning that all but the 2nd-order model simulation show a stable rotor response. Approximately, for the first 400 ms the different rotor angle trajectories only vary slightly. However, afterwards a clear separation is visible. When excluding the 2nd-order model, it can be observed that with decreasing order of detail, the maximum return angle decreases and it seems that the angle response is becoming less critical.

Stability Assessment Results using SIME

Determination of the stability margin. In the following, the determined stability margins are analyzed for the discussed transient stability scenarios of the two test systems. The aim is to investigate if a reduced order model of a synchronous machine is sufficient to represent its dynamics during and following a transient disturbance. In the stable as well as in the unstable case of the WSCC test system, the estimation of the $P - \delta$ curve and the
calculation of the stability margin led to the conclusion that only generator 2 is critical and, hence, the following analysis solely considers the stability assessment of this generator as the critical generator group.

It is expected that the estimation of the stability margin is improving with increasing number of considered simulated data. Furthermore, it is expected that the stability margin converges to a constant value. Figure 9 shows the determined margin for the unstable case. For the four simulations with differing generator model, it can be seen that the margins converge to a constant value. The simulations, when using low order generator models, showed that the system is first swing stable in the unstable reference case (see Figure 5). The transient stability assessment of the first swing using SIME confirms this, since the stability margin converges to a positive value. The rotor angles over time for simulations with higher order generator model showed a loss of synchronism within the first swing. The TSA of these cases correctly predicts this loss of synchronism, which is apparent due to the convergence to a negative stability margin.

Figure 11 shows the computed stability margin over time of the stable case.

The analysis of the rotor angle of generator 6 (see Figure 7) showed a stable response using SM models of 3rd-order and higher. Consequently, SIME determines those simulations as stable and only the simulation using a 2nd-order SM model as unstable.

The stability margin determined for the 2nd-order model simulation changes only slightly with time. This may be explained by the fact that TSAs using EAC are derived from the assumption of fixed voltage behind the transient reactance, which is also assumed for the case of a 2nd-order model. The stability margin of the simulation using a 3rd-order model is the next fastest simulation to reach a (temporarily) constant stability margin. The subsequent rise of the stability margin may be explained by the observation that very close to the return angle the quadratic estimation of the \(P - \delta \) curve is no longer sufficient. For the 4th-order model the stability margin remains positive until the end of the simulation. However, the stability margin does not reach a constant value. The stability margin computed from values of the simulation using 6th-order SM models begin with a negative margin,
but it converges over time and with improving estimation of the $P_d - \delta$ curve to a slightly positive value. Figure 12 shows the stability margin of the unstable case of the New England and New York system. Recall Figure 8 for this case all simulations but the simulation using 3rd-order generator model depicted an unstable rotor angle response similar to the reference case. The stability margin of the 2nd-order simulation is slightly more negative than in the prior case, but as steady as before. The simulation with 3rd-order models is much too optimistic and the stability assessment indicates a stable case. With a fourth order model the stability margin begins with a positive value, but slowly converges to a slightly negative margin indicating an unstable case. The stability margin determined from the 6th-order model simulation begins with a negative margin and converges to a negative margin close to zero, which was expected since the case is marginal unstable. In this case the simulations with 4th- and 6th-order models allowed a correct stability assessment, where the results with 4th-order were slightly more optimistic.

![Stability margin over time](image)

Fig. 12: Stability margins over time of the unstable case for the critical generator group consisting only of generator 6 and 7 with differing degree of model detail

Conclusion

The paper begins with a short description of the SIngle Machine Equivalent (SIME) method, which is based on the equal area criterion, and can be used to assess transient stability. SIME is a hybrid method combining the advantages of using time-domain simulation and using a direct method for transient stability assessment (TSA). In this paper SIME is used to carry out a fast transient stability screening of the current power system condition. For that purpose the computational burden of the TSA method should be minimized. In order to speed up the necessary time-domain simulation, a reduction of the synchronous machine model is considered in this work. The modeling degree of the synchronous generators was varied in two test power systems and two transient stability scenarios. For that purpose 6th-, 4th-, 3rd- and 2nd-order models were considered, the stability mechanism by means of the rotor angle trajectories of the critical machines were compared and the resulting transient stability assessment results using the preventive

SIMGE implementation were investigated. In all cases the simulation with 6th-order model was used as reference. The results showed that simulations using a synchronous machine model of 3rd-order and below do not exhibit the correct stability mechanism and, consequently, the transient stability assessment with SIME fails. Furthermore, it was shown that a representation of the synchronous machines by a 4th-order model may be sufficient, since the simulation displayed in all four cases the right stability mechanism and allowed to correctly determine transient stability. It should be mentioned that in the case of the New England and New York system the TSA with the 4th-order model led to slightly more optimistic stability assessment results than in the reference case. It should be noted the stable and unstable scenario of the New England and New York system were marginal stable and unstable and nevertheless, the 4th-order generator model representation was sufficient. The simulation results all hand may suggest that a representation of the synchronous machine by their 4th-order model is sufficient to assess transient first swing stability.

References

